Skip to main content
Erschienen in: Diabetologia 7/2016

30.01.2016 | Article

Autophagy is a major regulator of beta cell insulin homeostasis

verfasst von: Yael Riahi, Jakob D. Wikstrom, Etty Bachar-Wikstrom, Nava Polin, Hava Zucker, Myung-Shik Lee, Wenying Quan, Leena Haataja, Ming Liu, Peter Arvan, Erol Cerasi, Gil Leibowitz

Erschienen in: Diabetologia | Ausgabe 7/2016

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

We studied the role of protein degradation pathways in the regulation of insulin production and secretion and hypothesised that autophagy regulates proinsulin degradation, thereby modulating beta cell function.

Methods

Proinsulin localisation in autophagosomes was demonstrated by confocal and electron microscopy. Autophagy was inhibited by knockdown of autophagy-related (ATG) proteins and using the H+-ATPase inhibitor bafilomycin-A1. Proinsulin and insulin content and secretion were assessed in static incubations by ELISA and RIA.

Results

Confocal and electron microscopy showed proinsulin localised in autophagosomes and lysosomes. Beta-Atg7 −/− mice had proinsulin-containing sequestosome 1 (p62 [also known as SQSTM1])+ aggregates in beta cells, indicating proinsulin is regulated by autophagy in vivo. Short-term bafilomycin-A1 treatment and ATG5/7 knockdown increased steady-state proinsulin and hormone precursor chromogranin A content. ATG5/7 knockdown also increased glucose- and non-fuel-stimulated insulin secretion. Finally, mutated forms of proinsulin that are irreparably misfolded and trapped in the endoplasmic reticulum are more resistant to degradation by autophagy.

Conclusions/interpretation

In the beta cell, transport-competent secretory peptide precursors, including proinsulin, are regulated by autophagy, whereas efficient clearance of transport-incompetent mutated forms of proinsulin by alternative degradative pathways may be necessary to avoid beta cell proteotoxicity. Reduction of autophagic degradation of proinsulin increases its residency in the secretory pathway, followed by enhanced secretion in response to stimuli.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Orci L, Ravazzola M, Amherdt M et al (1984) Insulin, not C-peptide (proinsulin), is present in crinophagic bodies of the pancreatic B cell. J Cell Biol 98:222–228CrossRefPubMed Orci L, Ravazzola M, Amherdt M et al (1984) Insulin, not C-peptide (proinsulin), is present in crinophagic bodies of the pancreatic B cell. J Cell Biol 98:222–228CrossRefPubMed
2.
Zurück zum Zitat Goginashvili A, Zhang Z, Erbs E et al (2015) Insulin granules. Insulin secretory granules control autophagy in pancreatic beta cells. Science 347:878–882CrossRefPubMed Goginashvili A, Zhang Z, Erbs E et al (2015) Insulin granules. Insulin secretory granules control autophagy in pancreatic beta cells. Science 347:878–882CrossRefPubMed
3.
Zurück zum Zitat Schuit FC, In't Veld PA, Pipeleers DG (1988) Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc Natl Acad Sci U S A 85:3865–3869CrossRefPubMedPubMedCentral Schuit FC, In't Veld PA, Pipeleers DG (1988) Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc Natl Acad Sci U S A 85:3865–3869CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937CrossRefPubMed Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937CrossRefPubMed
10.
Zurück zum Zitat Ebato C, Uchida T, Arakawa M et al (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8:325–332CrossRefPubMed Ebato C, Uchida T, Arakawa M et al (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8:325–332CrossRefPubMed
11.
Zurück zum Zitat Jung HS, Chung KW, Won Kim J et al (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8:318–324CrossRefPubMed Jung HS, Chung KW, Won Kim J et al (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8:318–324CrossRefPubMed
12.
Zurück zum Zitat Stienstra R, Haim Y, Riahi Y, Netea M, Rudich A, Leibowitz G (2014) Autophagy in adipose tissue and the beta cell: implications for obesity and diabetes. Diabetologia 57:1505–1516CrossRefPubMed Stienstra R, Haim Y, Riahi Y, Netea M, Rudich A, Leibowitz G (2014) Autophagy in adipose tissue and the beta cell: implications for obesity and diabetes. Diabetologia 57:1505–1516CrossRefPubMed
13.
Zurück zum Zitat Masini M, Bugliani M, Lupi R et al (2009) Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 52:1083–1086CrossRefPubMed Masini M, Bugliani M, Lupi R et al (2009) Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 52:1083–1086CrossRefPubMed
14.
Zurück zum Zitat Quan W, Hur KY, Lim Y et al (2012) Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia 55:392–403CrossRefPubMed Quan W, Hur KY, Lim Y et al (2012) Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia 55:392–403CrossRefPubMed
15.
Zurück zum Zitat Shaked M, Ketzniel-Gilad M, Cerasi E et al (2011) AMP-activated protein kinase (AMPK) mediates nutrient regulation of thioredoxin-interacting protein (TXNIP) in pancreatic beta-cells. PLoS One 6:e28804CrossRefPubMedPubMedCentral Shaked M, Ketzniel-Gilad M, Cerasi E et al (2011) AMP-activated protein kinase (AMPK) mediates nutrient regulation of thioredoxin-interacting protein (TXNIP) in pancreatic beta-cells. PLoS One 6:e28804CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Stålberg P, Wang S, Larsson C et al (1999) Suppression of the neoplastic phenotype by transfection of phospholipase C β 3 to neuroendocrine tumor cells. FEBS Lett 450:210–216CrossRefPubMed Stålberg P, Wang S, Larsson C et al (1999) Suppression of the neoplastic phenotype by transfection of phospholipase C β 3 to neuroendocrine tumor cells. FEBS Lett 450:210–216CrossRefPubMed
17.
Zurück zum Zitat Falcon-Perez JM, Nazarian R, Sabatti C, Dell'Angelica EC (2005) Distribution and dynamics of Lamp1-containing endocytic organelles in fibroblasts deficient in BLOC-3. J Cell Sci 118:5243–5255CrossRefPubMed Falcon-Perez JM, Nazarian R, Sabatti C, Dell'Angelica EC (2005) Distribution and dynamics of Lamp1-containing endocytic organelles in fibroblasts deficient in BLOC-3. J Cell Sci 118:5243–5255CrossRefPubMed
18.
Zurück zum Zitat Bjorkoy G, Lamark T, Brech A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614CrossRefPubMedPubMedCentral Bjorkoy G, Lamark T, Brech A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Goedhart J, von Stetten D, Noirclerc-Savoye M et al (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751CrossRefPubMedPubMedCentral Goedhart J, von Stetten D, Noirclerc-Savoye M et al (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Rajan S, Eames SC, Park SY et al (2010) In vitro processing and secretion of mutant insulin proteins that cause permanent neonatal diabetes. Am J Physiol Endocrinol Metab 298:E403–E410CrossRefPubMed Rajan S, Eames SC, Park SY et al (2010) In vitro processing and secretion of mutant insulin proteins that cause permanent neonatal diabetes. Am J Physiol Endocrinol Metab 298:E403–E410CrossRefPubMed
21.
Zurück zum Zitat Wright J, Wang X, Haataja L et al (2013) Dominant protein interactions that influence the pathogenesis of conformational diseases. J Clin Invest 123:3124–3134CrossRefPubMedPubMedCentral Wright J, Wang X, Haataja L et al (2013) Dominant protein interactions that influence the pathogenesis of conformational diseases. J Clin Invest 123:3124–3134CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Wikstrom JD, Sereda SB, Stiles L et al (2012) A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets. PLoS ONE 7:e33023CrossRefPubMedPubMedCentral Wikstrom JD, Sereda SB, Stiles L et al (2012) A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets. PLoS ONE 7:e33023CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Bachar-Wikstrom E, Wikstrom JD, Ariav Y et al (2013) Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes 62:1227–1237CrossRefPubMedPubMedCentral Bachar-Wikstrom E, Wikstrom JD, Ariav Y et al (2013) Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes 62:1227–1237CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Kienzle C, von Blume J (2014) Secretory cargo sorting at the trans-Golgi network. Trends Cell Biol 24:584–593CrossRefPubMed Kienzle C, von Blume J (2014) Secretory cargo sorting at the trans-Golgi network. Trends Cell Biol 24:584–593CrossRefPubMed
25.
Zurück zum Zitat Winkler H, Fischer-Colbrie R (1992) The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 49:497–528CrossRefPubMed Winkler H, Fischer-Colbrie R (1992) The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 49:497–528CrossRefPubMed
26.
Zurück zum Zitat Barbosa JA, Gill BM, Takiyyuddin MA, O'Connor DT (1991) Chromogranin A: posttranslational modifications in secretory granules. Endocrinology 128:174–190CrossRefPubMed Barbosa JA, Gill BM, Takiyyuddin MA, O'Connor DT (1991) Chromogranin A: posttranslational modifications in secretory granules. Endocrinology 128:174–190CrossRefPubMed
27.
Zurück zum Zitat Preston AM, Gurisik E, Bartley C, Laybutt DR, Biden TJ (2009) Reduced endoplasmic reticulum (ER)-to-Golgi protein trafficking contributes to ER stress in lipotoxic mouse beta cells by promoting protein overload. Diabetologia 52:2369–2373CrossRefPubMed Preston AM, Gurisik E, Bartley C, Laybutt DR, Biden TJ (2009) Reduced endoplasmic reticulum (ER)-to-Golgi protein trafficking contributes to ER stress in lipotoxic mouse beta cells by promoting protein overload. Diabetologia 52:2369–2373CrossRefPubMed
28.
Zurück zum Zitat Zhang X, Yuan Q, Tang W, Gu J, Osei K, Wang J (2011) Substrate-favored lysosomal and proteasomal pathways participate in the normal balance control of insulin precursor maturation and disposal in beta-cells. PLoS ONE 6:e27647CrossRefPubMedPubMedCentral Zhang X, Yuan Q, Tang W, Gu J, Osei K, Wang J (2011) Substrate-favored lysosomal and proteasomal pathways participate in the normal balance control of insulin precursor maturation and disposal in beta-cells. PLoS ONE 6:e27647CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Pearson GL, Mellett N, Chu KY et al (2014) Lysosomal acid lipase and lipophagy are constitutive negative regulators of glucose-stimulated insulin secretion from pancreatic beta cells. Diabetologia 57:129–139CrossRefPubMed Pearson GL, Mellett N, Chu KY et al (2014) Lysosomal acid lipase and lipophagy are constitutive negative regulators of glucose-stimulated insulin secretion from pancreatic beta cells. Diabetologia 57:129–139CrossRefPubMed
30.
31.
Zurück zum Zitat Zuber C, Fan JY, Guhl B, Roth J (2004) Misfolded proinsulin accumulates in expanded pre-Golgi intermediates and endoplasmic reticulum subdomains in pancreatic beta cells of Akita mice. FASEB J 18:917–919PubMed Zuber C, Fan JY, Guhl B, Roth J (2004) Misfolded proinsulin accumulates in expanded pre-Golgi intermediates and endoplasmic reticulum subdomains in pancreatic beta cells of Akita mice. FASEB J 18:917–919PubMed
32.
Zurück zum Zitat Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC (2014) Autophagy defends pancreatic beta cells from human islet amyloid polypeptide-induced toxicity. J Clin Invest 124:3489–3500CrossRefPubMedPubMedCentral Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC (2014) Autophagy defends pancreatic beta cells from human islet amyloid polypeptide-induced toxicity. J Clin Invest 124:3489–3500CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Shigihara N, Fukunaka A, Hara A et al (2014) Human IAPP-induced pancreatic beta cell toxicity and its regulation by autophagy. J Clin Invest 124:3634–3644CrossRefPubMedPubMedCentral Shigihara N, Fukunaka A, Hara A et al (2014) Human IAPP-induced pancreatic beta cell toxicity and its regulation by autophagy. J Clin Invest 124:3634–3644CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Kim J, Cheon H, Jeong YT et al (2014) Amyloidogenic peptide oligomer accumulation in autophagy-deficient beta cells induces diabetes. J Clin Invest 124:3311–3324CrossRefPubMedPubMedCentral Kim J, Cheon H, Jeong YT et al (2014) Amyloidogenic peptide oligomer accumulation in autophagy-deficient beta cells induces diabetes. J Clin Invest 124:3311–3324CrossRefPubMedPubMedCentral
Metadaten
Titel
Autophagy is a major regulator of beta cell insulin homeostasis
verfasst von
Yael Riahi
Jakob D. Wikstrom
Etty Bachar-Wikstrom
Nava Polin
Hava Zucker
Myung-Shik Lee
Wenying Quan
Leena Haataja
Ming Liu
Peter Arvan
Erol Cerasi
Gil Leibowitz
Publikationsdatum
30.01.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 7/2016
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-3868-9

Weitere Artikel der Ausgabe 7/2016

Diabetologia 7/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.