Skip to main content
Erschienen in: Journal of Digital Imaging 5/2018

20.04.2018

Automatic Organ Segmentation for CT Scans Based on Super-Pixel and Convolutional Neural Networks

verfasst von: Xiaoming Liu, Shuxu Guo, Bingtao Yang, Shuzhi Ma, Huimao Zhang, Jing Li, Changjian Sun, Lanyi Jin, Xueyan Li, Qi Yang, Yu Fu

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Accurate segmentation of specific organ from computed tomography (CT) scans is a basic and crucial task for accurate diagnosis and treatment. To avoid time-consuming manual optimization and to help physicians distinguish diseases, an automatic organ segmentation framework is presented. The framework utilized convolution neural networks (CNN) to classify pixels. To reduce the redundant inputs, the simple linear iterative clustering (SLIC) of super-pixels and the support vector machine (SVM) classifier are introduced. To establish the perfect boundary of organs in one-pixel-level, the pixels need to be classified step-by-step. First, the SLIC is used to cut an image into grids and extract respective digital signatures. Next, the signature is classified by the SVM, and the rough edges are acquired. Finally, a precise boundary is obtained by the CNN, which is based on patches around each pixel-point. The framework is applied to abdominal CT scans of livers and high-resolution computed tomography (HRCT) scans of lungs. The experimental CT scans are derived from two public datasets (Sliver 07 and a Chinese local dataset). Experimental results show that the proposed method can precisely and efficiently detect the organs. This method consumes 38 s/slice for liver segmentation. The Dice coefficient of the liver segmentation results reaches to 97.43%. For lung segmentation, the Dice coefficient is 97.93%. This finding demonstrates that the proposed framework is a favorable method for lung segmentation of HRCT scans.
Literatur
1.
Zurück zum Zitat Moltz J H, Bornemann L, Dicken V: Segmentation of Liver Metastases in CT Scans by Adaptive Thresholding and Morphological Processing. International Conference on Medical Image Computing and Computer-Assisted InterventionInterventionComputer-Assisted Intervention, p. 195–222, 2008 Moltz J H, Bornemann L, Dicken V: Segmentation of Liver Metastases in CT Scans by Adaptive Thresholding and Morphological Processing. International Conference on Medical Image Computing and Computer-Assisted InterventionInterventionComputer-Assisted Intervention, p. 195–222, 2008
2.
Zurück zum Zitat Chang YL, Li X: Adaptive image region-growing. IEEE Transactions on Image Processing 3(6):868–872, 1994CrossRef Chang YL, Li X: Adaptive image region-growing. IEEE Transactions on Image Processing 3(6):868–872, 1994CrossRef
3.
Zurück zum Zitat Devi KG, Radhakrishnan R: Segmentation of multiple organ from abdominal CT images using 3D region growing and gradient vector flow. International Journal of Applied Engineering Research 9(24):30023–30041, 2014 Devi KG, Radhakrishnan R: Segmentation of multiple organ from abdominal CT images using 3D region growing and gradient vector flow. International Journal of Applied Engineering Research 9(24):30023–30041, 2014
4.
Zurück zum Zitat Toennies RPAKD: Segmentation of Medical Images Using Adaptive Region Growing. Proceedings of SPIE Medical Imaging 43(22):1337–1346, 2001 Toennies RPAKD: Segmentation of Medical Images Using Adaptive Region Growing. Proceedings of SPIE Medical Imaging 43(22):1337–1346, 2001
5.
Zurück zum Zitat Oda M, Nakaoka T, Kitasaka T: Organ segmentation from 3d abdominal CT images based on atlas selection and graph cut. International Conference on Abdominal Imaging. Computational and Clinical Applications, p. 181–188, 2012 Oda M, Nakaoka T, Kitasaka T: Organ segmentation from 3d abdominal CT images based on atlas selection and graph cut. International Conference on Abdominal Imaging. Computational and Clinical Applications, p. 181–188, 2012
6.
Zurück zum Zitat Luo S, Li X, Li J: Review on the Methods of Automatic Liver Segmentation from Abdominal Images. Journal of Computer & Communications 02(2):1–7, 2014CrossRef Luo S, Li X, Li J: Review on the Methods of Automatic Liver Segmentation from Abdominal Images. Journal of Computer & Communications 02(2):1–7, 2014CrossRef
7.
Zurück zum Zitat Jones JL, Xie X, Essa E: Combining region-based and imprecise boundary-based cues for interactive medical image segmentation. International Journal for Numerical Methods in Biomedical Engineering 30(12):1649–1666, 2014CrossRef Jones JL, Xie X, Essa E: Combining region-based and imprecise boundary-based cues for interactive medical image segmentation. International Journal for Numerical Methods in Biomedical Engineering 30(12):1649–1666, 2014CrossRef
8.
Zurück zum Zitat Taha AA, Hanbury A: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Medical Imaging 15(1):29, 2015CrossRef Taha AA, Hanbury A: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Medical Imaging 15(1):29, 2015CrossRef
9.
Zurück zum Zitat Zhou S, Wang J, Zhang S: Active contour model based on local and global intensity information for medical image segmentation. Neurocomputing 186(C):107–118, 2016CrossRef Zhou S, Wang J, Zhang S: Active contour model based on local and global intensity information for medical image segmentation. Neurocomputing 186(C):107–118, 2016CrossRef
10.
Zurück zum Zitat Zografos V, Valentinitsch A, Rempfler M: Hierarchical multi-organ segmentation without registration in 3D abdominal CT images. International Conference on Medical Image Computing and Computer-Assisted Intervention, p. 37–46, 2016 Zografos V, Valentinitsch A, Rempfler M: Hierarchical multi-organ segmentation without registration in 3D abdominal CT images. International Conference on Medical Image Computing and Computer-Assisted Intervention, p. 37–46, 2016
11.
Zurück zum Zitat Cuingnet R, Prevost R, Lesage D: Automatic detection and segmentation of kidneys in 3D CT images using random forests. International Conference on Medical Image Computing and Computer-Assisted Intervention, p. 66–74, 2012 Cuingnet R, Prevost R, Lesage D: Automatic detection and segmentation of kidneys in 3D CT images using random forests. International Conference on Medical Image Computing and Computer-Assisted Intervention, p. 66–74, 2012
12.
Zurück zum Zitat Muhammad Moazam F, Remagnino P, Andreas H: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE transactions on bio-medical engineering 59(9):2538–2548, 2012CrossRef Muhammad Moazam F, Remagnino P, Andreas H: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE transactions on bio-medical engineering 59(9):2538–2548, 2012CrossRef
13.
Zurück zum Zitat Lombaert H, Zikic D, Criminisi A: Laplacian Forests: semantic image segmentation by guided bagging. International Conference on Medical Image Computing and Computer-Assisted Intervention, p. 496–504, 2014 Lombaert H, Zikic D, Criminisi A: Laplacian Forests: semantic image segmentation by guided bagging. International Conference on Medical Image Computing and Computer-Assisted Intervention, p. 496–504, 2014
14.
Zurück zum Zitat Shen D, Wu G, Suk HI: Deep Learning in Medical Image Analysis. Annual Review of Biomedical Engineering. 19:221, 2017CrossRef Shen D, Wu G, Suk HI: Deep Learning in Medical Image Analysis. Annual Review of Biomedical Engineering. 19:221, 2017CrossRef
15.
Zurück zum Zitat Shen W, Zhou M, Yang F: Multi-scale Convolutional Neural Networks for Lung Nodule Classification. International Conference on Information Processing in Medical Imaging, p. 588–99, 2015 Shen W, Zhou M, Yang F: Multi-scale Convolutional Neural Networks for Lung Nodule Classification. International Conference on Information Processing in Medical Imaging, p. 588–99, 2015
16.
Zurück zum Zitat Nie D, Zhang H, Adeli E: 3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients. International Conference on Medical Image Computing and Computer-Assisted Intervention, p. 212–220, 2016 Nie D, Zhang H, Adeli E: 3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients. International Conference on Medical Image Computing and Computer-Assisted Intervention, p. 212–220, 2016
17.
Zurück zum Zitat Gerazov B, C.R.C., Deep learning for tumour classification in homogeneous breast tissue in medical microwave imaging. IEEE Eurocon 2017 - International Conference on Smart Technologies, 2017: p. 564–569 Gerazov B, C.R.C., Deep learning for tumour classification in homogeneous breast tissue in medical microwave imaging. IEEE Eurocon 2017 - International Conference on Smart Technologies, 2017: p. 564–569
18.
Zurück zum Zitat Shin HC, Orton MR, Collins DJ: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Transactions on Pattern Analysis & Machine Intelligence 35(8):1930–1943, 2013CrossRef Shin HC, Orton MR, Collins DJ: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Transactions on Pattern Analysis & Machine Intelligence 35(8):1930–1943, 2013CrossRef
19.
Zurück zum Zitat Wang Z, Yang J: SU-F-J-04: Automated Detection of Diabetic Retinopathy Using Deep Convolutional Neural Networks. Medical Physics 43(6):3406–3406, 2016CrossRef Wang Z, Yang J: SU-F-J-04: Automated Detection of Diabetic Retinopathy Using Deep Convolutional Neural Networks. Medical Physics 43(6):3406–3406, 2016CrossRef
20.
Zurück zum Zitat Kooi T, Litgens G, Van Ginneken B: Large scale deep learning for computer aided detection of mammographic lesions. Medical Image Analysis 35:303–312, 2017CrossRef Kooi T, Litgens G, Van Ginneken B: Large scale deep learning for computer aided detection of mammographic lesions. Medical Image Analysis 35:303–312, 2017CrossRef
21.
Zurück zum Zitat Sevastopolsky A: Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recognition and Image Analysis 27:618–624, 2017CrossRef Sevastopolsky A: Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recognition and Image Analysis 27:618–624, 2017CrossRef
22.
Zurück zum Zitat Mansoor A, Cerrolaza JJ, Perez G: Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation. The International Society for Optical Engineering, p. 10133, 2017 Mansoor A, Cerrolaza JJ, Perez G: Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation. The International Society for Optical Engineering, p. 10133, 2017
23.
Zurück zum Zitat Sun C, Guo S, Zhang H: Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs. Artif Intell Med 83:58–66, 2017CrossRef Sun C, Guo S, Zhang H: Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs. Artif Intell Med 83:58–66, 2017CrossRef
24.
Zurück zum Zitat Lécun Y, Bottuo L, Bengio Y: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11):2278–2324, 1998CrossRef Lécun Y, Bottuo L, Bengio Y: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11):2278–2324, 1998CrossRef
25.
Zurück zum Zitat Kayalibay B, Jensen G, Smagt P V D: CNN-based Segmentation of Medical Imaging Data. arXiv e-print (arXiv:1701.03056), 2017 Kayalibay B, Jensen G, Smagt P V D: CNN-based Segmentation of Medical Imaging Data. arXiv e-print (arXiv:1701.03056), 2017
26.
Zurück zum Zitat Cha K, Hadjiiski L, Chan H P: Deep-Learning-based Bladder Segmentation in CT Urography. Radiological Society of North America, 2015 Cha K, Hadjiiski L, Chan H P: Deep-Learning-based Bladder Segmentation in CT Urography. Radiological Society of North America, 2015
27.
Zurück zum Zitat Zou Y, Li L, Wang Y: Classifying digestive organs in wireless capsule endoscopy images based on deep convolutional neural network. IEEE International Conference on Digital Signal Processing, p. 1274–1278, 2015 Zou Y, Li L, Wang Y: Classifying digestive organs in wireless capsule endoscopy images based on deep convolutional neural network. IEEE International Conference on Digital Signal Processing, p. 1274–1278, 2015
28.
Zurück zum Zitat Jia Y, Shelhamer E, Donahue J: Caffe: Convolutional Architecture for Fast Feature Embedding. ACM International Conference on Multimedia, p. 675–678, 2014 Jia Y, Shelhamer E, Donahue J: Caffe: Convolutional Architecture for Fast Feature Embedding. ACM International Conference on Multimedia, p. 675–678, 2014
29.
Zurück zum Zitat Chang C C, Lin CJ: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3):1–27, 2011CrossRef Chang C C, Lin CJ: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3):1–27, 2011CrossRef
30.
Zurück zum Zitat Heimann, T, van Ginneken B, Styner MA: Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets. IEEE Transactions on Medical Imaging 28(8):1251–1265, 2009CrossRef Heimann, T, van Ginneken B, Styner MA: Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets. IEEE Transactions on Medical Imaging 28(8):1251–1265, 2009CrossRef
32.
Zurück zum Zitat Lim SJ, Jeong YY, Ho YS: Automatic liver segmentation for volume measurement in CT images. Journal of Visual Communication & Image Representation 17(4):860–875, 2006CrossRef Lim SJ, Jeong YY, Ho YS: Automatic liver segmentation for volume measurement in CT images. Journal of Visual Communication & Image Representation 17(4):860–875, 2006CrossRef
33.
Zurück zum Zitat Farag A, Lu L, Roth HR: A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. IEEE Transactions on Image Processing 26(1):386–399, 2015CrossRef Farag A, Lu L, Roth HR: A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. IEEE Transactions on Image Processing 26(1):386–399, 2015CrossRef
34.
Zurück zum Zitat Achanta R, Shaji A, Smith K: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Transactions on Pattern Analysis & Machine Intelligence 34(11):2274–2282, 2012CrossRef Achanta R, Shaji A, Smith K: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Transactions on Pattern Analysis & Machine Intelligence 34(11):2274–2282, 2012CrossRef
35.
Zurück zum Zitat Vapnik VN: Statistical Learning Theory. Wiley, 1998 Vapnik VN: Statistical Learning Theory. Wiley, 1998
36.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE: ImageNet classification with deep convolutional neural networks.International Conference on Neural Information Processing Systems, p. 1097–1105, 2012 Krizhevsky A, Sutskever I, Hinton GE: ImageNet classification with deep convolutional neural networks.International Conference on Neural Information Processing Systems, p. 1097–1105, 2012
37.
Zurück zum Zitat Dice LR: Measures of the amount of ecologic association between species. Ecology 26(3):297–302, 1945CrossRef Dice LR: Measures of the amount of ecologic association between species. Ecology 26(3):297–302, 1945CrossRef
38.
Zurück zum Zitat Heimann T, van Ginneken B, Styner MA: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Transactions on Medical Imaging 28(8):1251–1265, 2009CrossRef Heimann T, van Ginneken B, Styner MA: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Transactions on Medical Imaging 28(8):1251–1265, 2009CrossRef
39.
Zurück zum Zitat Ruskó L, Bekes G, Fidrich M: Automatic segmentation of the liver from multi- and single-phase contrast-enhanced CT images. Medical Image Analysis 13(6):871–882, 2009CrossRef Ruskó L, Bekes G, Fidrich M: Automatic segmentation of the liver from multi- and single-phase contrast-enhanced CT images. Medical Image Analysis 13(6):871–882, 2009CrossRef
40.
Zurück zum Zitat Hu P, Wu F, Peng J: Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Physics in Medicine & Biology 61(24):8676, 2016CrossRef Hu P, Wu F, Peng J: Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Physics in Medicine & Biology 61(24):8676, 2016CrossRef
41.
Zurück zum Zitat Dou Q, Chen H, Jin Y: 3D deeply supervised network for automatic liver segmentation from CT volumes. International Conference on Medical Image Computing and Computer-Assisted Intervention, p. 149–157, 2016 Dou Q, Chen H, Jin Y: 3D deeply supervised network for automatic liver segmentation from CT volumes. International Conference on Medical Image Computing and Computer-Assisted Intervention, p. 149–157, 2016
42.
Zurück zum Zitat Li G, Chen X, Shi F: Automatic liver segmentation based on shape constraints and deformable graph cut in CT images. IEEE Transactions on Image Processing 24(12):5315, 2015CrossRef Li G, Chen X, Shi F: Automatic liver segmentation based on shape constraints and deformable graph cut in CT images. IEEE Transactions on Image Processing 24(12):5315, 2015CrossRef
43.
Zurück zum Zitat Peng J, Hu P, Lu F: 3D liver segmentation using multiple region appearances and graph cuts. Medical Physics 42(12):6840–6852, 2015CrossRef Peng J, Hu P, Lu F: 3D liver segmentation using multiple region appearances and graph cuts. Medical Physics 42(12):6840–6852, 2015CrossRef
44.
Zurück zum Zitat Wu W, Zhou Z, Wu S: Automatic liver segmentation on volumetric CT images using supervoxel-based graph cuts. Computational & Mathematical Methods in Medicine 2016:9093721, 2016 Wu W, Zhou Z, Wu S: Automatic liver segmentation on volumetric CT images using supervoxel-based graph cuts. Computational & Mathematical Methods in Medicine 2016:9093721, 2016
45.
Zurück zum Zitat Lu F, Wu F, Hu P: Automatic 3D liver location and segmentation via convolutional neural network and graph cut. International Journal of Computer Assisted Radiology & Surgery 12(2):171, 2017CrossRef Lu F, Wu F, Hu P: Automatic 3D liver location and segmentation via convolutional neural network and graph cut. International Journal of Computer Assisted Radiology & Surgery 12(2):171, 2017CrossRef
46.
Zurück zum Zitat Pulagam AR: K.G.B., Ede V K Automated lung segmentation from HRCT scans with diffuse parenchymal lung diseases. Journal of Digital Imaging 29(4):507–519, 2016CrossRef Pulagam AR: K.G.B., Ede V K Automated lung segmentation from HRCT scans with diffuse parenchymal lung diseases. Journal of Digital Imaging 29(4):507–519, 2016CrossRef
47.
Zurück zum Zitat Doganay E, Kart L, Özcelik HK: A robust lung segmentation algorithm using fuzzy C-means method from HRCT scans. European Respiratory Journal 48(suppl 60):PA750, 2016 Doganay E, Kart L, Özcelik HK: A robust lung segmentation algorithm using fuzzy C-means method from HRCT scans. European Respiratory Journal 48(suppl 60):PA750, 2016
48.
Zurück zum Zitat Harrison A P, Xu Z., George K: Progressive and Multi-path Holistically Nested Neural Networks for Pathological Lung Segmentation from CT Images. International Conference on Medical Image Computing and Computer-Assisted Intervention, p. 621–629, 2017 Harrison A P, Xu Z., George K: Progressive and Multi-path Holistically Nested Neural Networks for Pathological Lung Segmentation from CT Images. International Conference on Medical Image Computing and Computer-Assisted Intervention, p. 621–629, 2017
Metadaten
Titel
Automatic Organ Segmentation for CT Scans Based on Super-Pixel and Convolutional Neural Networks
verfasst von
Xiaoming Liu
Shuxu Guo
Bingtao Yang
Shuzhi Ma
Huimao Zhang
Jing Li
Changjian Sun
Lanyi Jin
Xueyan Li
Qi Yang
Yu Fu
Publikationsdatum
20.04.2018
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 5/2018
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-018-0052-4

Weitere Artikel der Ausgabe 5/2018

Journal of Digital Imaging 5/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.