Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 6/2019

02.04.2019 | Original Article

Automatic biplane left ventricular ejection fraction estimation with mobile point-of-care ultrasound using multi-task learning and adversarial training

verfasst von: Mohammad H. Jafari, Hany Girgis, Nathan Van Woudenberg, Zhibin Liao, Robert Rohling, Ken Gin, Purang Abolmaesumi, Terasa Tsang

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Left ventricular ejection fraction (LVEF) is one of the key metrics to assess the heart functionality, and cardiac ultrasound (echo) is a standard imaging modality for EF measurement. There is an emerging interest to exploit the point-of-care ultrasound (POCUS) usability due to low cost and ease of access. In this work, we aim to present a computationally efficient mobile application for accurate LVEF estimation.

Methods

Our proposed mobile application for LVEF estimation runs in real time on Android mobile devices that have either a wired or wireless connection to a cardiac POCUS device. We propose a pipeline for biplane ejection fraction estimation using apical two-chamber (AP2) and apical four-chamber (AP4) echo views. A computationally efficient multi-task deep fully convolutional network is proposed for simultaneous LV segmentation and landmark detection in these views, which is integrated into the LVEF estimation pipeline. An adversarial critic model is used in the training phase to impose a shape prior on the LV segmentation output.

Results

The system is evaluated on a dataset of 427 patients. Each patient has a pair of captured AP2 and AP4 echo studies, resulting in a total of more than 40,000 echo frames. The mobile system reaches a noticeably high average Dice score of 92% for LV segmentation, an average Euclidean distance error of 2.85 pixels for the detection of anatomical landmarks used in LVEF calculation, and a median absolute error of 6.2% for LVEF estimation compared to the expert cardiologist’s annotations and measurements.

Conclusion

The proposed system runs in real time on mobile devices. The experiments show the effectiveness of the proposed system for automatic LVEF estimation by demonstrating an adequate correlation with the cardiologist’s examination.
Literatur
1.
Zurück zum Zitat Abdi AH, Luong C, Tsang T, Allan G, Nouranian S, Jue J, Hawley D, Fleming S, Gin K, Swift J (2017) Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view. IEEE Trans Med Imaging 36(6):1221–1230CrossRefPubMed Abdi AH, Luong C, Tsang T, Allan G, Nouranian S, Jue J, Hawley D, Fleming S, Gin K, Swift J (2017) Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view. IEEE Trans Med Imaging 36(6):1221–1230CrossRefPubMed
2.
Zurück zum Zitat Avendi M, Kheradvar A, Jafarkhani H (2016) A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal 30:108–119CrossRefPubMed Avendi M, Kheradvar A, Jafarkhani H (2016) A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal 30:108–119CrossRefPubMed
3.
Zurück zum Zitat Carneiro G, Nascimento JC (2013) Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. IEEE Trans Pattern Anal Mach Intell 99(1):2592–2607CrossRef Carneiro G, Nascimento JC (2013) Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. IEEE Trans Pattern Anal Mach Intell 99(1):2592–2607CrossRef
4.
Zurück zum Zitat Carneiro G, Nascimento JC, Freitas A (2012) The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans Image Process 21(3):968–982CrossRefPubMed Carneiro G, Nascimento JC, Freitas A (2012) The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans Image Process 21(3):968–982CrossRefPubMed
5.
Zurück zum Zitat Chen H, Dou Q, Ni D, Cheng JZ, Qin J, Li S, Heng PA (2015) Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 507–514 Chen H, Dou Q, Ni D, Cheng JZ, Qin J, Li S, Heng PA (2015) Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 507–514
6.
Zurück zum Zitat Chen H, Ni D, Qin J, Li S, Yang X, Wang T, Heng PA (2015) Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J Biomed Health Inform 19(5):1627–1636CrossRefPubMed Chen H, Ni D, Qin J, Li S, Yang X, Wang T, Heng PA (2015) Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J Biomed Health Inform 19(5):1627–1636CrossRefPubMed
7.
Zurück zum Zitat Chen H, Zheng Y, Park JH, Heng PA, Zhou SK (2016) Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 487–495 Chen H, Zheng Y, Park JH, Heng PA, Zhou SK (2016) Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 487–495
8.
Zurück zum Zitat Chuang ML, Hibberd MG, Salton CJ, Beaudin RA, Riley MF, Parker RA, Douglas PS, Manning WJ (2000) Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two- and three-dimensional echocardiography and magnetic resonance imaging. J Am Coll Cardiol 35(2):477–484CrossRefPubMed Chuang ML, Hibberd MG, Salton CJ, Beaudin RA, Riley MF, Parker RA, Douglas PS, Manning WJ (2000) Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two- and three-dimensional echocardiography and magnetic resonance imaging. J Am Coll Cardiol 35(2):477–484CrossRefPubMed
9.
Zurück zum Zitat Fagley RE, Haney MF, Beraud AS, Comfere T, Kohl BA, Merkel MJ, Pustavoitau A, Von Homeyer P, Wagner CE, Wall MH (2015) Critical care basic ultrasound learning goals for American anesthesiology critical care trainees: recommendations from an expert group. Anesthesia Analgesia 120(5):1041–1053CrossRefPubMed Fagley RE, Haney MF, Beraud AS, Comfere T, Kohl BA, Merkel MJ, Pustavoitau A, Von Homeyer P, Wagner CE, Wall MH (2015) Critical care basic ultrasound learning goals for American anesthesiology critical care trainees: recommendations from an expert group. Anesthesia Analgesia 120(5):1041–1053CrossRefPubMed
10.
Zurück zum Zitat Ghesu FC, Krubasik E, Georgescu B, Singh V, Zheng Y, Hornegger J, Comaniciu D (2016) Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE Trans Med Imaging 35(5):1217–1228CrossRefPubMed Ghesu FC, Krubasik E, Georgescu B, Singh V, Zheng Y, Hornegger J, Comaniciu D (2016) Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE Trans Med Imaging 35(5):1217–1228CrossRefPubMed
11.
Zurück zum Zitat Girdhar R, Fouhey DF, Rodriguez M, Gupta A (2016) Learning a predictable and generative vector representation for objects. In: European conference on computer vision. Springer, pp 484–499 Girdhar R, Fouhey DF, Rodriguez M, Gupta A (2016) Learning a predictable and generative vector representation for objects. In: European conference on computer vision. Springer, pp 484–499
12.
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680
13.
Zurück zum Zitat Grossgasteiger M, Hien MD, Graser B, Rauch H, Gondan M, Motsch J, Rosendal C (2013) Assessment of left ventricular size and function during cardiac surgery. An intraoperative evaluation of six two-dimensional echocardiographic methods with real time three-dimensional echocardiography as a reference. Echocardiography 30(6):672–681CrossRefPubMed Grossgasteiger M, Hien MD, Graser B, Rauch H, Gondan M, Motsch J, Rosendal C (2013) Assessment of left ventricular size and function during cardiac surgery. An intraoperative evaluation of six two-dimensional echocardiographic methods with real time three-dimensional echocardiography as a reference. Echocardiography 30(6):672–681CrossRefPubMed
14.
Zurück zum Zitat Johri AM, Durbin J, Newbigging J, Tanzola R, Chow R, De S, Tam J (2018) Cardiac point-of-care ultrasound: state-of-the-art in medical school education. J Am Soc Echocardiogr 31(7):749–760CrossRefPubMed Johri AM, Durbin J, Newbigging J, Tanzola R, Chow R, De S, Tam J (2018) Cardiac point-of-care ultrasound: state-of-the-art in medical school education. J Am Soc Echocardiogr 31(7):749–760CrossRefPubMed
15.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
16.
Zurück zum Zitat Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16(3):233–271CrossRef Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16(3):233–271CrossRef
17.
Zurück zum Zitat Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed
18.
Zurück zum Zitat Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
19.
Zurück zum Zitat Luc P, Couprie C, Chintala S, Verbeek J (2016) Semantic segmentation using adversarial networks. arXiv preprint. arXiv:1611.08408 Luc P, Couprie C, Chintala S, Verbeek J (2016) Semantic segmentation using adversarial networks. arXiv preprint. arXiv:​1611.​08408
20.
Zurück zum Zitat Mahmood F, Matyal R, Skubas N, Montealegre-Gallegos M, Swaminathan M, Denault A, Sniecinski R, Mitchell JD, Taylor M, Haskins S (2016) Perioperative ultrasound training in anesthesiology: a call to action. Anesthesia Analgesia 122(6):1794–1804CrossRefPubMed Mahmood F, Matyal R, Skubas N, Montealegre-Gallegos M, Swaminathan M, Denault A, Sniecinski R, Mitchell JD, Taylor M, Haskins S (2016) Perioperative ultrasound training in anesthesiology: a call to action. Anesthesia Analgesia 122(6):1794–1804CrossRefPubMed
21.
Zurück zum Zitat McCormick TJ, Miller EC, Chen R, Naik VN (2018) Acquiring and maintaining point-of-care ultrasound (POCUS) competence for anesthesiologists. Can J Anesth/Journal canadien d’anesthésie 65(4):427–436CrossRefPubMed McCormick TJ, Miller EC, Chen R, Naik VN (2018) Acquiring and maintaining point-of-care ultrasound (POCUS) competence for anesthesiologists. Can J Anesth/Journal canadien d’anesthésie 65(4):427–436CrossRefPubMed
22.
Zurück zum Zitat Moradi M, Guo Y, Gur Y, Negahdar M, Syeda-Mahmood T (2016) A cross-modality neural network transform for semi-automatic medical image annotation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 300–307 Moradi M, Guo Y, Gur Y, Negahdar M, Syeda-Mahmood T (2016) A cross-modality neural network transform for semi-automatic medical image annotation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 300–307
23.
Zurück zum Zitat Nascimento JC, Carneiro G (2016) Multi-atlas segmentation using manifold learning with deep belief networks. In: Biomedical imaging (ISBI), 2016 IEEE 13th international symposium on. IEEE, pp 867–871 Nascimento JC, Carneiro G (2016) Multi-atlas segmentation using manifold learning with deep belief networks. In: Biomedical imaging (ISBI), 2016 IEEE 13th international symposium on. IEEE, pp 867–871
24.
Zurück zum Zitat Ngo TA, Lu Z, Carneiro G (2017) Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med Image Anal 35:159–171CrossRefPubMed Ngo TA, Lu Z, Carneiro G (2017) Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med Image Anal 35:159–171CrossRefPubMed
25.
Zurück zum Zitat Noh H, Hong S, Han B (2015) Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 1520–1528 Noh H, Hong S, Han B (2015) Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 1520–1528
26.
Zurück zum Zitat Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai W, Caballero J, Cook SA, de Marvao A, Dawes T, ORegan DP (2018) Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans Med Imaging 37(2):384–395CrossRefPubMed Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai W, Caballero J, Cook SA, de Marvao A, Dawes T, ORegan DP (2018) Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans Med Imaging 37(2):384–395CrossRefPubMed
27.
Zurück zum Zitat Poudel RP, Lamata P, Montana G (2016) Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In: Reconstruction, segmentation, and analysis of medical images. Springer, pp 83–94 Poudel RP, Lamata P, Montana G (2016) Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In: Reconstruction, segmentation, and analysis of medical images. Springer, pp 83–94
28.
Zurück zum Zitat Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint. arXiv:1511.06434 Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint. arXiv:​1511.​06434
29.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
31.
Zurück zum Zitat Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, Schnittger I (1989) Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. J Am Soc Echocardiogr 2(5):358–367CrossRefPubMed Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, Schnittger I (1989) Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. J Am Soc Echocardiogr 2(5):358–367CrossRefPubMed
32.
Zurück zum Zitat Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint. arXiv:1409.1556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint. arXiv:​1409.​1556
33.
Zurück zum Zitat Smistad E, ostvik A, Haugen BO, Lovstakken L (2017) 2D left ventricle segmentation using deep learning. In: 2017 IEEE international ultrasonics symposium (IUS), pp 1–4 Smistad E, ostvik A, Haugen BO, Lovstakken L (2017) 2D left ventricle segmentation using deep learning. In: 2017 IEEE international ultrasonics symposium (IUS), pp 1–4
34.
Zurück zum Zitat Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
35.
Zurück zum Zitat Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, Fan E, Aras MA, Jordan C, Fleischmann KE (2017) A computer vision pipeline for automated determination of cardiac structure and function and detection of disease by two-dimensional echocardiography. arXiv preprint. arXiv:1706.07342 Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, Fan E, Aras MA, Jordan C, Fleischmann KE (2017) A computer vision pipeline for automated determination of cardiac structure and function and detection of disease by two-dimensional echocardiography. arXiv preprint. arXiv:​1706.​07342
36.
Zurück zum Zitat Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, Lassen MH, Fan E, Aras MA, Jordan C (2018) Fully automated echocardiogram interpretation in clinical practice: feasibility and diagnostic accuracy. Circulation 138(16):1623–1635CrossRefPubMedPubMedCentral Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, Lassen MH, Fan E, Aras MA, Jordan C (2018) Fully automated echocardiogram interpretation in clinical practice: feasibility and diagnostic accuracy. Circulation 138(16):1623–1635CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Zreik M, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I (2016) Automatic segmentation of the left ventricle in cardiac ct angiography using convolutional neural networks. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI). IEEE, pp 40–43 Zreik M, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I (2016) Automatic segmentation of the left ventricle in cardiac ct angiography using convolutional neural networks. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI). IEEE, pp 40–43
Metadaten
Titel
Automatic biplane left ventricular ejection fraction estimation with mobile point-of-care ultrasound using multi-task learning and adversarial training
verfasst von
Mohammad H. Jafari
Hany Girgis
Nathan Van Woudenberg
Zhibin Liao
Robert Rohling
Ken Gin
Purang Abolmaesumi
Terasa Tsang
Publikationsdatum
02.04.2019
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 6/2019
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-01954-w

Weitere Artikel der Ausgabe 6/2019

International Journal of Computer Assisted Radiology and Surgery 6/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.