Skip to main content
Erschienen in: Digestive Diseases and Sciences 4/2018

09.02.2018 | Original Article

Autophagy Strengthens Intestinal Mucosal Barrier by Attenuating Oxidative Stress in Severe Acute Pancreatitis

verfasst von: Luqiao Huang, Yingjian Jiang, Zhenqing Sun, Zhengyu Gao, Jiang Wang, Dianliang Zhang

Erschienen in: Digestive Diseases and Sciences | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Background

Intestinal mucosal barrier dysfunction can be caused by severe acute pancreatitis (SAP). It is normally associated with changes to mucosal autophagy and oxidative stress.

Objective

The aim of this study was to investigate the correlation between autophagy and oxidative stress on the intestinal mucosal barrier of SAP rat model.

Methods

SAP was induced by retrograde injection of sodium taurocholate (5%) into the biliopancreatic duct. Bacterial translocation (BT) was detected by 16S rDNA sequencing analysis. Morphological alterations in the pancreas and gut were determined by hematoxylin–eosin staining. Oxidative stress status was determined by measuring the level of intestinal malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx). Western blot, RT-PCR, and immunofluorescent staining were preformed to analyze the expression of tight junction and autophagy proteins.

Results

According to the sequencing analysis, rats in SAP group were divided into BT (+) group (n = 9) and BT (−) group (n = 8). Pancreatic and intestinal injuries in SAP group were significantly higher than sham operation group. The content of MDA was clearly elevated, and SOD as well as GPx activities were decreased in BT (+) group as compared with BT (−) group. The expression of LC3II and Beclin1 in BT (−) group was higher than that observed in BT (+). In contrast, BT (+) group had a higher level of claudin-2 and a lower level of zonula occluden-1, occludin, and claudin-1.

Conclusion

These results suggest that activated autophagy may attenuate intestinal mucosal barrier dysfunction by preventing and reducing the oxidative stress in SAP.
Literatur
1.
Zurück zum Zitat Singh VK, Wu BU, Bollen TL, et al. Early systemic inflammatory response syndrome is associated with severe acute pancreatitis. Clin Gastroenterol Hepatol. 2009;7:1247–1251.CrossRefPubMed Singh VK, Wu BU, Bollen TL, et al. Early systemic inflammatory response syndrome is associated with severe acute pancreatitis. Clin Gastroenterol Hepatol. 2009;7:1247–1251.CrossRefPubMed
3.
Zurück zum Zitat Lee J, Mo JH, Katakura K, et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signaling in intestinal epithelial cells. Nat Cell Biol. 2007;8:1327–1336.CrossRef Lee J, Mo JH, Katakura K, et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signaling in intestinal epithelial cells. Nat Cell Biol. 2007;8:1327–1336.CrossRef
4.
Zurück zum Zitat Jiang Y, Lin J, Zhang D, et al. Bacterial translocation contributes to cachexia and its possible pathway in patients with colon cancer. J Clin Gastroenterol. 2014;48:131.CrossRefPubMed Jiang Y, Lin J, Zhang D, et al. Bacterial translocation contributes to cachexia and its possible pathway in patients with colon cancer. J Clin Gastroenterol. 2014;48:131.CrossRefPubMed
5.
Zurück zum Zitat Wang J, Li C, Jiang Y, et al. Effect of ceramide-1-phosphate transfer protein on intestinal bacterial translocation in severe acute pancreatitis. Clin Res Hepatol Gastroenterol. 2016;41:86.CrossRefPubMed Wang J, Li C, Jiang Y, et al. Effect of ceramide-1-phosphate transfer protein on intestinal bacterial translocation in severe acute pancreatitis. Clin Res Hepatol Gastroenterol. 2016;41:86.CrossRefPubMed
6.
Zurück zum Zitat Marchiando AM, Graham WV, Turner JR. Epithelial barriers in homeostasis and disease. Annu Rev Pathol. 2010;5:119.CrossRefPubMed Marchiando AM, Graham WV, Turner JR. Epithelial barriers in homeostasis and disease. Annu Rev Pathol. 2010;5:119.CrossRefPubMed
7.
Zurück zum Zitat Umeda K, Ikenouchi J, Katahira-Tayama S, et al. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell. 2006;126:741–754.CrossRefPubMed Umeda K, Ikenouchi J, Katahira-Tayama S, et al. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell. 2006;126:741–754.CrossRefPubMed
8.
Zurück zum Zitat Jiang Y, Guo C, Zhang D, Zhang J, Wang X, Geng C. The altered tight junctions: an important gateway of bacterial translocation in cachexia patients with advanced gastric cancer. J Interferon Cytokine Res. 2014;34:518.CrossRefPubMedPubMedCentral Jiang Y, Guo C, Zhang D, Zhang J, Wang X, Geng C. The altered tight junctions: an important gateway of bacterial translocation in cachexia patients with advanced gastric cancer. J Interferon Cytokine Res. 2014;34:518.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Huang FC. De Novo sphingolipid synthesis is essential for Salmonella-induced autophagy and human beta-defensin 2 expression in intestinal epithelial cells. Gut Pathog. 2016;8:1–11.CrossRef Huang FC. De Novo sphingolipid synthesis is essential for Salmonella-induced autophagy and human beta-defensin 2 expression in intestinal epithelial cells. Gut Pathog. 2016;8:1–11.CrossRef
11.
Zurück zum Zitat Inoue J, Nishiumi S, Fujishima Y, et al. Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection. Arch Biochem Biophys. 2012;521:95–101.CrossRefPubMed Inoue J, Nishiumi S, Fujishima Y, et al. Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection. Arch Biochem Biophys. 2012;521:95–101.CrossRefPubMed
13.
Zurück zum Zitat Nighot PK, Hu CA, Ma TY. Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation. J Biol Chem. 2015;290:7234.CrossRefPubMedPubMedCentral Nighot PK, Hu CA, Ma TY. Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation. J Biol Chem. 2015;290:7234.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Saito S, Nakashima A. A review of the mechanism for poor placentation in early-onset preeclampsia: the role of autophagy in trophoblast invasion and vascular remodeling. J Reprod Immunol. 2014;101–102:80.CrossRefPubMed Saito S, Nakashima A. A review of the mechanism for poor placentation in early-onset preeclampsia: the role of autophagy in trophoblast invasion and vascular remodeling. J Reprod Immunol. 2014;101–102:80.CrossRefPubMed
15.
Zurück zum Zitat Huang J, Lam GY, Brumell JH. Autophagy signaling through reactive oxygen. species. Antioxid Redox Signal. 2011;14:2215–2231.CrossRefPubMed Huang J, Lam GY, Brumell JH. Autophagy signaling through reactive oxygen. species. Antioxid Redox Signal. 2011;14:2215–2231.CrossRefPubMed
16.
Zurück zum Zitat Wu YT, Tan HL, Huang Q, et al. Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy. 2008;4:457.CrossRefPubMed Wu YT, Tan HL, Huang Q, et al. Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy. 2008;4:457.CrossRefPubMed
18.
Zurück zum Zitat Wen W, Zheng H, Jiang Y, et al. Effect of intestinal epithelial autophagy on bacterial translocation in severe acute pancreatitis. Clin Res Hepatol Gastroenterol. 2017;41:703–710.CrossRefPubMed Wen W, Zheng H, Jiang Y, et al. Effect of intestinal epithelial autophagy on bacterial translocation in severe acute pancreatitis. Clin Res Hepatol Gastroenterol. 2017;41:703–710.CrossRefPubMed
19.
Zurück zum Zitat Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–2739.CrossRefPubMedPubMedCentral Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–2739.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Chiu CJ, Mcardle AH, Brown R, Scott HJ, Gurd FN. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg. 1970;101:478.CrossRefPubMed Chiu CJ, Mcardle AH, Brown R, Scott HJ, Gurd FN. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg. 1970;101:478.CrossRefPubMed
22.
Zurück zum Zitat Ren W, Liu S, Chen S, et al. Dietary l-glutamine supplementation increases Pasteurella multocida burden and the expression of its major virulence factors in mice. Amino Acids. 2013;45:947.CrossRefPubMed Ren W, Liu S, Chen S, et al. Dietary l-glutamine supplementation increases Pasteurella multocida burden and the expression of its major virulence factors in mice. Amino Acids. 2013;45:947.CrossRefPubMed
23.
Zurück zum Zitat Amasheh S, Dullat S, Fromm M, Schulzke JD, Buhr HJ, Kroesen AJ. Inflamed pouch mucosa possesses altered tight junctions indicating recurrence of inflammatory bowel disease. Int J Colorectal Dis. 2009;24:1149–1156.CrossRefPubMed Amasheh S, Dullat S, Fromm M, Schulzke JD, Buhr HJ, Kroesen AJ. Inflamed pouch mucosa possesses altered tight junctions indicating recurrence of inflammatory bowel disease. Int J Colorectal Dis. 2009;24:1149–1156.CrossRefPubMed
24.
Zurück zum Zitat Liang HY, Chen T, Wang T, Huang Z, Yan HT, Tang LJ. Time course of intestinal barrier function injury in a sodium taurocholate-induced severe acute pancreatitis in rat model. J Dig Dis. 2014;15:386–393.CrossRefPubMed Liang HY, Chen T, Wang T, Huang Z, Yan HT, Tang LJ. Time course of intestinal barrier function injury in a sodium taurocholate-induced severe acute pancreatitis in rat model. J Dig Dis. 2014;15:386–393.CrossRefPubMed
25.
Zurück zum Zitat Cacopardo B, Pinzone, Berretta S, et al. Localized and systemic bacterial infections in necrotizing pancreatitis submitted to surgical necrosectomy or percutaneous drainage of necrotic secretions. BMC Surg. 2013;13:1–4.CrossRef Cacopardo B, Pinzone, Berretta S, et al. Localized and systemic bacterial infections in necrotizing pancreatitis submitted to surgical necrosectomy or percutaneous drainage of necrotic secretions. BMC Surg. 2013;13:1–4.CrossRef
26.
Zurück zum Zitat Gosiewski T, Flis A, Sroka A, et al. Comparison of nested, multiplex, qPCR; FISH; SeptiFast and blood culture methods in detection and identification of bacteria and fungi in blood of patients with sepsis. BMC Microbiol. 2014;14:313.CrossRefPubMedPubMedCentral Gosiewski T, Flis A, Sroka A, et al. Comparison of nested, multiplex, qPCR; FISH; SeptiFast and blood culture methods in detection and identification of bacteria and fungi in blood of patients with sepsis. BMC Microbiol. 2014;14:313.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Wu LL, Chiu HD, Peng WH, et al. Epithelial inducible nitric oxide synthase causes bacterial translocation by impairment of enterocytic tight junctions via intracellular signals of Rho-associated kinase and protein kinase C zeta. Crit Care Med. 2011;39:2087–2098.CrossRefPubMed Wu LL, Chiu HD, Peng WH, et al. Epithelial inducible nitric oxide synthase causes bacterial translocation by impairment of enterocytic tight junctions via intracellular signals of Rho-associated kinase and protein kinase C zeta. Crit Care Med. 2011;39:2087–2098.CrossRefPubMed
28.
Zurück zum Zitat Meriläinen S, Mäkelä J, Koivukangas V, et al. Intestinal bacterial translocation and tight junction structure in acute porcine pancreatitis. Hepatogastroenterology. 2012;59:599.PubMed Meriläinen S, Mäkelä J, Koivukangas V, et al. Intestinal bacterial translocation and tight junction structure in acute porcine pancreatitis. Hepatogastroenterology. 2012;59:599.PubMed
29.
Zurück zum Zitat Deng WS, Zhang J, Lu H, et al. Arpin contributes to bacterial translocation and development of severe acute pancreatitis. World J Gastroenterol. 2015;21:4293.CrossRefPubMedPubMedCentral Deng WS, Zhang J, Lu H, et al. Arpin contributes to bacterial translocation and development of severe acute pancreatitis. World J Gastroenterol. 2015;21:4293.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Zhou H, Gao J, Wu W, et al. Octreotide ameliorates intestinal dysmotility by interstitial cells of Cajal protection in a rat acute necrotizing pancreatitis model. Pancreas. 2011;40:1226.CrossRefPubMed Zhou H, Gao J, Wu W, et al. Octreotide ameliorates intestinal dysmotility by interstitial cells of Cajal protection in a rat acute necrotizing pancreatitis model. Pancreas. 2011;40:1226.CrossRefPubMed
31.
Zurück zum Zitat Baumgart DC, Dignass AU. Intestinal barrier function. Curr Opin Clin Nutr Metab Care. 2002;5:685.CrossRefPubMed Baumgart DC, Dignass AU. Intestinal barrier function. Curr Opin Clin Nutr Metab Care. 2002;5:685.CrossRefPubMed
32.
Zurück zum Zitat Kurihara Y, Kanki T, Aoki Y, et al. Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J Biol Chem. 2012;287:3265–3272.CrossRefPubMed Kurihara Y, Kanki T, Aoki Y, et al. Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J Biol Chem. 2012;287:3265–3272.CrossRefPubMed
33.
Zurück zum Zitat Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol. 2014;171:1917–1942.CrossRefPubMedPubMedCentral Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol. 2014;171:1917–1942.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Tang Y, Li J, Li F, et al. Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway. Free Radic Biol Med. 2015;89:944.CrossRefPubMed Tang Y, Li J, Li F, et al. Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway. Free Radic Biol Med. 2015;89:944.CrossRefPubMed
35.
Zurück zum Zitat Zhu H, Foretz M, Xie Z, et al. PRKAA1/AMPKα1 is required for autophagy-dependent mitochondrial clearance during erythrocyte maturation. Autophagy. 2014;10:1522–1534.CrossRefPubMedPubMedCentral Zhu H, Foretz M, Xie Z, et al. PRKAA1/AMPKα1 is required for autophagy-dependent mitochondrial clearance during erythrocyte maturation. Autophagy. 2014;10:1522–1534.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Zhang H, Kong X, Kang J, et al. Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells. Toxicol Sci. 2009;110:376.CrossRefPubMed Zhang H, Kong X, Kang J, et al. Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells. Toxicol Sci. 2009;110:376.CrossRefPubMed
Metadaten
Titel
Autophagy Strengthens Intestinal Mucosal Barrier by Attenuating Oxidative Stress in Severe Acute Pancreatitis
verfasst von
Luqiao Huang
Yingjian Jiang
Zhenqing Sun
Zhengyu Gao
Jiang Wang
Dianliang Zhang
Publikationsdatum
09.02.2018
Verlag
Springer US
Erschienen in
Digestive Diseases and Sciences / Ausgabe 4/2018
Print ISSN: 0163-2116
Elektronische ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-018-4962-2

Weitere Artikel der Ausgabe 4/2018

Digestive Diseases and Sciences 4/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.