Skip to main content
Erschienen in: Journal of Medical Systems 3/2019

01.03.2019 | Image & Signal Processing

Automated Fractured Bone Segmentation and Labeling from CT Images

verfasst von: Darshan D. Ruikar, K. C. Santosh, Ravindra S. Hegadi

Erschienen in: Journal of Medical Systems | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Within the scope of education and training, automatic and accurate segmentation of fractured bones from Computed Tomographic (CT) images is the fundamental step in several different applications, such as trauma analysis, visualization, diagnosis, surgical planning and simulation. It helps physicians analyze the severity of injury by taking into account the following fracture features, such as location of the fracture, number of pieces and deviation from the original location. Besides, it helps provide accurate 3D visualization and decide optimal recovery plans/processes. To accurately segment fracture bones from CT images, in the paper, we introduce a segmentation technique that makes labeling process easier. Based on the patient-specific anatomy, unique labels are assigned. Unlike conventional techniques, it also includes the removal of unwanted artifacts, such as flesh. In our experiments, we have demonstrated our concept with real-world data (with an accuracy of 95.45%) and have compared with state-of-the-art techniques. For validation, our tests followed expert-based decisions i.e., clinical ground-truth. With the results, our collection of 8000 CT images will be available upon the request.
Fußnoten
1
A comminuted fracture happens when the bone breaks into several pieces with possible dislocation.
 
2
DICOM: Digital Imaging and Communications in Medicine
 
3
HIPPA: Health Insurance Portability and Accountability Act
 
4
IRB: Institutional Review Board
 
Literatur
1.
Zurück zum Zitat Chan, T.F., Sandberg, B.Y., and Vese, L.A., Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2):130–141, 2000.CrossRef Chan, T.F., Sandberg, B.Y., and Vese, L.A., Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2):130–141, 2000.CrossRef
2.
Zurück zum Zitat Egol, K.A., Koval, K.J., and Zuckerman, J.D., Handbook of fractures. Philadelphia: Lippincott Williams & Wilkins, 2010. Egol, K.A., Koval, K.J., and Zuckerman, J.D., Handbook of fractures. Philadelphia: Lippincott Williams & Wilkins, 2010.
3.
Zurück zum Zitat Fornaro, J., Székely, G., and Harders, M.: Semi-automatic segmentation of fractured pelvic bones for surgical planning. In: International symposium on biomedical simulation, pp. 82–89. Springer, 2010. Fornaro, J., Székely, G., and Harders, M.: Semi-automatic segmentation of fractured pelvic bones for surgical planning. In: International symposium on biomedical simulation, pp. 82–89. Springer, 2010.
4.
Zurück zum Zitat Gangwar, T., Calder, J., Takahashi, T., Bechtold, J.E., and Schillinger, D., Robust variational segmentation of 3D bone CT data with thin cartilage interfaces. Med. Image Anal. 47:95–110, 2018.CrossRef Gangwar, T., Calder, J., Takahashi, T., Bechtold, J.E., and Schillinger, D., Robust variational segmentation of 3D bone CT data with thin cartilage interfaces. Med. Image Anal. 47:95–110, 2018.CrossRef
5.
Zurück zum Zitat Gonzalez, R.C., and Woods, R.E.: Digital Image Process, 2012 Gonzalez, R.C., and Woods, R.E.: Digital Image Process, 2012
6.
Zurück zum Zitat Harders, M., Barlit, A., Gerber, C., Hodler, J., and Székely, G.: An optimized surgical planning environment for complex proximal humerus fractures. In: MICCAI workshop on interaction in medical image analysis and visualization, Vol. 30, 2007. Harders, M., Barlit, A., Gerber, C., Hodler, J., and Székely, G.: An optimized surgical planning environment for complex proximal humerus fractures. In: MICCAI workshop on interaction in medical image analysis and visualization, Vol. 30, 2007.
7.
Zurück zum Zitat He, Y., Shi, C., Liu, J., and Shi, D.: A segmentation algorithm of the cortex bone and trabecular bone in proximal humerus based on CT images. In: 2017 23rd international conference on automation and computing (ICAC), pp. 1–4. IEEE, 2017. He, Y., Shi, C., Liu, J., and Shi, D.: A segmentation algorithm of the cortex bone and trabecular bone in proximal humerus based on CT images. In: 2017 23rd international conference on automation and computing (ICAC), pp. 1–4. IEEE, 2017.
8.
Zurück zum Zitat Hounsfield, G.N., Computed medical imaging. Medical Phys. 7(4):283–290, 1980.CrossRef Hounsfield, G.N., Computed medical imaging. Medical Phys. 7(4):283–290, 1980.CrossRef
9.
Zurück zum Zitat Huang, C.Y., Luo, L.J., Lee, P.Y., Lai, J.Y., Wang, W.T., Lin, S.C., et al., Efficient segmentation algorithm for 3D bone models construction on medical images. J. Med. Biol. Eng. 31:375–386, 2011.CrossRef Huang, C.Y., Luo, L.J., Lee, P.Y., Lai, J.Y., Wang, W.T., Lin, S.C., et al., Efficient segmentation algorithm for 3D bone models construction on medical images. J. Med. Biol. Eng. 31:375–386, 2011.CrossRef
10.
Zurück zum Zitat Hunter, E.J., and Palaparthi, A.K.R.: Removing patient information from MRI and CT images using MATLAB. National Repository for Laryngeal Data Technical Memo No. 3(version 2.0), 1–4, 2015 Hunter, E.J., and Palaparthi, A.K.R.: Removing patient information from MRI and CT images using MATLAB. National Repository for Laryngeal Data Technical Memo No. 3(version 2.0), 1–4, 2015
11.
Zurück zum Zitat Justice, R.K., Stokely, E.M., Strobel, J.S., Ideker, R.E., and Smith, W.M.: Medical image segmentation using 3D seeded region growing. In: International society for optics and photonics, medical imaging 1997: Image processing, Vol. 3034, pp. 900–911, 1997. Justice, R.K., Stokely, E.M., Strobel, J.S., Ideker, R.E., and Smith, W.M.: Medical image segmentation using 3D seeded region growing. In: International society for optics and photonics, medical imaging 1997: Image processing, Vol. 3034, pp. 900–911, 1997.
12.
Zurück zum Zitat Kaminsky, J., Klinge, P., Rodt, T., Bokemeyer, M., Luedemann, W., and Samii, M., Specially adapted interactive tools for an improved 3D-segmentation of the spine. Comput. Med. Imaging Graph. 28(3):119–127, 2004.CrossRef Kaminsky, J., Klinge, P., Rodt, T., Bokemeyer, M., Luedemann, W., and Samii, M., Specially adapted interactive tools for an improved 3D-segmentation of the spine. Comput. Med. Imaging Graph. 28(3):119–127, 2004.CrossRef
13.
Zurück zum Zitat Lai, J.Y., Essomba, T., Lee, P.Y., et al.: Algorithm for segmentation and reduction of fractured bones in computer-aided preoperative surgery. In: Proceedings of the 3rd international conference on biomedical and bioinformatics engineering, pp. 12–18. ACM, 2016. Lai, J.Y., Essomba, T., Lee, P.Y., et al.: Algorithm for segmentation and reduction of fractured bones in computer-aided preoperative surgery. In: Proceedings of the 3rd international conference on biomedical and bioinformatics engineering, pp. 12–18. ACM, 2016.
14.
Zurück zum Zitat Lee, P.Y., Lai, J.Y., Hu, Y.S., Huang, C.Y., Tsai, Y.C., and Ueng, W.D., Virtual 3D planning of pelvic fracture reduction and implant placement. Biomed. Eng.: Appl. Basis Commun. 24(03):245–262, 2012. Lee, P.Y., Lai, J.Y., Hu, Y.S., Huang, C.Y., Tsai, Y.C., and Ueng, W.D., Virtual 3D planning of pelvic fracture reduction and implant placement. Biomed. Eng.: Appl. Basis Commun. 24(03):245–262, 2012.
15.
Zurück zum Zitat Moghari, M.H., and Abolmaesumi, P.: Global registration of multiple bone fragments using statistical atlas models: feasibility experiments. In: 2008 30th annual international conference of the IEEE, engineering in medicine and biology society, 2008. EMBS, pp. 5374–5377. IEEE, 2008. Moghari, M.H., and Abolmaesumi, P.: Global registration of multiple bone fragments using statistical atlas models: feasibility experiments. In: 2008 30th annual international conference of the IEEE, engineering in medicine and biology society, 2008. EMBS, pp. 5374–5377. IEEE, 2008.
16.
Zurück zum Zitat Paulano, F., Jiménez, J.J., and Pulido, R., 3D segmentation and labeling of fractured bone from CT images. Vis. Comput. 30(6-8):939–948, 2014.CrossRef Paulano, F., Jiménez, J.J., and Pulido, R., 3D segmentation and labeling of fractured bone from CT images. Vis. Comput. 30(6-8):939–948, 2014.CrossRef
17.
Zurück zum Zitat Pham, D.L., Xu, C., and Prince, J.L., Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2(1):315–337, 2000.CrossRef Pham, D.L., Xu, C., and Prince, J.L., Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2(1):315–337, 2000.CrossRef
18.
Zurück zum Zitat Poleti, M.L., Fernandes, T.M.F., Pagin, O., Moretti, M.R., and Rubira-Bullen, I.R.F., Analysis of linear measurements on 3D surface models using CBCT data segmentation obtained by automatic standard pre-set thresholds in two segmentation software programs: an in vitro study. Clin. Oral Investig. 20(1):179–185, 2016.CrossRef Poleti, M.L., Fernandes, T.M.F., Pagin, O., Moretti, M.R., and Rubira-Bullen, I.R.F., Analysis of linear measurements on 3D surface models using CBCT data segmentation obtained by automatic standard pre-set thresholds in two segmentation software programs: an in vitro study. Clin. Oral Investig. 20(1):179–185, 2016.CrossRef
19.
Zurück zum Zitat Ruikar, D.D., Hegadi, R.S., and Santosh, K., A systematic review on orthopedic simulators for psycho-motor skill and surgical procedure training. J. Med. Syst. 42(9):168, 2018.CrossRef Ruikar, D.D., Hegadi, R.S., and Santosh, K., A systematic review on orthopedic simulators for psycho-motor skill and surgical procedure training. J. Med. Syst. 42(9):168, 2018.CrossRef
20.
Zurück zum Zitat Sachse, F.B.: 5. digital image processing. In: Computational cardiology, pp. 91–118. Springer, 2004. Sachse, F.B.: 5. digital image processing. In: Computational cardiology, pp. 91–118. Springer, 2004.
21.
Zurück zum Zitat Sebastian, T.B., Tek, H., Crisco, J.J., Wolfe, S.W., and Kimia, B.B.: Segmentation of carpal bones from 3D ct images using skeletally coupled deformable models. In: International conference on medical image computing and computer-assisted intervention, pp. 1184–1194. Springer, 1998. Sebastian, T.B., Tek, H., Crisco, J.J., Wolfe, S.W., and Kimia, B.B.: Segmentation of carpal bones from 3D ct images using skeletally coupled deformable models. In: International conference on medical image computing and computer-assisted intervention, pp. 1184–1194. Springer, 1998.
22.
Zurück zum Zitat Shadid, W., and Willis, A.: Bone fragment segmentation from 3D CT imagery using the probabilistic watershed transform. In: 2013 Proceedings of IEEE southeastcon, pp. 1–8. IEEE, 2013. Shadid, W., and Willis, A.: Bone fragment segmentation from 3D CT imagery using the probabilistic watershed transform. In: 2013 Proceedings of IEEE southeastcon, pp. 1–8. IEEE, 2013.
23.
Zurück zum Zitat Shadid, W.G., and Willis, A., Bone fragment segmentation from 3D CT imagery. Comput. Med. Imaging Graph. 66:14–27, 2018.CrossRef Shadid, W.G., and Willis, A., Bone fragment segmentation from 3D CT imagery. Comput. Med. Imaging Graph. 66:14–27, 2018.CrossRef
24.
Zurück zum Zitat Szymor, P., Kozakiewicz, M., and Olszewski, R., Accuracy of open-source software segmentation and paper-based printed three-dimensional models. J. Cranio-Maxillofac. Surg. 44(2):202–209, 2016.CrossRef Szymor, P., Kozakiewicz, M., and Olszewski, R., Accuracy of open-source software segmentation and paper-based printed three-dimensional models. J. Cranio-Maxillofac. Surg. 44(2):202–209, 2016.CrossRef
25.
Zurück zum Zitat Tassani, S., Matsopoulos, G.K., and Baruffaldi, F., 3D identification of trabecular bone fracture zone using an automatic image registration scheme: A validation study. J. Biomechanics 45(11):2035–2040, 2012.CrossRef Tassani, S., Matsopoulos, G.K., and Baruffaldi, F., 3D identification of trabecular bone fracture zone using an automatic image registration scheme: A validation study. J. Biomechanics 45(11):2035–2040, 2012.CrossRef
26.
Zurück zum Zitat Testi, D., Quadrani, P., and Viceconti, M., Physiomespace: digital library service for biomedical data. Philosophical Trans. Royal Soc. London A: Math. Phys. Eng. Sci. 368(1921):2853–2861, 2010.CrossRef Testi, D., Quadrani, P., and Viceconti, M., Physiomespace: digital library service for biomedical data. Philosophical Trans. Royal Soc. London A: Math. Phys. Eng. Sci. 368(1921):2853–2861, 2010.CrossRef
27.
Zurück zum Zitat Tomazevic, M., Kreuh, D., Kristan, A., Puketa, V., and Cimerman, M.: Preoperative planning program tool in treatment of articular fractures: process of segmentation procedure. In: XII Mediterranean conference on medical and biological engineering and computing 2010, pp. 430–433. Springer, 2010. Tomazevic, M., Kreuh, D., Kristan, A., Puketa, V., and Cimerman, M.: Preoperative planning program tool in treatment of articular fractures: process of segmentation procedure. In: XII Mediterranean conference on medical and biological engineering and computing 2010, pp. 430–433. Springer, 2010.
28.
Zurück zum Zitat Vasilache, S., and Najarian, K.: Automated bone segmentation from pelvic CT images. In: IEEE international conference on bioinformatics and biomeidcine workshops, 2008. BIBMW 2008. pp. 41–47. IEEE, 2008. Vasilache, S., and Najarian, K.: Automated bone segmentation from pelvic CT images. In: IEEE international conference on bioinformatics and biomeidcine workshops, 2008. BIBMW 2008. pp. 41–47. IEEE, 2008.
Metadaten
Titel
Automated Fractured Bone Segmentation and Labeling from CT Images
verfasst von
Darshan D. Ruikar
K. C. Santosh
Ravindra S. Hegadi
Publikationsdatum
01.03.2019
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 3/2019
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-019-1176-x

Weitere Artikel der Ausgabe 3/2019

Journal of Medical Systems 3/2019 Zur Ausgabe