Skip to main content
Erschienen in:

27.02.2022 | Original Research

Autophagy-Sirtuin1(SIRT1) Alleviated the Coronary Atherosclerosis (AS) in Mice through Regulating the Proliferation and Migration of Endothelial Progenitor Cells (EPCs) via wnt/β-catenin/GSK3β Signaling Pathway

verfasst von: Y. Li, W. Cui, B. Song, X. Ye, Z. Li, C. Lu

Erschienen in: The journal of nutrition, health & aging | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

Background and Purpose

SIRT1 was associated with AS risk and EPCs were reported to participate in the endothelial repair in Coronary Atherosclerosis (CAS). In this study, we explored the role of SIRT1 in AS mice and also its modulation in EPCs.

Methods and Materials

ApoE−/−mice were fed on high-fat and high-glucose diet to establish the AS animal model with the normally-raised C57BL/6 mice as a control group. SIRT1 activator, SRT 2104 was injected intravenously into 5 ApoE−/−mice and its inhibitor Nicotinamide was injected in tail in another 5 ApoE−/− mice. Weight changes were recorded. Blood samples were taken from posterior orbital venous plexus and were detected by automatic biochemical analyzer. HE staining displayed the pathological conditions while Immunohistochemistry (IHC) evaluated the CD34+/VEGFR2+ relative density in the aorta tissues. EPCs were isolated from bone marrow and verified using immunofluorescence staining (IFS). The modulatory mechanism of SIRT1 in EPCs were studied by using RT-PCR, MTT, Western Blot and colony formation, scratch methods.

Results

SIRT1 activator negatively regulated the weight and TC, TG and LDL levels, alleviated the lesion conditions and decreased the CD34+/VEGFR2+ density compared to the AS control. In vitro, SIRT1 activator promoted the proliferation and migration of EPCs and activated wnt/β-catenin/GSK3β signaling pathway. SIRT1 activator also inhibited the autophagy biomarkers ATG1 and LC3II. Furthermore, inhibitor of autophagy promoted SIRT1 expression and induced EPC proliferation, migration and activated wnt/β-catenin/GSK3β pathway. The suppression of the wnt/β-catenin/GSK3β pathway inhibited SIRT1 expression in EPCs, attenuated the proliferation and migration and promoted autophagy of EPCs.

Conclusion

SIRT1 activation might be protective in AS mice through autophagy inhibition in EPCs via wnt/β-catenin/GSK3β signaling pathway.
Literatur
1.
Zurück zum Zitat Iida M, Harada S, Takebayashi T. Application of Metabolomics to Epidemiological Studies of Atherosclerosis and Cardiovascular Disease. Journal of atherosclerosis and thrombosis. 2019;26:747–57.PubMedPubMedCentralCrossRef Iida M, Harada S, Takebayashi T. Application of Metabolomics to Epidemiological Studies of Atherosclerosis and Cardiovascular Disease. Journal of atherosclerosis and thrombosis. 2019;26:747–57.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Tesfamariam B. Endothelial Repair and Regeneration Following Intimal Injury. Journal of cardiovascular translational research. 2016;9:91–101.PubMedCrossRef Tesfamariam B. Endothelial Repair and Regeneration Following Intimal Injury. Journal of cardiovascular translational research. 2016;9:91–101.PubMedCrossRef
3.
Zurück zum Zitat Watt J, Kennedy S, Ahmed N, Hayhurst J, McClure JD, Berry C, et al. The relationship between oxidised LDL, endothelial progenitor cells and coronary endothelial function in patients with CHD. Open heart. 2016;3:e000342.PubMedPubMedCentralCrossRef Watt J, Kennedy S, Ahmed N, Hayhurst J, McClure JD, Berry C, et al. The relationship between oxidised LDL, endothelial progenitor cells and coronary endothelial function in patients with CHD. Open heart. 2016;3:e000342.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Huang PH, Chen JW, Lin SJ. Effects of Cardiovascular Risk Factors on Endothelial Progenitor Cell. Acta Cardiologica Sinica. 2014;30:375–81.PubMedPubMedCentral Huang PH, Chen JW, Lin SJ. Effects of Cardiovascular Risk Factors on Endothelial Progenitor Cell. Acta Cardiologica Sinica. 2014;30:375–81.PubMedPubMedCentral
5.
Zurück zum Zitat Blum A, Adawi M. Rheumatoid arthritis (RA) and cardiovascular disease. Autoimmunity reviews. 2019;18:679–90.PubMedCrossRef Blum A, Adawi M. Rheumatoid arthritis (RA) and cardiovascular disease. Autoimmunity reviews. 2019;18:679–90.PubMedCrossRef
7.
Zurück zum Zitat Fujita Y, Kawamoto A. Stem cell-based peripheral vascular regeneration. Advanced drug delivery reviews. 2017;120:25–40.PubMedCrossRef Fujita Y, Kawamoto A. Stem cell-based peripheral vascular regeneration. Advanced drug delivery reviews. 2017;120:25–40.PubMedCrossRef
8.
Zurück zum Zitat Alexandru N, Safciuc F, Constantin A, Nemecz M, Tanko G, Filippi A, et al. Platelets of Healthy Origins Promote Functional Improvement of Atherosclerotic Endothelial Progenitor Cells. Frontiers in pharmacology. 2019;10:424.PubMedPubMedCentralCrossRef Alexandru N, Safciuc F, Constantin A, Nemecz M, Tanko G, Filippi A, et al. Platelets of Healthy Origins Promote Functional Improvement of Atherosclerotic Endothelial Progenitor Cells. Frontiers in pharmacology. 2019;10:424.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Pelliccia F, Pasceri V, Moretti A, Tanzilli G, Speciale G, Gaudio C. Endothelial progenitor cells predict long-term outcome in patients with coronary artery disease: Ten-year follow-up of the PROCREATION extended study. International journal of cardiology. 2020;318:123–5.PubMedCrossRef Pelliccia F, Pasceri V, Moretti A, Tanzilli G, Speciale G, Gaudio C. Endothelial progenitor cells predict long-term outcome in patients with coronary artery disease: Ten-year follow-up of the PROCREATION extended study. International journal of cardiology. 2020;318:123–5.PubMedCrossRef
10.
Zurück zum Zitat Ndunda P, Vindhyal MR, Muutu T, Fanari Z. Clinical Outcomes of the Dual-Therapy CD34 Antibody-Covered Sirolimus-Eluting Stent Versus Standard Drug-Eluting Coronary Stents: A Meta-Analysis. Cardiovascular revascularization medicine: including molecular interventions. 2020;21:213–21.CrossRef Ndunda P, Vindhyal MR, Muutu T, Fanari Z. Clinical Outcomes of the Dual-Therapy CD34 Antibody-Covered Sirolimus-Eluting Stent Versus Standard Drug-Eluting Coronary Stents: A Meta-Analysis. Cardiovascular revascularization medicine: including molecular interventions. 2020;21:213–21.CrossRef
11.
Zurück zum Zitat Ravindranath RR, Romaschin A, Thompson M. In vitro and in vivo cell-capture strategies using cardiac stent technology — A review. Clinical biochemistry. 2016;49:186–91.PubMedCrossRef Ravindranath RR, Romaschin A, Thompson M. In vitro and in vivo cell-capture strategies using cardiac stent technology — A review. Clinical biochemistry. 2016;49:186–91.PubMedCrossRef
12.
Zurück zum Zitat He X, Zheng J, Liu C. Low serum level of sirtuin 1 predicts coronary atherosclerosis plaques during computed tomography angiography among an asymptomatic cohort. Coronary artery disease. 2019;30:621–5.PubMedCrossRef He X, Zheng J, Liu C. Low serum level of sirtuin 1 predicts coronary atherosclerosis plaques during computed tomography angiography among an asymptomatic cohort. Coronary artery disease. 2019;30:621–5.PubMedCrossRef
13.
Zurück zum Zitat Breitenstein A, Wyss CA, Spescha RD, Franzeck FC, Hof D, Riwanto M, et al. Peripheral blood monocyte Sirt1 expression is reduced in patients with coronary artery disease. PloS one. 2013;8:e53106.PubMedPubMedCentralCrossRef Breitenstein A, Wyss CA, Spescha RD, Franzeck FC, Hof D, Riwanto M, et al. Peripheral blood monocyte Sirt1 expression is reduced in patients with coronary artery disease. PloS one. 2013;8:e53106.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Hsu CP, Odewale I, Alcendor RR, Sadoshima J. Sirt1 protects the heart from aging and stress. Biological chemistry. 2008;389:221–31.PubMedCrossRef Hsu CP, Odewale I, Alcendor RR, Sadoshima J. Sirt1 protects the heart from aging and stress. Biological chemistry. 2008;389:221–31.PubMedCrossRef
15.
Zurück zum Zitat Wang YQ, Cao Q, Wang F, Huang LY, Sang TT, Liu F, et al. SIRT1 Protects Against Oxidative Stress-Induced Endothelial Progenitor Cells Apoptosis by Inhibiting FOXO3a via FOXO3a Ubiquitination and Degradation. Journal of cellular physiology. 2015;230:2098–107.PubMedCrossRef Wang YQ, Cao Q, Wang F, Huang LY, Sang TT, Liu F, et al. SIRT1 Protects Against Oxidative Stress-Induced Endothelial Progenitor Cells Apoptosis by Inhibiting FOXO3a via FOXO3a Ubiquitination and Degradation. Journal of cellular physiology. 2015;230:2098–107.PubMedCrossRef
16.
Zurück zum Zitat Huang S, Zhan Z, Li L, Guo H, Yao Y, Feng M, et al. LINC00958-MYC positive feedback loop modulates resistance of head and neck squamous cell carcinoma cells to chemo- and radiotherapy in vitro. OncoTargets and therapy. 2019;12:5989–6000.PubMedPubMedCentralCrossRef Huang S, Zhan Z, Li L, Guo H, Yao Y, Feng M, et al. LINC00958-MYC positive feedback loop modulates resistance of head and neck squamous cell carcinoma cells to chemo- and radiotherapy in vitro. OncoTargets and therapy. 2019;12:5989–6000.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Jiang Q, Hao R, Wang W, Gao H, Wang C. SIRT1/Atg5/autophagy are involved in the antiatherosclerosis effects of ursolic acid. Molecular and cellular biochemistry. 2016;420:171–84.PubMedCrossRef Jiang Q, Hao R, Wang W, Gao H, Wang C. SIRT1/Atg5/autophagy are involved in the antiatherosclerosis effects of ursolic acid. Molecular and cellular biochemistry. 2016;420:171–84.PubMedCrossRef
18.
Zurück zum Zitat Hassanpour M, Rezabakhsh A, Pezeshkian M, Rahbarghazi R, Nouri M. Distinct role of autophagy on angiogenesis: highlights on the effect of autophagy in endothelial lineage and progenitor cells. Stem cell research & therapy. 2018;9:305.CrossRef Hassanpour M, Rezabakhsh A, Pezeshkian M, Rahbarghazi R, Nouri M. Distinct role of autophagy on angiogenesis: highlights on the effect of autophagy in endothelial lineage and progenitor cells. Stem cell research & therapy. 2018;9:305.CrossRef
19.
Zurück zum Zitat Wang C, Mao C, Lou Y, Xu J, Wang Q, Zhang Z, et al. Monotropein promotes angiogenesis and inhibits oxidative stress-induced autophagy in endothelial progenitor cells to accelerate wound healing. Journal of cellular and molecular medicine. 2018;22:1583–600.PubMedCrossRef Wang C, Mao C, Lou Y, Xu J, Wang Q, Zhang Z, et al. Monotropein promotes angiogenesis and inhibits oxidative stress-induced autophagy in endothelial progenitor cells to accelerate wound healing. Journal of cellular and molecular medicine. 2018;22:1583–600.PubMedCrossRef
20.
Zurück zum Zitat Lee HW, Lee SJ, Lee MY, Park MW, Kim SS, Shin N, et al. Enhanced cardiac expression of two isoforms of matrix metalloproteinase-2 in experimental diabetes mellitus. PloS one. 2019;14:e0221798.PubMedPubMedCentralCrossRef Lee HW, Lee SJ, Lee MY, Park MW, Kim SS, Shin N, et al. Enhanced cardiac expression of two isoforms of matrix metalloproteinase-2 in experimental diabetes mellitus. PloS one. 2019;14:e0221798.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Wang X, Zhang C, Gong M, Jiang C. A Novel Identified Long Non-coding RNA, lncRNA MEF2C-AS1, Inhibits Cervical Cancer via Regulation of miR-592/RSPO1. Frontiers in molecular biosciences. 2021;8:687113.PubMedPubMedCentralCrossRef Wang X, Zhang C, Gong M, Jiang C. A Novel Identified Long Non-coding RNA, lncRNA MEF2C-AS1, Inhibits Cervical Cancer via Regulation of miR-592/RSPO1. Frontiers in molecular biosciences. 2021;8:687113.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Rana D, Kumar A, Sharma S. Endothelial Progenitor Cells as Molecular Targets in Vascular Senescence and Repair. Current stem cell research & therapy. 2018;13:438–46.CrossRef Rana D, Kumar A, Sharma S. Endothelial Progenitor Cells as Molecular Targets in Vascular Senescence and Repair. Current stem cell research & therapy. 2018;13:438–46.CrossRef
23.
24.
Zurück zum Zitat Heidarzadeh M, Roodbari F, Hassanpour M, Ahmadi M, Saberianpour S, Rahbarghazi R. Toll-like receptor bioactivity in endothelial progenitor cells. Cell and tissue research. 2020;379:223–30.PubMedCrossRef Heidarzadeh M, Roodbari F, Hassanpour M, Ahmadi M, Saberianpour S, Rahbarghazi R. Toll-like receptor bioactivity in endothelial progenitor cells. Cell and tissue research. 2020;379:223–30.PubMedCrossRef
25.
Zurück zum Zitat Guerra G, Perrotta F, Testa G. Circulating Endothelial Progenitor Cells Biology and Regenerative Medicine in Pulmonary Vascular Diseases. Current pharmaceutical biotechnology. 2018;19:700–7.PubMedCrossRef Guerra G, Perrotta F, Testa G. Circulating Endothelial Progenitor Cells Biology and Regenerative Medicine in Pulmonary Vascular Diseases. Current pharmaceutical biotechnology. 2018;19:700–7.PubMedCrossRef
26.
Zurück zum Zitat Pías-Peleteiro J, Campos F, Perez-Mato M, Lopez-Arias E, Rodriguez-Yanez M, Castillo J, et al. Endothelial Progenitor Cells as a Therapeutic Approach for Intracerebral Hemorrhage. Current pharmaceutical design. 2017;23:2238–51.PubMedCrossRef Pías-Peleteiro J, Campos F, Perez-Mato M, Lopez-Arias E, Rodriguez-Yanez M, Castillo J, et al. Endothelial Progenitor Cells as a Therapeutic Approach for Intracerebral Hemorrhage. Current pharmaceutical design. 2017;23:2238–51.PubMedCrossRef
27.
Zurück zum Zitat Coppolino G, Cernaro V, Placida G, Leonardi G, Basile G, Bolignano D. Endothelial Progenitor Cells at the Interface of Chronic Kidney Disease: From Biology to Therapeutic Advancement. Current medicinal chemistry. 2018;25:4545–51.PubMedCrossRef Coppolino G, Cernaro V, Placida G, Leonardi G, Basile G, Bolignano D. Endothelial Progenitor Cells at the Interface of Chronic Kidney Disease: From Biology to Therapeutic Advancement. Current medicinal chemistry. 2018;25:4545–51.PubMedCrossRef
28.
Zurück zum Zitat Pyšná A, Bém R, Němcová A, Fejfarová V, Jirkovská A, Hazdrová J, et al. Endothelial Progenitor Cells Biology in Diabetes Mellitus and Peripheral Arterial Disease and their Therapeutic Potential. Stem cell reviews and reports. 2019;15:157–65.PubMedCrossRef Pyšná A, Bém R, Němcová A, Fejfarová V, Jirkovská A, Hazdrová J, et al. Endothelial Progenitor Cells Biology in Diabetes Mellitus and Peripheral Arterial Disease and their Therapeutic Potential. Stem cell reviews and reports. 2019;15:157–65.PubMedCrossRef
29.
Zurück zum Zitat Pelliccia F, Pasceri V, Rosano G, Pristipino C, Roncella A, Speciale G, et al. Endothelial progenitor cells predict long-term prognosis in patients with stable angina treated with percutaneous coronary intervention: five-year follow-up of the PROCREATION study. Circulation journal: official journal of the Japanese Circulation Society. 2013;77:1728–35.CrossRef Pelliccia F, Pasceri V, Rosano G, Pristipino C, Roncella A, Speciale G, et al. Endothelial progenitor cells predict long-term prognosis in patients with stable angina treated with percutaneous coronary intervention: five-year follow-up of the PROCREATION study. Circulation journal: official journal of the Japanese Circulation Society. 2013;77:1728–35.CrossRef
30.
Zurück zum Zitat Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. The New England journal of medicine. 2005;353:999–1007.PubMedCrossRef Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. The New England journal of medicine. 2005;353:999–1007.PubMedCrossRef
31.
Zurück zum Zitat Otto S, Nitsche K, Jung C, Kryvanos A, Zhylka A, Heitkamp K, et al. Endothelial progenitor cells and plaque burden in stented coronary artery segments: an optical coherence tomography study six months after elective PCI. BMC cardiovascular disorders. 2017;17:103.PubMedPubMedCentralCrossRef Otto S, Nitsche K, Jung C, Kryvanos A, Zhylka A, Heitkamp K, et al. Endothelial progenitor cells and plaque burden in stented coronary artery segments: an optical coherence tomography study six months after elective PCI. BMC cardiovascular disorders. 2017;17:103.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Morrone D, Felice F, Scatena C, De Martino A, Picoi MLE, Mancini N, et al. Role of circulating endothelial progenitor cells in the reparative mechanisms of stable ischemic myocardium. International journal of cardiology. 2018;257:243–6.PubMedCrossRef Morrone D, Felice F, Scatena C, De Martino A, Picoi MLE, Mancini N, et al. Role of circulating endothelial progenitor cells in the reparative mechanisms of stable ischemic myocardium. International journal of cardiology. 2018;257:243–6.PubMedCrossRef
33.
Zurück zum Zitat Gui YJ, Xiang QY, Chen JY, Wang YT, Hu JH, Chen YY, et al. Stable coronary artery disease and endothelial progenitor cells. International journal of cardiology. 2018;260:18.PubMedCrossRef Gui YJ, Xiang QY, Chen JY, Wang YT, Hu JH, Chen YY, et al. Stable coronary artery disease and endothelial progenitor cells. International journal of cardiology. 2018;260:18.PubMedCrossRef
34.
Zurück zum Zitat Morrone D, Felice F, Scatena C, De Martino A, Picoi MLE, Mancini N, et al. Reply letter to Dr. Xu et al. on role of circulating endothelial progenitor cells in the reparative mechanisms of stable ischemic myocardium. International journal of cardiology. 2018;260:21.PubMedCrossRef Morrone D, Felice F, Scatena C, De Martino A, Picoi MLE, Mancini N, et al. Reply letter to Dr. Xu et al. on role of circulating endothelial progenitor cells in the reparative mechanisms of stable ischemic myocardium. International journal of cardiology. 2018;260:21.PubMedCrossRef
35.
Zurück zum Zitat Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. Arteriosclerosis, thrombosis, and vascular biology. 2003;23:1185–9.PubMedCrossRef Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. Arteriosclerosis, thrombosis, and vascular biology. 2003;23:1185–9.PubMedCrossRef
36.
Zurück zum Zitat Balbarini A, Barsotti MC, Di Stefano R, Leone A, Santoni T. Circulating endothelial progenitor cells characterization, function and relationship with cardiovascular risk factors. Current pharmaceutical design. 2007;13:1699–713.PubMedCrossRef Balbarini A, Barsotti MC, Di Stefano R, Leone A, Santoni T. Circulating endothelial progenitor cells characterization, function and relationship with cardiovascular risk factors. Current pharmaceutical design. 2007;13:1699–713.PubMedCrossRef
37.
Zurück zum Zitat Hammadah M, Samman Tahhan A, Mheid IA, Wilmot K, Ramadan R, Kindya BR, et al. Myocardial Ischemia and Mobilization of Circulating Progenitor Cells. Journal of the American Heart Association. 2018;7:e007504.PubMedPubMedCentralCrossRef Hammadah M, Samman Tahhan A, Mheid IA, Wilmot K, Ramadan R, Kindya BR, et al. Myocardial Ischemia and Mobilization of Circulating Progenitor Cells. Journal of the American Heart Association. 2018;7:e007504.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Lamichane S, Baek SH, Kim YJ, Park JH, Dahal Lamichane B, Jang WB, et al. MHY2233 Attenuates Replicative Cellular Senescence in Human Endothelial Progenitor Cells via SIRT1 Signaling. Oxidative medicine and cellular longevity. 2019;2019:6492029.PubMedPubMedCentralCrossRef Lamichane S, Baek SH, Kim YJ, Park JH, Dahal Lamichane B, Jang WB, et al. MHY2233 Attenuates Replicative Cellular Senescence in Human Endothelial Progenitor Cells via SIRT1 Signaling. Oxidative medicine and cellular longevity. 2019;2019:6492029.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Xiao J, Lu Y, Yang X. THRIL mediates endothelial progenitor cells autophagy via AKT pathway and FUS. Molecular medicine (Cambridge, Mass). 2020;26:86.CrossRef Xiao J, Lu Y, Yang X. THRIL mediates endothelial progenitor cells autophagy via AKT pathway and FUS. Molecular medicine (Cambridge, Mass). 2020;26:86.CrossRef
40.
Zurück zum Zitat Zhang L, Yu Y, Xia X, Ma Y, Chen XW, Ni ZH, et al. Transcription factor E2-2 inhibits the proliferation of endothelial progenitor cells by suppressing autophagy. International journal of molecular medicine. 2016;37:1254–62.PubMedPubMedCentralCrossRef Zhang L, Yu Y, Xia X, Ma Y, Chen XW, Ni ZH, et al. Transcription factor E2-2 inhibits the proliferation of endothelial progenitor cells by suppressing autophagy. International journal of molecular medicine. 2016;37:1254–62.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Ming GF, Wu K, Hu K, Chen Y, Xiao J. NAMPT regulates senescence, proliferation, and migration of endothelial progenitor cells through the SIRT1 AS lncRNA/miR-22/SIRT1 pathway. Biochemical and biophysical research communications. 2016;478:1382–8.PubMedCrossRef Ming GF, Wu K, Hu K, Chen Y, Xiao J. NAMPT regulates senescence, proliferation, and migration of endothelial progenitor cells through the SIRT1 AS lncRNA/miR-22/SIRT1 pathway. Biochemical and biophysical research communications. 2016;478:1382–8.PubMedCrossRef
42.
Zurück zum Zitat Walter DH, Zeiher AM, Dimmeler S. Effects of statins on endothelium and their contribution to neovascularization by mobilization of endothelial progenitor cells. Coronary artery disease. 2004;15:235–42.PubMedCrossRef Walter DH, Zeiher AM, Dimmeler S. Effects of statins on endothelium and their contribution to neovascularization by mobilization of endothelial progenitor cells. Coronary artery disease. 2004;15:235–42.PubMedCrossRef
43.
Zurück zum Zitat Everaert BR, Van Craenenbroeck EM, Hoymans VY, Haine SE, Van Nassauw L, Conraads VM, et al. Current perspective of pathophysiological and interventional effects on endothelial progenitor cell biology: focus on PI3K/AKT/eNOS pathway. International journal of cardiology. 2010;144:350–66.PubMedCrossRef Everaert BR, Van Craenenbroeck EM, Hoymans VY, Haine SE, Van Nassauw L, Conraads VM, et al. Current perspective of pathophysiological and interventional effects on endothelial progenitor cell biology: focus on PI3K/AKT/eNOS pathway. International journal of cardiology. 2010;144:350–66.PubMedCrossRef
44.
Zurück zum Zitat Wang J, Ren XR, Piao H, Zhao S, Osada T, Premont RT, et al. Niclosamide-induced Wnt signaling inhibition in colorectal cancer is mediated by autophagy. The Biochemical journal. 2019;476:535–46.PubMedCrossRef Wang J, Ren XR, Piao H, Zhao S, Osada T, Premont RT, et al. Niclosamide-induced Wnt signaling inhibition in colorectal cancer is mediated by autophagy. The Biochemical journal. 2019;476:535–46.PubMedCrossRef
45.
Zurück zum Zitat Petherick KJ, Williams AC, Lane JD, Ordóñez-Morán P, Huelsken J, Collard TJ, et al. Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. The EMBO journal. 2013;32:1903–16.PubMedPubMedCentralCrossRef Petherick KJ, Williams AC, Lane JD, Ordóñez-Morán P, Huelsken J, Collard TJ, et al. Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. The EMBO journal. 2013;32:1903–16.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Nàger M, Sallán MC, Visa A, Pushparaj C, Santacana M, Macià A, et al. Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers. Autophagy. 2018;14:619–36.PubMedPubMedCentralCrossRef Nàger M, Sallán MC, Visa A, Pushparaj C, Santacana M, Macià A, et al. Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers. Autophagy. 2018;14:619–36.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Azoulay-Alfaguter I, Elya R, Avrahami L, Katz A, Eldar-Finkelman H. Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. Oncogene. 2015;34:4613–23.PubMedCrossRef Azoulay-Alfaguter I, Elya R, Avrahami L, Katz A, Eldar-Finkelman H. Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. Oncogene. 2015;34:4613–23.PubMedCrossRef
Metadaten
Titel
Autophagy-Sirtuin1(SIRT1) Alleviated the Coronary Atherosclerosis (AS) in Mice through Regulating the Proliferation and Migration of Endothelial Progenitor Cells (EPCs) via wnt/β-catenin/GSK3β Signaling Pathway
verfasst von
Y. Li
W. Cui
B. Song
X. Ye
Z. Li
C. Lu
Publikationsdatum
27.02.2022
Verlag
Springer Paris
Erschienen in
The journal of nutrition, health & aging / Ausgabe 3/2022
Print ISSN: 1279-7707
Elektronische ISSN: 1760-4788
DOI
https://doi.org/10.1007/s12603-022-1750-7

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Innere Medizin

Metastasiertes CRC: besser Checkpointhemmer im Doppelpack!

Die Kombination von Nivolumab plus Ipilimumab ist beim metastasierten Kolorektalkarzinom mit MSI-H- oder dMMR klar im Vorteil gegenüber einer Nivolumab-Monotherapie: Das Progressionsrisiko war damit in einer Phase-3-Studie um 38% reduziert.

Riesenzellarteriitis: bilaterale Biopsie der Temporalarterien von Vorteil

Die Riesenzellarteriitis (RZA) erfordert eine rasche und präzise Diagnose, da innerhalb weniger Tage ein schwerer, irreversibler Sehverlust drohen kann. In diesem Zusammenhang scheint die bilaterale Biopsie der Temporalarterien (TAB) der unilateralen überlegen zu sein.

Große Trinkmengen bei Blasentumoren möglicherweise von Nachteil

Beim nicht-muskelinvasiven Blasenkrebs scheint eine hohe Flüssigkeitszufuhr keinen schützenden Effekt in Bezug auf das Risiko eines Rezidivs oder einer Krankheitsprogression zu haben. Eine niederländische Studie legt sogar nahe, dass große Trinkmengen das Fortschreiten der Erkrankung begünstigen könnten.

Höhere Trefferquoten bei Brustkrebsscreening dank KI?

Künstliche Intelligenz unterstützt bei der Auswertung von Mammografie-Screenings und senkt somit den Arbeitsaufwand für Radiologen. Wie wirken sich diese Technologien auf die Trefferquote und die Falsch-positiv-Rate aus? Das hat jetzt eine Studie aus Schweden untersucht.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.