Skip to main content
Erschienen in:

10.01.2022 | Original Paper

Automatic Femoral Deformity Analysis Based on the Constrained Local Models and Hough Forest

verfasst von: Lunhui Duan, Hao Sun, Delong Liu, Yinglun Tan, Yue Guo, Jianwen Chen, Xiaojing Ding

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Abstract

Clinically, Taylor spatial frame (TSF) is usually used to correct femoral deformity. The first step in correction is to analyze skeletal deformities and measure the center of rotation of angulation (CORA). Since the above work needs to be done manually, the doctor’s workload is heavy. Therefore, an automatic femoral deformity analysis system was proposed. Firstly, the Hough forest and constrained local models were trained on the femur image set. Then, the position and size of the femur in the X-ray image were detected by the trained Hough forest. Furthermore, the position and size were served as the initial values of the trained constrained local models to fit the femoral contour. Finally, the anatomical axis line of the proximal femur and the anatomical axis line of the distal femur could be drawn according to the fitting results. According to these lines, CORA can be found. Compared with manual measurement by doctors, the average error of the hip joint orientation line was 1.7°, the standard deviation was 1.75, the average error of the anatomic axis line of the proximal femur was 2.9°, and the standard deviation was 3.57. The automatic femoral deformity analysis system meets the accuracy requirements of orthopedics and can significantly reduce the workload of doctors.
Literatur
1.
Zurück zum Zitat Taylor JC: Perioperative Planning for Two- and Three-Plane Deformities. Foot and Ankle Clinics 13:69-121, 2008CrossRef Taylor JC: Perioperative Planning for Two- and Three-Plane Deformities. Foot and Ankle Clinics 13:69-121, 2008CrossRef
2.
Zurück zum Zitat Ganger R, Radler C, Speigner B, Grill F: Correction of post-traumatic lower limb deformities using the Taylor spatial frame. Int Orthop 34:723-730, 2009CrossRef Ganger R, Radler C, Speigner B, Grill F: Correction of post-traumatic lower limb deformities using the Taylor spatial frame. Int Orthop 34:723-730, 2009CrossRef
3.
Zurück zum Zitat Dammerer D, Kirschbichler K, Donnan L, Kaufmann G, Krismer M, Biedermann R: Clinical value of the Taylor Spatial Frame: a comparison with the Ilizarov and Orthofix fixators. J Child Orthop 5:343-349, 2011CrossRef Dammerer D, Kirschbichler K, Donnan L, Kaufmann G, Krismer M, Biedermann R: Clinical value of the Taylor Spatial Frame: a comparison with the Ilizarov and Orthofix fixators. J Child Orthop 5:343-349, 2011CrossRef
5.
Zurück zum Zitat Abdulla A A . Efficient computer-aided diagnosis technique for leukaemia cancer detection. 2020. IET Image Process., 2020, Vol. 14 Iss. 17, pp. 4435–4440 Abdulla A A . Efficient computer-aided diagnosis technique for leukaemia cancer detection. 2020. IET Image Process., 2020, Vol. 14 Iss. 17, pp. 4435–4440
8.
Zurück zum Zitat Cristinacce D, Cootes T: Automatic feature localisation with constrained local models. Pattern Recognition 41:3054-3067, 2008CrossRef Cristinacce D, Cootes T: Automatic feature localisation with constrained local models. Pattern Recognition 41:3054-3067, 2008CrossRef
11.
Zurück zum Zitat Cootes TF, Taylor CJ: Combining point distribution models with shape models based on finite element analysis. Image and Vision Computing 13:403-409, 1995CrossRef Cootes TF, Taylor CJ: Combining point distribution models with shape models based on finite element analysis. Image and Vision Computing 13:403-409, 1995CrossRef
12.
Zurück zum Zitat Cootes TF, Taylor CJ, Cooper DH, Graham J: Active Shape Models-Their Training and Application. Computer Vision and Image Understanding 61:38-59, 1995CrossRef Cootes TF, Taylor CJ, Cooper DH, Graham J: Active Shape Models-Their Training and Application. Computer Vision and Image Understanding 61:38-59, 1995CrossRef
13.
Zurück zum Zitat Cootes TF, Wheeler GV, Walker KN, Taylor CJ: View-based active appearance models. Image and Vision Computing 20:657-664, 2002CrossRef Cootes TF, Wheeler GV, Walker KN, Taylor CJ: View-based active appearance models. Image and Vision Computing 20:657-664, 2002CrossRef
14.
Zurück zum Zitat Burges CJC: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2:121-167, 1998CrossRef Burges CJC: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2:121-167, 1998CrossRef
15.
Zurück zum Zitat Xie W, et al.: Statistical model-based segmentation of the proximal femur in digital antero-posterior (AP) pelvic radiographs. Int J Comput Assist Radiol Surg 9:165-176, 2013CrossRef Xie W, et al.: Statistical model-based segmentation of the proximal femur in digital antero-posterior (AP) pelvic radiographs. Int J Comput Assist Radiol Surg 9:165-176, 2013CrossRef
16.
Zurück zum Zitat Zheng G, von Recum J, Nolte LP, Grützner PA, Steppacher SD, Franke J: Validation of a statistical shape model-based 2D/3D reconstruction method for determination of cup orientation after THA. Int J Comput Assist Radiol Surg 7:225-231, 2011CrossRef Zheng G, von Recum J, Nolte LP, Grützner PA, Steppacher SD, Franke J: Validation of a statistical shape model-based 2D/3D reconstruction method for determination of cup orientation after THA. Int J Comput Assist Radiol Surg 7:225-231, 2011CrossRef
18.
Zurück zum Zitat Lindner C, Thiagarajah S, Wilkinson J, Consortium T, Wallis G, Cootes T: Fully Automatic Segmentation of the Proximal Femur Using Random Forest Regression Voting. IEEE Trans Med Imaging 32:1462-1472, 2013CrossRef Lindner C, Thiagarajah S, Wilkinson J, Consortium T, Wallis G, Cootes T: Fully Automatic Segmentation of the Proximal Femur Using Random Forest Regression Voting. IEEE Trans Med Imaging 32:1462-1472, 2013CrossRef
19.
Zurück zum Zitat Lindner C, Bromiley PA, Ionita MC, Cootes TF: Robust and Accurate Shape Model Matching Using Random Forest Regression-Voting. IEEE Transactions on Pattern Analysis and Machine Intelligence 37:1862-1874, 2015CrossRef Lindner C, Bromiley PA, Ionita MC, Cootes TF: Robust and Accurate Shape Model Matching Using Random Forest Regression-Voting. IEEE Transactions on Pattern Analysis and Machine Intelligence 37:1862-1874, 2015CrossRef
20.
Zurück zum Zitat Paley D: Principles of Deformity Correction, 1st edn, Berlin, Heidelberg: Springer Berlin Heidelberg, 2002CrossRef Paley D: Principles of Deformity Correction, 1st edn, Berlin, Heidelberg: Springer Berlin Heidelberg, 2002CrossRef
21.
Zurück zum Zitat Martins P, Caseiro R, Henriques JF, Batista J: Discriminative Bayesian Active Shape Models. ECCV 2012:57-70, 2012 Martins P, Caseiro R, Henriques JF, Batista J: Discriminative Bayesian Active Shape Models. ECCV 2012:57-70, 2012
22.
Zurück zum Zitat Wright D, Whyne C, Hardisty M, Kreder HJ, Lubovsky O: Functional and Anatomic Orientation of the Femoral Head. Clinical Orthopaedics and Related Research® 469:2583–2589, 2011 Wright D, Whyne C, Hardisty M, Kreder HJ, Lubovsky O: Functional and Anatomic Orientation of the Femoral Head. Clinical Orthopaedics and Related Research® 469:2583–2589, 2011
23.
Zurück zum Zitat Cherian JJ, Kapadia BH, Banerjee S, Jauregui JJ, Issa K, Mont MA: Mechanical, Anatomical, and Kinematic Axis in TKA: Concepts and Practical Applications. Curr Rev Musculoskelet Med 7:89-95, 2014CrossRef Cherian JJ, Kapadia BH, Banerjee S, Jauregui JJ, Issa K, Mont MA: Mechanical, Anatomical, and Kinematic Axis in TKA: Concepts and Practical Applications. Curr Rev Musculoskelet Med 7:89-95, 2014CrossRef
25.
Zurück zum Zitat Hussain, Dildar; Al-antari, A. Mugahed; Al-masni, A. Mohammed; Han, Seung-Moo; Kim, Tae-Seong (2018). Femur segmentation in DXA imaging using a machine learning decision tree. Journal of X-Ray Science and Technology, (), 1–20. https://doi.org/10.3233/XST-180399 Hussain, Dildar; Al-antari, A. Mugahed; Al-masni, A. Mohammed; Han, Seung-Moo; Kim, Tae-Seong (2018). Femur segmentation in DXA imaging using a machine learning decision tree. Journal of X-Ray Science and Technology, (), 1–20. https://​doi.​org/​10.​3233/​XST-180399
26.
Zurück zum Zitat Guillen J , Cerquin L , Obando J D , et al. Segmentation of the Proximal Femur by the Analysis of X-ray Imaging Using Statistical Models of Shape and Appearance [C]// International Conference on Artificial Intelligence and Soft Computing. Springer, Cham, 2018. Guillen J , Cerquin L , Obando J D , et al. Segmentation of the Proximal Femur by the Analysis of X-ray Imaging Using Statistical Models of Shape and Appearance [C]// International Conference on Artificial Intelligence and Soft Computing. Springer, Cham, 2018.
27.
Zurück zum Zitat Zhao, Chen & Keyak, Joyce & Tang, Jinshan & Kaneko, Tadashi & Khosla, Sundeep & Amin, Shreyasee & Atkinson, Elizabeth & Zhao, Lan-Juan & Serou, Michael & Zhang, Chaoyang & Shen, Hui & Deng, Hong-Wen & Zhou, Weihua. (2020). A Deep Learning-Based Method for Automatic Segmentation of Proximal Femur from Quantitative Computed Tomography Images. Zhao, Chen & Keyak, Joyce & Tang, Jinshan & Kaneko, Tadashi & Khosla, Sundeep & Amin, Shreyasee & Atkinson, Elizabeth & Zhao, Lan-Juan & Serou, Michael & Zhang, Chaoyang & Shen, Hui & Deng, Hong-Wen & Zhou, Weihua. (2020). A Deep Learning-Based Method for Automatic Segmentation of Proximal Femur from Quantitative Computed Tomography Images.
29.
Zurück zum Zitat Deniz, Cem M.; Xiang, Siyuan; Hallyburton, R. Spencer; Welbeck, Arakua; Babb, James S.; Honig, Stephen; Cho, Kyunghyun; Chang, Gregory (2018). Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks. Scientific Reports, 8(1), 16485–. https://doi.org/10.1038/s41598-018-34817-6 Deniz, Cem M.; Xiang, Siyuan; Hallyburton, R. Spencer; Welbeck, Arakua; Babb, James S.; Honig, Stephen; Cho, Kyunghyun; Chang, Gregory (2018). Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks. Scientific Reports, 8(1), 16485–. https://​doi.​org/​10.​1038/​s41598-018-34817-6
Metadaten
Titel
Automatic Femoral Deformity Analysis Based on the Constrained Local Models and Hough Forest
verfasst von
Lunhui Duan
Hao Sun
Delong Liu
Yinglun Tan
Yue Guo
Jianwen Chen
Xiaojing Ding
Publikationsdatum
10.01.2022
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 2/2022
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-021-00550-2

Neu im Fachgebiet Radiologie

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.