Skip to main content
main-content

18.08.2017 | Original Article | Ausgabe 4/2017

Forensic Science, Medicine and Pathology 4/2017

Automatic detection of hemorrhagic pericardial effusion on PMCT using deep learning - a feasibility study

Zeitschrift:
Forensic Science, Medicine and Pathology > Ausgabe 4/2017
Autoren:
Lars C. Ebert, Jakob Heimer, Wolf Schweitzer, Till Sieberth, Anja Leipner, Michael Thali, Garyfalia Ampanozi
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s12024-017-9906-1) contains supplementary material, which is available to authorized users.

Abstract

Post mortem computed tomography (PMCT) can be used as a triage tool to better identify cases with a possibly non-natural cause of death, especially when high caseloads make it impossible to perform autopsies on all cases. Substantial data can be generated by modern medical scanners, especially in a forensic setting where the entire body is documented at high resolution. A solution for the resulting issues could be the use of deep learning techniques for automatic analysis of radiological images. In this article, we wanted to test the feasibility of such methods for forensic imaging by hypothesizing that deep learning methods can detect and segment a hemopericardium in PMCT. For deep learning image analysis software, we used the ViDi Suite 2.0. We retrospectively selected 28 cases with, and 24 cases without, hemopericardium. Based on these data, we trained two separate deep learning networks. The first one classified images into hemopericardium/not hemopericardium, and the second one segmented the blood content. We randomly selected 50% of the data for training and 50% for validation. This process was repeated 20 times. The best performing classification network classified all cases of hemopericardium from the validation images correctly with only a few false positives. The best performing segmentation network would tend to underestimate the amount of blood in the pericardium, which is the case for most networks. This is the first study that shows that deep learning has potential for automated image analysis of radiological images in forensic medicine.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der Fachzeitschriften, inklusive eines Print-Abos.

Zusatzmaterial
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2017

Forensic Science, Medicine and Pathology 4/2017Zur Ausgabe

Forensic Forum

Body farms

Neu im Fachgebiet Pathologie

26.06.2018 | Prostatakarzinom | CME | Ausgabe 4/2018

CME: Neuroendokrines Prostatakarzinom

19.06.2018 | Schwerpunkt: Pathologie und Forschungsbiobanken | Ausgabe 4/2018

Der Aufbau und Betrieb einer Zentralen Biomaterialbank

Die ZeBanC der Charité Berlin

06.06.2018 | Schwerpunkt: Pathologie und Forschungsbiobanken | Ausgabe 4/2018

Biobanking und die Weiterentwicklung der Präzisionsmedizin

23.05.2018 | Schwerpunkt: Pathologie und Forschungsbiobanken | Ausgabe 4/2018

Alle unter einem Dach

Erfolge und Herausforderungen auf dem Weg zu einer zentralisierten Biobank am Beispiel der BMBH