Skip to main content
Erschienen in: Journal of Digital Imaging 3/2012

01.06.2012

Automatic Segmentation of Ground-Glass Opacities in Lung CT Images by Using Markov Random Field-Based Algorithms

verfasst von: Yanjie Zhu, Yongqing Tan, Yanqing Hua, Guozhen Zhang, Jianguo Zhang

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Abstract

Chest radiologists rely on the segmentation and quantificational analysis of ground-glass opacities (GGO) to perform imaging diagnoses that evaluate the disease severity or recovery stages of diffuse parenchymal lung diseases. However, it is computationally difficult to segment and analyze patterns of GGO while compared with other lung diseases, since GGO usually do not have clear boundaries. In this paper, we present a new approach which automatically segments GGO in lung computed tomography (CT) images using algorithms derived from Markov random field theory. Further, we systematically evaluate the performance of the algorithms in segmenting GGO in lung CT images under different situations. CT image studies from 41 patients with diffuse lung diseases were enrolled in this research. The local distributions were modeled with both simple and adaptive (AMAP) models of maximum a posteriori (MAP). For best segmentation, we used the simulated annealing algorithm with a Gibbs sampler to solve the combinatorial optimization problem of MAP estimators, and we applied a knowledge-guided strategy to reduce false positive regions. We achieved AMAP-based GGO segmentation results of 86.94%, 94.33%, and 94.06% in average sensitivity, specificity, and accuracy, respectively, and we evaluated the performance using radiologists’ subjective evaluation and quantificational analysis and diagnosis. We also compared the results of AMAP-based GGO segmentation with those of support vector machine-based methods, and we discuss the reliability and other issues of AMAP-based GGO segmentation. Our research results demonstrate the acceptability and usefulness of AMAP-based GGO segmentation for assisting radiologists in detecting GGO in high-resolution CT diagnostic procedures.
Literatur
2.
Zurück zum Zitat Shimizu K, Johkoh T, Ikezoe J, Ichikado K, et al: Fractal analysis for classification of ground-glass opacity on high-resolution CT: an in vitro study. J Comput Assist Tomogr 21(6):955–962, 1997PubMedCrossRef Shimizu K, Johkoh T, Ikezoe J, Ichikado K, et al: Fractal analysis for classification of ground-glass opacity on high-resolution CT: an in vitro study. J Comput Assist Tomogr 21(6):955–962, 1997PubMedCrossRef
4.
Zurück zum Zitat Matsuki Y, Nakamura K, Watanabe H, Aoki T, Nakata H, Katsuragawa S, Doi K: Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis. Am J Roentgenol 178(3):657–663, 2002 Matsuki Y, Nakamura K, Watanabe H, Aoki T, Nakata H, Katsuragawa S, Doi K: Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis. Am J Roentgenol 178(3):657–663, 2002
5.
Zurück zum Zitat Nakamura K, Yoshida H, Engelmann R, MacMahon H, et al: Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks. Radiology 214:823–830, 2000PubMed Nakamura K, Yoshida H, Engelmann R, MacMahon H, et al: Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks. Radiology 214:823–830, 2000PubMed
6.
Zurück zum Zitat Shah SK, McNitt-Gray MF, Rogers SR, et al: Computer aided characterization of the solitary pulmonary nodule using volumetric and contrast enhancement features. Acad Radiol 12(10):1310–1319, 2005PubMedCrossRef Shah SK, McNitt-Gray MF, Rogers SR, et al: Computer aided characterization of the solitary pulmonary nodule using volumetric and contrast enhancement features. Acad Radiol 12(10):1310–1319, 2005PubMedCrossRef
7.
Zurück zum Zitat Zhu Y, Tan Y, Hua Y, Wang M, Zhang G, Zhang J: Feature selection and performance evaluation of support vector machine (SVM) based classifier for differentiating benign and malignant pulmonary nodules by computed tomography. J Digit Imaging 23:51–65, 2010PubMedCrossRef Zhu Y, Tan Y, Hua Y, Wang M, Zhang G, Zhang J: Feature selection and performance evaluation of support vector machine (SVM) based classifier for differentiating benign and malignant pulmonary nodules by computed tomography. J Digit Imaging 23:51–65, 2010PubMedCrossRef
8.
Zurück zum Zitat Delorme S, Keller-Reichenbecher M, Zuna I, Schlegel W, Van Kaick G: Usual interstitial pneumonia: quantitative assessment of high-resolution computed tomography findings by computer-assisted texture-based image analysis. Invest Radiol 32(9):566–574, 1997PubMedCrossRef Delorme S, Keller-Reichenbecher M, Zuna I, Schlegel W, Van Kaick G: Usual interstitial pneumonia: quantitative assessment of high-resolution computed tomography findings by computer-assisted texture-based image analysis. Invest Radiol 32(9):566–574, 1997PubMedCrossRef
9.
Zurück zum Zitat Uppaluri R, Hoffman E, Sonka M, Hartley PG, Hunninghake GW, McLennan G: Computer recognition of regional lung disease patterns. Am J Respir Crit Care Med 160(2):648–654, 1999PubMed Uppaluri R, Hoffman E, Sonka M, Hartley PG, Hunninghake GW, McLennan G: Computer recognition of regional lung disease patterns. Am J Respir Crit Care Med 160(2):648–654, 1999PubMed
10.
Zurück zum Zitat Heitmann KR, Kauczor H, Mildenberger P, Uthmann T, Perl J, Thelen M: Automatic detection of ground glass opacities on lung HRCT using multiple neural networks. Eur Radiol 7:1463–1472, 1997PubMedCrossRef Heitmann KR, Kauczor H, Mildenberger P, Uthmann T, Perl J, Thelen M: Automatic detection of ground glass opacities on lung HRCT using multiple neural networks. Eur Radiol 7:1463–1472, 1997PubMedCrossRef
11.
Zurück zum Zitat Kauczor HU, Heitmann K, Heussel CP, Marwede D, Uthmann T, Thelen M: Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density mask. Am J Roentgenol 175(5):1329–1334, 2000 Kauczor HU, Heitmann K, Heussel CP, Marwede D, Uthmann T, Thelen M: Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density mask. Am J Roentgenol 175(5):1329–1334, 2000
12.
Zurück zum Zitat Uchiyama Y, Katsuragawa S, Abe H, Shiraishi J, Li F, Li Q, Zhang CT, Suzuki K, Doi K: Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography. Med Phys 30(9):2440–2454, 2003PubMedCrossRef Uchiyama Y, Katsuragawa S, Abe H, Shiraishi J, Li F, Li Q, Zhang CT, Suzuki K, Doi K: Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography. Med Phys 30(9):2440–2454, 2003PubMedCrossRef
13.
Zurück zum Zitat Zhang L, Zhang T, Novak CL, et al: A computer-based method of segmenting ground glass nodules in pulmonary CT images: comparison to expert radiologists’ interpretations. SPIE Med Imaging 5747:113–123, 2005 Zhang L, Zhang T, Novak CL, et al: A computer-based method of segmenting ground glass nodules in pulmonary CT images: comparison to expert radiologists’ interpretations. SPIE Med Imaging 5747:113–123, 2005
14.
Zurück zum Zitat Mignotte M, Collet C, Perez P, Bouthemy P: Sonar image segmentation using an unsupervised hierarchical MRF model. IEEE Trans Image Process 9(7):1216–1231, 2000PubMedCrossRef Mignotte M, Collet C, Perez P, Bouthemy P: Sonar image segmentation using an unsupervised hierarchical MRF model. IEEE Trans Image Process 9(7):1216–1231, 2000PubMedCrossRef
15.
Zurück zum Zitat Smits PC, Dellepiane SG: Synthetic aperture radar image segmentation by a detail preserving Markov random field approach. IEEE Trans Geosci Remote Sens 35(4):844–857, 1997CrossRef Smits PC, Dellepiane SG: Synthetic aperture radar image segmentation by a detail preserving Markov random field approach. IEEE Trans Geosci Remote Sens 35(4):844–857, 1997CrossRef
16.
Zurück zum Zitat Held K, Kops ER, Krause BJ, et al: Markov random field segmentation of brain MR images. IEEE Trans Med Imaging 16(6):878–886, 1997PubMedCrossRef Held K, Kops ER, Krause BJ, et al: Markov random field segmentation of brain MR images. IEEE Trans Med Imaging 16(6):878–886, 1997PubMedCrossRef
17.
Zurück zum Zitat Hammersley JM, Clifford P: Markov field on finite graphs and lattices. Unpublished, 1971 Hammersley JM, Clifford P: Markov field on finite graphs and lattices. Unpublished, 1971
18.
Zurück zum Zitat Geman S, Geman D: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEEE Trans Pattern Anal Machine Intell 6:721–741, 1984CrossRef Geman S, Geman D: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEEE Trans Pattern Anal Machine Intell 6:721–741, 1984CrossRef
19.
Zurück zum Zitat Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E: Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092, 1953CrossRef Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E: Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092, 1953CrossRef
20.
Zurück zum Zitat Zrimec T, Busayarat S, Wilson P: A 3D model of the human lung with lung regions characterization. ICIP 2004 Proc IEEE Int Conf Image Process 2, 2004, pp 1149–1152 Zrimec T, Busayarat S, Wilson P: A 3D model of the human lung with lung regions characterization. ICIP 2004 Proc IEEE Int Conf Image Process 2, 2004, pp 1149–1152
21.
Zurück zum Zitat Shamsheyeva A, Sowmya A: The anisotropic Gaussian kernel for SVM classification of HRCT images of the lung. Proc IEEE ISSNIP (14–17):439–444, 2004 Shamsheyeva A, Sowmya A: The anisotropic Gaussian kernel for SVM classification of HRCT images of the lung. Proc IEEE ISSNIP (14–17):439–444, 2004
22.
Zurück zum Zitat Manjunath BS, Ma WY: Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842, 1996CrossRef Manjunath BS, Ma WY: Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842, 1996CrossRef
23.
Zurück zum Zitat Kaplan LM, Murenzi R: Texture segmentation using multiscale Hurst features. ICIP’97. 3:205, 1997 Kaplan LM, Murenzi R: Texture segmentation using multiscale Hurst features. ICIP’97. 3:205, 1997
24.
Zurück zum Zitat Unser M: Texture classification and segmentation using wavelet frames. IEEE Trans Image Process 4(11):1549–1560, 1995PubMedCrossRef Unser M: Texture classification and segmentation using wavelet frames. IEEE Trans Image Process 4(11):1549–1560, 1995PubMedCrossRef
25.
Zurück zum Zitat Cesmeli E, Wang D: Texture segmentation using Gaussian–Markov random fields and neural oscillator networks. IEEE Trans Neural Networks 12(2):394–404, 2001CrossRef Cesmeli E, Wang D: Texture segmentation using Gaussian–Markov random fields and neural oscillator networks. IEEE Trans Neural Networks 12(2):394–404, 2001CrossRef
27.
Zurück zum Zitat Guyon I, Weston J, Barnhill S, Vapnik V: Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422, 2002CrossRef Guyon I, Weston J, Barnhill S, Vapnik V: Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422, 2002CrossRef
28.
Zurück zum Zitat THenschke CI, Yankelevitz DF, Mirtcheva R, McGuinness G, McCauley D, Miettinen OS, ELCAP Group: CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules. AJR AM J Roentgenol 178:1053–1057, 2002 THenschke CI, Yankelevitz DF, Mirtcheva R, McGuinness G, McCauley D, Miettinen OS, ELCAP Group: CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules. AJR AM J Roentgenol 178:1053–1057, 2002
Metadaten
Titel
Automatic Segmentation of Ground-Glass Opacities in Lung CT Images by Using Markov Random Field-Based Algorithms
verfasst von
Yanjie Zhu
Yongqing Tan
Yanqing Hua
Guozhen Zhang
Jianguo Zhang
Publikationsdatum
01.06.2012
Verlag
Springer-Verlag
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 3/2012
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-011-9435-5

Weitere Artikel der Ausgabe 3/2012

Journal of Digital Imaging 3/2012 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.