Skip to main content
Erschienen in: Langenbeck's Archives of Surgery 4/2012

Open Access 01.04.2012 | Review Article

Bacterial immunotherapy of gastrointestinal tumors

verfasst von: Michael Linnebacher, Claudia Maletzki, Ulrike Klier, Ernst Klar

Erschienen in: Langenbeck's Archives of Surgery | Ausgabe 4/2012

Abstract

Background

Cancer immunotherapy using bacteria dates back over 150 years. The deeper understanding on how the immune system interferes with the tumor microenvironment has led to the re-emergence of bacteria or their related products in immunotherapeutic concepts. In this review, we discuss recent approaches on experimental bacteriolytic therapy, emphasizing the specific interplay between bacteria, immune cells and tumor cells to break the tumor-induced tolerance.

Results

Experimental research during the last decades demonstrated beneficial but also adverse influence of bacteria on tumor growth. There is a strong correlation between chronic infections and tumor incidence. However, acute bacterial infections have favourable effects on tumor growth often contributing to complete remission. Tumor regression is usually attributable to both direct tumor cell killing (via apoptosis and/or necrosis, depending on the applied bacteria) and indirect immune stimulation. This includes (I) elimination of immunosuppressive immune cells (i.e. tumor-associated macrophages, myeloid-derived suppressor, and regulatory T cells), (II) suppression of Th2-directed cytokine secretion (TGFα, IL10), (III) providing a pro-inflammatory micro-milieu (tumor infiltrating neutrophils) and (IV) supporting the influx of cytotoxic T cells into tumors. This finally forces the development of an immunological memory and may provide long-term protection against cancer.

Conclusion

Immunotherapy using bacteria is still a double-edged sword. Experiences from the last years have substantially contributed to when bacteria and defined components thereof might be integrated into immunotherapeutic concepts. Attempts in transferring this approach into the clinics are on their way.
Hinweise
This review is dedicated to Prof. Dr. med. J. Emmrich, an active promoter of the bacterial therapy concept at our university hospital.
Michael Linnebacher and Claudia Maletzki contributed equally.
Abkürzungen
BCG
Bacillus Calmette-Guérin
BG
Bacterial ghost
CCL
Chemokine (C-C motif) ligand
COBALT
Combination bacteriolytic therapy
CTL
Cytotoxic T lymphocytes
CXCL
Chemokine (C-X-C motif) ligand
DC
Dendritic cells
EGFR
Epidermal growth factor receptor
G-CSF
Granulocyte colony stimulating factor
IFN
Interferon
IGF
Insulin growth factor
IL
Interleukin
mAb
monoclonal antibody
MDSC
Myeloid-derived suppressor cells
NK cells
Natural killer cells
PAMP
Pathogen-associated molecular patterns
TAM
Tumor-associated macrophages
TGF
Transforming growth factor
Th
T-Helper
TLR
Toll-like receptors
TNF
Tumor necrosis factor
VEGF
Vascular endothelial growth factor

Introduction

The interaction of mammals and especially of humans with bacteria is among the most interesting investigative fields. Acute bacterial infection is still one of the most feared killers with an estimated death toll of 75,000 per year in Germany. In the last decades it has been clearly established that chronic infections with bacteria may additionally contribute to this negative picture. Helicobacter pylori-associated gastric cancer is the most prominent example. Contrary to that, commensal microbia living on human body’s surfaces help us in various ways by ensuring immunity against pathogenic microorganisms. Indeed, the number of bacteria colonizing mucosal and skin surfaces exceeds the number of cells forming the human body by far. The symbiotic host–commensal microflora interactions maintain homeostasis by (i) protecting against harmful microbiotic pathogens (viruses, bacteria, fungi), (ii) providing a barrier against invading infectious or immunogenic components present on the mucosa into the circulation and (iii) exerting tolerance against harmless antigens present on the mucosal surface [1, 2]. The growing attention to the role of the intestinal microflora in human health has stimulated efforts to optimize its composition by probiotics. These orally applied live microbial cultures (e.g. Lactobacilli, Bifidobacteria, Escherichia coli Nissle) positively influence the microflora, inhibit pathogenic colonization, affect the mucosal barrier and stimulate the immune system [1].
Not so obvious, bacteria and especially bacteria-derived products are also directly involved in protecting human beings from various diseases since they are widely used for vaccination purposes.
From an evolutionary point of view, it is completely logical that the presence of bacteria stimulates an inflammatory response that finally helps to initiate memory immune responses. The mammalian innate immune system is armed by sensors able to recognize a plethora of biomolecules produced exclusively by microbes. Potentially the most important class of these molecular sensors are the so-called toll-like receptors (TLRs). They recognize pathogen-associated molecular pattern (PAMP) including bacterial DNA, viral RNA, lipoteichoic acid and lipopolysaccharides. Upon stimulation, an intracellular signaling cascade is initiated—involving inflammatory cytokines and activation of the innate immune system—that mediates cross-activation of the adaptive immune system thus helping to establish antigen-specific immune responses which have long-lasting character.
This strong potential of PAMP substances to unspecifically activate the immune system has been transferred to experimental cancer immunotherapy. Today, it is well known that bacteria as well as bacterial components, such as lipoteichoic acid, bacterial DNA and exotoxins/endotoxins mediate antitumor activities not only by the earlier characterized indirect activation of the immune system but additionally by direct tumoricidal effects [35]. However, there is growing experimental evidence that PAMPs may have the opposite effect, i.e. stimulating tumor growth under conditions of chronic inflammation [6].
In this review, we highlight recent approaches on using bacteria as anticancer agents and discuss its potential clinical applicability. In particular, we will focus our attention on the controversial role of bacteria and inflammation by having the potential of eliminating even solid tumor masses on the one hand while driving carcinogenesis on the other.

The historical idea of using bacteria for cancer immunotherapy

Immunotherapy is based on the idea that the patient’s immune system can be stimulated or enhanced to attack malignant tumors. Long before detailed knowledge on how the immune system acts on tumors and is thus potentially involved in inflammation-mediated tumor shrinkage, some reports suggested that having an infection might cause tumor regression [7]. This observation dates back 150 years when German physicians W. Busch and F. Fehleisen separately noticed tumor regression in cancer patients after accidental erysipelas infection [8, 9]. Hence, Busch was the first who intentionally inoculated a cancer patient with erysipelas. Some years later, Fehleisen identified Streptococcus pyogenes as the causative agent of erysipelas [9].
At the same time, the New York surgeon William B. Coley observed that malignant tumors, particularly sarcomas, regressed in patients suffering from concurrent bacterial infection whilst hospitalization [10]. He then started to systematically treat bone and soft tissue sarcoma patients with infectious erysipelas and in fact repetitively reported infection-associated tumor regression. Patients usually experienced infectious disease processes, including high fever, chills and malaise [11]. In his first experiments, Coley focused on treatment with live streptococci. However, due to lethal systemic Streptococcus infection, he subsequently used heat-killed streptococcal organisms combined with heat-killed Serratia marcescens (formerly known as Bacillus prodigiosus). This bacterial vaccine became known as “Coley’s toxin”. Coley injected more than 1000 cancer patients with bacteria or bacterial products. He hypothesized that an immune reaction against a “toxin” present in the microbial material cross-reacted with and destroyed the tumor cells [12]. Coley reported a high success rate in treating patients with sarcomas and other malignancies, including carcinomas (e.g. breast and renal cancer), lymphomas and melanomas. Thus, the inoculation of this vaccine became the cornerstone in development of cancer immunotherapy.
During the 1920s it was insisted that the excellent responses reported by Coley were often because the patients had the wrong diagnoses. By 1952, the Coley’s toxin was no longer produced, and in 1962 the Food and Drug Administration refused to acknowledge Coley’s toxin as a proven drug [7]. In the 1960s and 1970s, commercial preparations of Coley’s toxin were tested on small patient cohorts. However, results obtained by Coley could not be reproduced, and with the emergence of modern chemotherapy and radiotherapy, his work gradually fell out of favor.

Recent approaches on bacterial immunotherapy

Experimental studies

Coley’s historical idea on inducing a strong inflammatory response that leads to tumor reduction provided the basis for developing different forms of immunotherapy. The ideal anti-cancer therapy should selectively eradicate tumor cells, whilst minimizing side effects to normal tissue. Today, it is known that both direct tumoricidal effects and immune activation force antitumor activities. During the immune response, Toll-like receptors (TLRs) sense a diversity of PAMPs to organize the body’s immune defense. This includes (i) stimulation of pro-inflammatory immune cells capable of lysing (infected) target cells in an antigen-independent manner (neutrophils, macrophages) and (ii) inhibition of the tumor-induced immune suppression (tumor-associated macrophages, myeloid-derived suppressor cells and regulatory T cells) that ideally (iii) leads to the development of potent cellular immune responses—often dominated by activated cytotoxic T cells—finally mediating long-term protection against cancer.
Over the past 50 years, several strains of facultative and obligate anaerobic bacteria were applied as oncolytic agents due to their capacity to selectively proliferate in oxygen-starved environments [1317]. Based on the observation that necrotic regions exist only within tumors and not in normal tissues, the group of Vogelstein demonstrated that lethal toxin-free Clostridium novyi NT spores are very efficient in eradicating established tumors [14, 18]. They showed that anaerobic bacteria specifically and preferentially target solid tumors, leading to an inflammatory reaction within the tumor that is followed by tumor regression in about 30% of cases [19, 20]. In a preclinical regimen, anaerobic C. novyi NT spores were combined with conventional drugs or radiotherapy. This strategy, referred to as combination bacteriolytic therapy (COBALT), was shown to mediate dramatic and prolonged regression of subcutaneous tumors following a single systemic administration [14]. Similarly, bacteria were found to improve the efficacy of radiotherapy in several mouse models [21]. The authors explained their findings with the fact that efficient tumor cell killing by radiation requires oxygen. Hypoxic cells are more resistant to ionizing radiation than normoxic cells, and hence hypoxic zones in poorly vascularized or necrotic tumors are a major handicap in cancer therapy [22, 23]. By using anaerobic bacteria, these hypoxic regions can be targeted and destroyed, making tumors vulnerable to radiotherapy.
Of particular importance, bacteriolytic therapy was reported to induce immunological memory. C. noyvi infection is associated with inflammation (secretion of neutrophil-directed cytokines) at the tumor periphery leading to development of an effective cellular antitumoral immune response (monocytes and lymphocytes) [14, 17, 18]. Lymphocyte transfer from cured animals into naïve tumor-bearing mice revealed that CD8+ cytotoxic T cells are the main cell type involved in this process [20]. However, in a subsequent study performed by our group, using the very same treatment protocol, similar results could not be observed [24]. The bacterial treatment predominantly activated the innate immune system’s arm. NK cells, but not (tumor) antigen-specific T cells, have been activated by bacteriolytic therapy.
Beyond that, at least in our hands, applicability of this approach was imperfect due to troubles in standardization. Regarding toxicity, tumor size and spore dose, we observed that (I) small tumors (< 150 mm3) were completely unaffected; (II) very large tumors (> 450 mm3) responded with substantial necrosis followed by shrinkage but significant animal mortality and (III) an optimal treatment window exists for tumors of approximately 250–300 mm3 [24]. The comparably high mortality rate in large-tumor bearing mice was most likely attributable to the so-called “tumor lysis syndrome” [25]. Similar experiences have already been described by Diaz and colleagues in a large study on evaluating pharmacology and toxicity of C. novyi NT spores [20]. Nevertheless, a clinical trial has been initiated in 2006, but it was terminated due to design problems. Attempts in re-emergence of clostridia-based therapies in the clinical setting are on their way. In August 2011, the BioMed Valley Discoveries Inc. started a pilot study to investigate the safety of C. novyi NT spore administration in patients with treatment-refractory solid tumor malignancies. The primary aim of this study is determination of the optimal time point to initiate antibiotic treatment in these patients. Results of this study will finally help to estimate whether C. novyi NT-based immunotherapies are clinically safe and feasible (Table 1).
Table 1
Ongoing clinical trials on bacteriolytic cancer immunotherapy
Treatment regimen
Tumor entity
Specifications
Phase
C. novyi NT spores
Treatment-refractory solid tumor malignancies
None
I
Mixed bacterial vaccine (MBV)
Melanoma, sarcoma, gastrointestinal stromal tumor, head and neck cancer, transitional cell carcinoma, prostate cancer
NY-ESO-1 expression
I
Pseudomonas exotoxin A (immunotoxin MOC31-PE)
Tumor type not specific
Conjugated to anti-Ep-CAM/epithelial glycorprotein 2
I
Urocidin (EN3348; mycobacterial cell wall–DNA complex)
Recurrent or refractory non-muscle invasive bladder cancer
BCG-pretreatment
III
CpG ODN
Glioma
None
II
Data are taken from www.​clinicaltrials.​gov
Besides C. novyi, genetically modified strains of Salmonella typhimurium have gained interest as potential anticancer agent, either alone or in combination with radiotherapy and chemotherapy [26]. Zhao and coworkers designed a tumor-targeting strain auxotrophic for the amino acids arginine and leucine, termed A1 [3]. In contrast to strictly anaerobic bacteria, S. typhimurium growth is not confined to necrosis and can be found throughout the tumor, including viable regions [27]. There, bacteria invade and replicate intracellular in cancer cells. But growth is not sustained in normal tissue, indicating its potential applicability against small tumors or maybe even micrometastases. If finally necessary, tumor-colonizing salmonella can be readily controlled by early post-infection systemic administration of the antibiotic ciprofloxacin. Tumor lytic effects and accompanying specific antitumor immune response development is preserved [28]. Thus, S. typhimurium-mediated tumor therapy might be applied safely when combined with early antibiotic treatment. To increase the tumor targeting ability and killing efficacy, the A1 strain was further modified by re-isolation from a tumor growing in a nude mouse and termed A1-R [27]. Of note, this strain was able to eradicate metastatic lesions in orthotopic models of breast, prostate and pancreatic cancer, both after local as well as systemic administration [2730].
These observations have contributed to the initiation of a clinical phase I trial [31]. Twenty-five cancer patients received bolus infusions of a lipid A-attenuated S. typhimurium (VNP20009). This strain was safely administered to the patients. Focal tumor colonization was observed in some patients receiving high bacterial numbers. None of the patients experienced objective tumor regression, including those with colonized tumors [31]. This is a striking contrast to the results obtained with rodent models. A conceivable explanation is that differences with respect to tumor vasculature, bacterial entry into and growth within tumors, as well as clearance of bacteria exist between rodents and patients. Further studies are required to finally judge if this regimen may still be successful in the clinics.
Irrespective of the presence or absence of intratumoral necrotic lesions, our group showed in a series of experiments that viable as well as lysed and avitalized gram-positive facultative anaerobic bacteria have a direct impact on tumor growth in immunocompetent and in immunocompromised hosts. In an initial work, we explored the antitumoral potential of a bacteriolytic therapy based on S. pyogenes (4). This strain was chosen as a bacterial model because (i) it exerts direct cytolytic effects on eukaryotic cells by secreting several cytotoxic enzymes and pore-forming toxins, (ii) it effectively induces the secretion of proinflammatory cytokines (TNFα, IFNγ) and chemokines (G-CSF), (iii) it mediates high influx of inflammatory cells (e.g., neutrophils, macrophages and NK cells) into the focus of infection and (iv) it initiates the generation of an adaptive, cell-mediated immune response [32, 33] (Fig. 1).
S. pyogenes binds target cells via fibronectin or collagen. Bound fibronectin acts as a bridging molecule towards host cell integrins, which in turn initialize the uptake process that leads to internalization (Fig. 2) [34]. Direct tumor cell contact is thus necessary for S. pyogenes infection. This finally leads to the induction of tumor cell apoptosis. Accordingly, in vivo bacteriolytic therapy in tumor-bearing mice was performed by local injection. A single application of viable bacteria resulted in complete pancreatic carcinoma regression that was accompanied by massive immune activation secondary to infection. As a consequence, immunological memories, as determined by in vitro functional tests and in vivo rechallenge experiments, developed [4]. However, as for potential clinical application, inactivation prior to administration seemed necessary. The streptococcal lysate used in a subsequent study was also shown to mediate substantial growth arrest when injected intratumorally. Again, this antitumoral effect could be attributed to a massive stimulation of immune response mechanisms including a strong systemic elevation of granulocyte numbers and an increase in tumor infiltrating cytotoxic T cells [35]. Taking into consideration that the streptococcal lysate had striking antitumoral activity even when administered alone, it might thus be useful as immunotherapeutic adjuvant in combination with conventional chemotherapy.
Having in mind that the innate immunity is considered to be the sentinel of the first line defense that contributes to the containment and elimination of microbes, we next focused on stimulation of the unspecific immune system, i.e. macrophages, granulocytes, dendritic cells (DC) and NK cells. NK cells in particular can promote tumor regression either directly through the anti-tumor activity of type I interferons or through cell-mediated tumor cell killing. In our study on using avitalized staphylococci, effective tumor growth delay was found to be accompanied by increased numbers of tumor-infiltrating immune cells (NK cells and DC) [36]. The importance of the innate immune system on tumor control could further be corroborated in T cell deficient mice using human colorectal carcinoma (CRC) xenografts. However, despite the observed significant tumor growth control, S. aureus did not provoke complete cure, independent from the treatment regimen [36]. When comparing these findings with previous results using live and lysed bacteria, the adjuvant stimulus of avitalized bacteria was probably strong enough to break the tumor-induced tolerance; however, it is not strong enough to induce long-term immunological responses.
To improve this regimen with respect to specific tumor targeting, we performed experiments using conjugates of bacteria and therapeutic monoclonal antibodies (mAb) for experimental immunotherapy (manuscript in preparation). This strategy is based on the idea that clinically successful therapeutic mAb may have an additional or synergistic impact on tumor growth. In first line treatment, therapeutic mAbs like cetuximab and panitumumab specifically targeting epidermal growth factor receptors (EGFR) are applied in combination with chemotherapies [3739]. MAb can have effects on tumor cells by (i) disturbing receptor-mediated signaling, (ii) complement-mediated tumor cell lysis and (iii) cell-mediated tumor cell attack. This may finally lead to a boosted overall immune response. By using immunocompromised mice, we performed clinically relevant systemic injections based on the hypothesis that bacteria coupled to tumor-specific mAb shall permit effective tumor cell targeting in vivo thus concentrating the lytic effects of bacteria on the tumor. Beyond that, potential allergic reactions might be minimized. Although we could not experimentally prove tumor-targeting by bacteria–mAb conjugates, i.e. neither bacteria nor mAbs were detectable in tumors, we observed a substantial delay in tumor growth. This result correlated well with immunological parameters. We found massively increased numbers of circulating monocytes, DCs and NK cells. This provides a basis to refine the concept on bacteria-based combination therapies in the future.
Taken together, these studies contribute to the deeper understanding of how bacteria or their related products act on tumor and immune cells. Hence, bacteriolytic immunotherapy is still a promising alternative strategy for cancer treatment, either alone or in combination with cytostatic drug or antibody therapy. Future investigations will show if these experiments stand clinical trials.

Current clinical approaches using bacteria or bacterial preparations

Up to now, Bacillus Calmette–Guérin (BCG) is still the most successful bacterial agent used for superficial bladder cancer treatment [40]. BCG was introduced by Morales in 1976, based on the original development in 1921 as an attenuated strain of Mycobacterium bovis for tuberculosis vaccination. BCG as a live bacterium can exert local (irritative voiding symptoms) as well as systemic (fever, chill, malaise) effects. A functioning immune system is required to prevent excessive reaction, and consequently immunosuppressed patients are not considered for bacterial therapy. Patient’s treatment is conducted on weekly intravesical injections for 6 consecutive weeks. In some cases adjuvant cytokines (IFN) may be added.
An inflammatory and immunological reaction, i.e. leukocytosis, granulomas and urinary cytokines (IL2, IL6, IL8, IL10, IFNγ, TNFα), was found to be positively correlated with patients outcome. The mechanism of action is not yet fully understood. There is, however, some degree of tumor-specific killing by BCG, which is exclusively seen when live bacteria are used—heat-killed bacteria have no effect. This is due to the behavior of M. bovis as an obligate intracellular pathogen. Hence, the mechanism of infection can here be used for tumor therapy: BCG is taken up in a fibronectin-dependent manner. The infected cell responds with an inflammatory cascade (cytokine and chemokine secretion) followed by cell lysis (in a TNF-related apoptosis inducing ligand-specific manner), the initiation of an unspecific neutrophils-directed reaction and the induction of a significant Th1 response. This lastly provides long-term adaptive immunity.
The cell wall skeleton of M. bovis is supposed to be the major immune stimulating component. BCG–cell wall skeleton induces IFNγ secretion and stimulates skin Langerhans cells to convert to DCs [41, 42]. Thus, it may act as an ideal adjuvant for immunotherapy. By taking advantage of the favorable immune effects, Mycobacterium tuberculosis strain H37Ra, a heat-killed and dried bacterial preparation, has been widely applied as part of the complete Freund’s adjuvant to attract macrophages and neutrophils to the injection site. Complete Freund’s adjuvant is typically used for initial injections and incomplete Freund’s adjuvant (without H37Ra) for subsequent boosts [43, 44]. Of note, many new candidate immunoadjuvants are tested in clinical trials in order to treat several tumor entities. An overview of actual recruiting trials is given in Table 2.
Table 2
Ongoing clinical studies using bacterial-based immunologic adjuvants for cancer therapy with or without defined antigens
Adjuvant
Tumor entity
Antigen
Phase
TLR3 agonist Poly-I:C (+/− Montanide and GM-CSF)
Colorectal carcinoma
NY-ESO-1
I/II
Peptide (URLC10-177 and TTK-567) vaccine (+TLR9 agonist CpG ODN, +/− Montanide)
Esophageal cancer
None specified
I/II
Mifamurtide (L-MTP-PE, a synthetic bacterial cell wall component) (+/− chemotherapy)
High grade osteosarcoma
None specified
I
TLR9 agonist PF-3512676 (+ radiation)
Low grade B-cell lymphoma
None specified
II
TLR3 agonist Poly-I:C (+/− Montanide and GM-CSF)
Melanoma
NY-ESO-1
I/II
TLR7/8 agonist resiquimod + peptide vaccine (gp100)
Melanoma
gp100 and MAGE-3
II
TLR9 agonist CpG ODN + autologous tumor cell vaccine (+ chemotherapy, if necessary)
Metastatic colorectal carcinoma
None specified
I
TLR7 agonist imiquimod (+ laser therapy)
Metastatic stage III or stage IV melanoma
None specified
I
TLR9 agonist CpG ODN (+/− Montanide and GM-CSF)
Pretreated stage II or stage III breast cancer
Her2/neu/MUC1
I
TLR9 agonist EMD 1201081 + cetuximab
Recurrent or metastatic head and neck squamous cell carcinoma
None specified
II
TLR7/8 agonist resiquimod + peptide vaccine
Stage II, stage III, or stage IV melanoma after surgery
NY-ESO-1
I
CpG ODN + (multiple) peptides (+/− Montanide)
Stage III/IV melanoma patients
Melan-A, Mage-10 and NY-ESO
I
TLR3 agonist Poly I:C + peptide vaccine
Stage IV melanoma
MAGE-A3
II
OK-432 (Picibanil) + mixed vaccine
Esophageal, lung, stomach, breast and ovarian cancer
HER2/neu and/or NY-ESO-1
I
TLR8 agonist VTX-2337 + cetuximab
Locally advanced, recurrent or metastatic squamous cell cancer of the head and neck
None specified
I
Data are collected from clinical trials listed in www.​cancer.​gov/​clinicaltrials

Bacteria as vectors for gene therapy

Besides their capacity to directly act on tumor cells, bacteria are widely applied as delivery systems for tumor-associated antigens in tumor immunotherapy [45]. Bacteria serve as vectors or vehicles for (i) producing the protein of interest, (ii) delivering cytostatic drugs or prodrug converting enzymes and (iii) expressing cytotoxic peptides or therapeutic proteins. Unlike viral gene delivery systems, bacteria have a large capacity for genetic material insertion without affecting the production of infectious offspring. Even multiple different plasmids encoding for distinct antigens and immune enhancing elements can be introduced [46, 47]. S. typhimurium as a facultative intracellular pathogen is one of the most attractive vehicles that guide the way for bacterial oncolytic therapy. Salmonellae can be taken orally, cross the lumen of the gut via M cells of Peyer’s Patches and are taken up by local macrophages and DCs [48]. An innate immune response can be generated to promote the development of adaptive immune responses against the carried tumor-specific antigens. Similarly, Listeria, Clostridium, Shigella and E. coli can be used as excellent vehicles for the production and targeted delivery of therapeutic molecules into cancer cells [49]. A comprehensive overview on how bacteria are currently used as gene delivery vectors, the mechanisms of action and successes at preclinical and clinical levels is reviewed by Baban et al. 2010 [5].
Additionally, bacterial ghosts (BGs) are under experimental investigation for advanced drug delivery systems of toxic substances in tumor therapy. BGs are empty bacterial envelopes of Gram-negative bacteria, devoid of the cytoplasmic content. They possess all bacterial bio-adhesive surface properties in their original state while not posing any infectious threat. The inner space of BGs can be loaded with either single components or peptide combinations, drugs or DNA which provides an opportunity to design new types of (polyvalent) drug delivery vehicles [50].
In summary, oncolytic bacterial therapies have been examined in combination with clinically applicable treatments such as radiotherapy and chemotherapy [45, 46]. Many of the nascent bacterial delivery platforms described have entered human clinical trials.

An inflammatory milieu—protumoral or antitumoral effects?

Bacteria, either used as direct anticancer agent or as a vehicle for cytotoxic drugs, mediate strong pro-inflammatory reactions that have beneficial effects for tumor therapy. On the contrary, there is strong evidence that chronic viral or bacterial inflammation initiates or triggers tumorigenesis [51, 52]. Epidemiological studies showed that a number of chronic infections predispose to various tumor types. In this regard, infection by H. pylori is associated with gastric cancer and mucosal lymphoma, while viral infections are related to cervical and liver cancer [5358]. Vaccination against such viruses has proven efficient in preventing cancer development [59, 60].
The underlying mechanism on how bacteria and viruses may instigate malignant transformation is in part attributable to the expression of several toll-like receptor (TLR) agonists, a broad variety of structurally conserved molecules derived from microbes (an overview is given in Fig. 3). On the one hand, TLR stimulation mediates tumor cell apoptosis and accelerates innate immune activation that is often followed by cellular Th1-directed immune responses [6164]. On the other hand, TLR stimulation exerts protumoral effects by favoring (i) tumor initiation, development and invasion, (ii) resistance to chemotherapy and (iii) immune tolerance [6, 6567]. Indeed, some types of tumor cells exhibit increased proliferation rates upon TLR stimulation [own unpublished data]. These findings fit well with a recent study performed by Cherfils-Vicini and colleagues, showing that TLR7 or TLR8 stimulation of primary lung tumor cells activates NF-kappaB, upregulates Bcl-2 expression, and increases tumor cell survival and chemoresistance [68].
Besides microbial-induced tumorigenesis, non-pathogenic triggers of chronic inflammation, including autoimmune diseases (e.g. inflammatory bowel disease), enhance the risk for malignant transformation (Fig. 4). Accordingly, non-steroidal anti-inflammatory treatments are supposed to decrease tumor incidence [69]. However, a very recent publication describes controversial effect on long-term “chemoprevention” against cancers. The authors showed in a series of large-scale nested case–control studies that long-term use of selective cyclooxygenase 2 inhibitors was associated with a reduced risk of colorectal cancer (CRC), while the risk for breast cancer and haematological malignancies (particularly lymphomas) was increased [70]. These observations underscore the bivalent role of inflammation on cancer, favoring tumor regression in the acute phase while increasing the risk after chronic manifestation.
Two pathways describe the relationship between inflammation and cancer: an intrinsic pathway, driven by genetic alterations that cause inflammation and neoplasia (such as oncogenes), and an extrinsic pathway, driven by inflammatory leukocytes in the context of chronic infectious or persistent inflammatory conditions that augment cancer risk [71]. The latter one is attributable to microbial-induced tumorigenesis. This facilitates a “vicious circle” characterized by (i) local cytokine production (e.g. TNFα, which has controversial roles in cancer, serving as a tumor-promoting or tumor-destructive factor), (ii) chemokine production (CCL7, CCL20, CCL25, CXCL1 and CCL26), (iii) secretion of growth factors (EGF, IGF, TGFα, VEGF), (iv) suppressing adaptive immunity and T cell function and (v) secreting matrix-degrading enzymes (matrix-metalloproteinases, e.g. MMP2 and 9). In solid tumors, immune cells are localized both at the periphery and in the tumor stroma, occasionally invading cancer cell nests. Tumor-associated macrophages (TAM) and T lymphocytes are the most abundant immune population in the tumor-microenvironment, although some eosinophils, mast cells, NK cells and rare DC can be found [72].
Most of the infiltrating leukocyte subsets are effective suppressors of antitumoral Th1-directed immune responses. TAM (also M2 or ‘alternatively’ activated macrophages, phenotype: IL-12low/IL-10high) inhibit T-cell activation via secretion of different suppressive mediators, such as IL4, IL13, IL10, TGFβ and indoleamine 2.3-dioxygenase (IDO) [73, 74], as well as MHC class II down regulation. The currently accepted concept implies the M2-polarized myeloid cells promote tumor angiogenesis and invasion [75]. In many but not all human tumors, a high frequency of infiltrating TAM is associated with poor prognosis. But macrophages may act as a double-edged sword in cancer, since these cells can be re-educated to exert antitumor activity [76, 77]. It was demonstrated that IL12 injection induced a pro-immunogenic potential of TAM while reducing tumor-supportive activities [78].
In the context of an inflammatory response, myeloid cells are the primary recruited effectors. In tumors, these cells are represented by myeloid-derived suppressor cells (MDSCs). Murine MDSCs are referred to as CD11b+Gr1+, which are the predominant population of tumor-associated myeloid cells. Similar to TAMs, increased numbers appear in the blood during tumor growth in mice (Fig. 5), with some being recruited to the tumor site to promote angiogenesis [73, 79]. Of note, myeloid cells infiltrating tumors may induce tumor cell resistance to CTLs by modifying the peptide–MHC complexes on tumor cells via reactive oxygen species [79]. These modifications reduce the capacity of the tumor cells’ MHC to bind antigenic peptides and subsequent recognition by CTLs. This provides a novel concept regarding tumor escape associated with inflammation and might have consequences for therapeutic approaches focusing on pharmacological reactive oxygen species inhibition [79].
Finally, regulatory T cells (phenotype: CD4+CD25+FOXP3+CD127low) which have been identified long time ago contribute to the general tumor-specific T cell tolerance. Tregs are activated in an antigen-specific manner but are believed to suppress T cells in an antigen-non-specific manner [71]. While Treg accumulation at high density in tumors is generally related to a poor outcome, in patients suffering from CRC, high Treg infiltration is associated with a favorable clinical prognosis [80]. To explain this irony, the dense microbiological flora present in the gut requires a T-cell-mediated inflammatory anti-microbial response that, among others, involves Th17 cells [81]. This Th17-cell-dependent proinflammatory and tumor-enhancing response can be attenuated by Tregs, thus reconstituting the balance between pro-inflammatory and anti-inflammatory effects in the gut that may contribute to the favorable role in CRC prognosis. The link between a high density of FOXP3-positive Tregs in CRC may lead to a paradigm shift and thus help to decide when immunotherapy based on the integration of bacteria or microbial structures is feasible and safe.

Summary and outlook

Bacterial-induced inflammation is a double-edged sword. In an acute phase, bacteria massively activate the immune system initiating an unspecific, often neutrophil-directed reaction that is followed by a Th1 or cytotoxic T cell directed cellular response. This lastly provides long-term protective immunity. However, when starting to be chronic, inflammation triggers tumorigenesis by suppressing adaptive immunity and T cell function. An immune status characterized by tolerance towards self but altered cells arises that finally drives tumor progression. Experiences from the last years helped to get deeper insight into the mechanisms, and hence attempts in dealing with the fine line between protumoral and antitumoral effects to finally re-establish homeostasis are on their way. However, questions remain for which tumor type bacterial-based therapy will be applicable, since differences exist between tumor entities with a tendency towards better responses in tumors that arise in a sterile microenvironment compared to those coming from a non-sterile, bacterial-experienced background (i.e. the gut).
Bacteria and their components, i.e. mainly defined TLR-ligands (PAMPs) can be safely applied in humans with limited adverse side effects and are thus established in the clinic as immunostimulatory adjuvants. Combination therapies are also being investigated for potential future applications.
Finally, several findings argue in favor of bacteria for immunotherapy compared to viruses. These include (i) safety of application; even when using live bacteria, secure control can be guaranteed due to their antibiotic sensitivity; (ii) several bacterial ligands (PAMPs) are known to directly act on immune and tumor cells; (iii) fewer problems in terms of practicability of usage, production and prize; and (iv) fewer size restrictions when generating transgenics expressing tumor target genes, therapeutic proteins or prodrug converting enzymes. Bacterial ghosts may even be used to delivering anticancer agents or cytotoxic peptides, directly.
These findings provide a ready basis for further priming the concept of bacterial cancer immunotherapy for the clinical setting.

Conflicts of interest

None.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://​creativecommons.​org/​licenses/​by-nc/​2.​0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Tlaskalová-Hogenová H, Tucková L, Lodinová-Zádniková R et al (2002) Mucosal immunity: its role in defense and allergy. Int Arch Allergy Immunol 128:77–89PubMedCrossRef Tlaskalová-Hogenová H, Tucková L, Lodinová-Zádniková R et al (2002) Mucosal immunity: its role in defense and allergy. Int Arch Allergy Immunol 128:77–89PubMedCrossRef
2.
Zurück zum Zitat Kosiewicz MM, Zirnheld AL, Alard P (2011) Gut microbiota, immunity, and disease: a complex relationship. Front Microbiol 2:180PubMed Kosiewicz MM, Zirnheld AL, Alard P (2011) Gut microbiota, immunity, and disease: a complex relationship. Front Microbiol 2:180PubMed
3.
Zurück zum Zitat Zhao M, Yang M, Ma H, Li X, Tan X, Li S, Yang Z, Hoffman RM (2006) Targeted therapy with a Salmonella typhimurium leucine–arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 66:7647–7652PubMedCrossRef Zhao M, Yang M, Ma H, Li X, Tan X, Li S, Yang Z, Hoffman RM (2006) Targeted therapy with a Salmonella typhimurium leucine–arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 66:7647–7652PubMedCrossRef
4.
Zurück zum Zitat Maletzki C, Linnebacher M, Kreikemeyer B, Emmrich J (2008) Pancreatic cancer regression by intratumoural injection of live Streptococcus pyogenes in a syngeneic mouse model. Gut 57:483–491PubMedCrossRef Maletzki C, Linnebacher M, Kreikemeyer B, Emmrich J (2008) Pancreatic cancer regression by intratumoural injection of live Streptococcus pyogenes in a syngeneic mouse model. Gut 57:483–491PubMedCrossRef
5.
Zurück zum Zitat Baban CK, Cronin M, O'Hanlon D, O'Sullivan GC, Tangney M (2010) Bacteria as vectors for gene therapy of cancer. Bioeng Bugs 1:385–394PubMedCrossRef Baban CK, Cronin M, O'Hanlon D, O'Sullivan GC, Tangney M (2010) Bacteria as vectors for gene therapy of cancer. Bioeng Bugs 1:385–394PubMedCrossRef
6.
Zurück zum Zitat Sautès-Fridman C, Cherfils-Vicini J, Damotte D, Fisson S, Fridman WH, Cremer I, Dieu-Nosjean MC (2011) Tumor microenvironment is multifaceted. Cancer Metastasis Rev 30:13–25PubMedCrossRef Sautès-Fridman C, Cherfils-Vicini J, Damotte D, Fisson S, Fridman WH, Cremer I, Dieu-Nosjean MC (2011) Tumor microenvironment is multifaceted. Cancer Metastasis Rev 30:13–25PubMedCrossRef
7.
Zurück zum Zitat McCarthy EF (2006) The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 26:154–158PubMed McCarthy EF (2006) The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 26:154–158PubMed
8.
Zurück zum Zitat Busch W (1868) Aus der Sitzung der medicinischen Section vom 13 November 1867. Berl Klin Wochenschr 5:137 Busch W (1868) Aus der Sitzung der medicinischen Section vom 13 November 1867. Berl Klin Wochenschr 5:137
9.
Zurück zum Zitat Fehleisen F (1882) Ueber die Züchtung der Erysipelkokken auf künstlichem Nährboden und ihre Übertragbarkeit auf den Menschen. Dtsch Med Wochenschr 8:553–554CrossRef Fehleisen F (1882) Ueber die Züchtung der Erysipelkokken auf künstlichem Nährboden und ihre Übertragbarkeit auf den Menschen. Dtsch Med Wochenschr 8:553–554CrossRef
10.
Zurück zum Zitat Wiemann B, Starnes CO (1994) Coley's toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol Ther 64:529–564PubMedCrossRef Wiemann B, Starnes CO (1994) Coley's toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol Ther 64:529–564PubMedCrossRef
11.
Zurück zum Zitat Hobohm U (2001) Fever and cancer in perspective. Cancer Immunol Immunother 50:391–396PubMed Hobohm U (2001) Fever and cancer in perspective. Cancer Immunol Immunother 50:391–396PubMed
12.
Zurück zum Zitat Zacharski LR, Sukhatme VP (2005) Coley's toxin revisited: immunotherapy or plasminogen activator therapy of cancer? J Thromb Haemost 3:424–427PubMedCrossRef Zacharski LR, Sukhatme VP (2005) Coley's toxin revisited: immunotherapy or plasminogen activator therapy of cancer? J Thromb Haemost 3:424–427PubMedCrossRef
13.
Zurück zum Zitat Marth E, Möse JR (1987) Oncolysis by Clostridium oncolyticum M55 and subsequent enzymatic determination of sialic acid in serum. Zentralbl Bakteriol Mikrobiol Hyg A 265:33–44PubMed Marth E, Möse JR (1987) Oncolysis by Clostridium oncolyticum M55 and subsequent enzymatic determination of sialic acid in serum. Zentralbl Bakteriol Mikrobiol Hyg A 265:33–44PubMed
14.
Zurück zum Zitat Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B (2001) Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci U S A 98:15155–15160PubMedCrossRef Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B (2001) Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci U S A 98:15155–15160PubMedCrossRef
15.
Zurück zum Zitat Taniguchi S, Fujimori M, Sasaki T, Tsutsui H, Shimatani Y, Seki K, Amano J (2010) Targeting solid tumors with non-pathogenic obligate anaerobic bacteria. Cancer Sci 101:1925–1932PubMedCrossRef Taniguchi S, Fujimori M, Sasaki T, Tsutsui H, Shimatani Y, Seki K, Amano J (2010) Targeting solid tumors with non-pathogenic obligate anaerobic bacteria. Cancer Sci 101:1925–1932PubMedCrossRef
16.
Zurück zum Zitat Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M (2003) Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 94:1021–1028PubMedCrossRef Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M (2003) Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 94:1021–1028PubMedCrossRef
17.
Zurück zum Zitat Schmidt W, Fabricius EM, Schneeweiss U (2006) The tumour–Clostridium phenomenon: 50 years of developmental research (review). Int J Oncol 29:1479–1492PubMed Schmidt W, Fabricius EM, Schneeweiss U (2006) The tumour–Clostridium phenomenon: 50 years of developmental research (review). Int J Oncol 29:1479–1492PubMed
18.
Zurück zum Zitat Agrawal N, Bettegowda C, Cheong I et al (2004) Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proc Natl Acad Sci U S A 101:15172–15177PubMedCrossRef Agrawal N, Bettegowda C, Cheong I et al (2004) Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proc Natl Acad Sci U S A 101:15172–15177PubMedCrossRef
19.
Zurück zum Zitat Yazawa K, Fujimori M, Nakamura T, Sasaki T, Amano J, Kano Y, Taniguchi S (2001) Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors. Breast Cancer Res Treat 66:165–170PubMedCrossRef Yazawa K, Fujimori M, Nakamura T, Sasaki T, Amano J, Kano Y, Taniguchi S (2001) Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors. Breast Cancer Res Treat 66:165–170PubMedCrossRef
20.
Zurück zum Zitat Diaz LA Jr, Cheong I, Foss CA (2005) Pharmacologic and toxicologic evaluation of C. novyi-NT spores. Toxicol Sci 88:562–575PubMedCrossRef Diaz LA Jr, Cheong I, Foss CA (2005) Pharmacologic and toxicologic evaluation of C. novyi-NT spores. Toxicol Sci 88:562–575PubMedCrossRef
21.
Zurück zum Zitat Bettegowda C, Dang LH, Abrams R et al (2003) Overcoming the hypoxic barrier to radiation therapy with anaerobic bacteria. Proc Natl Acad Sci U S A 100:15083–15088PubMedCrossRef Bettegowda C, Dang LH, Abrams R et al (2003) Overcoming the hypoxic barrier to radiation therapy with anaerobic bacteria. Proc Natl Acad Sci U S A 100:15083–15088PubMedCrossRef
22.
Zurück zum Zitat Melillo G (2007) Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev 26:341–352PubMedCrossRef Melillo G (2007) Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev 26:341–352PubMedCrossRef
23.
Zurück zum Zitat Harada H (2011) How can we overcome tumor hypoxia in radiation therapy? J Radiat Res (Tokyo) 52:545–556CrossRef Harada H (2011) How can we overcome tumor hypoxia in radiation therapy? J Radiat Res (Tokyo) 52:545–556CrossRef
24.
Zurück zum Zitat Maletzki C, Gock M, Klier U, Klar E, Linnebacher M (2010) Bacteriolytic therapy of experimental pancreatic carcinoma. World J Gastroenterol 16:3546–3552PubMedCrossRef Maletzki C, Gock M, Klier U, Klar E, Linnebacher M (2010) Bacteriolytic therapy of experimental pancreatic carcinoma. World J Gastroenterol 16:3546–3552PubMedCrossRef
25.
Zurück zum Zitat Mott FE, Esana A, Chakmakjian C, Herrington JD (2005) Tumor lysis syndrome in solid tumors. Support Cancer Ther 2:188–191PubMedCrossRef Mott FE, Esana A, Chakmakjian C, Herrington JD (2005) Tumor lysis syndrome in solid tumors. Support Cancer Ther 2:188–191PubMedCrossRef
26.
Zurück zum Zitat Pawelek JM, Low KB, Bermudes D (2003) Bacteria as tumour-targeting vectors. Lancet Oncol 4:548–556, ReviewPubMedCrossRef Pawelek JM, Low KB, Bermudes D (2003) Bacteria as tumour-targeting vectors. Lancet Oncol 4:548–556, ReviewPubMedCrossRef
27.
Zurück zum Zitat Zhao M, Geller J, Ma H, Yang M, Penman S, Hoffman RM (2007) Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci U S A 104:10170–10174PubMedCrossRef Zhao M, Geller J, Ma H, Yang M, Penman S, Hoffman RM (2007) Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci U S A 104:10170–10174PubMedCrossRef
28.
Zurück zum Zitat Crull K, Weiss S (2011) Antibiotic control of tumor-colonizing Salmonella enterica serovar typhimurium. Exp Biol Med (Maywood) Oct 10 Crull K, Weiss S (2011) Antibiotic control of tumor-colonizing Salmonella enterica serovar typhimurium. Exp Biol Med (Maywood) Oct 10
29.
Zurück zum Zitat Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, Hoffman RM (2009) Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium. J Cell Biochem 106:992–8PubMedCrossRef Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, Hoffman RM (2009) Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium. J Cell Biochem 106:992–8PubMedCrossRef
30.
Zurück zum Zitat Yam C, Zhao M, Hayashi K, Ma H, Kishimoto H, McElroy M, Bouvet M, Hoffman RM (2010) Monotherapy with a tumor-targeting mutant of S. typhimurium inhibits liver metastasis in a mouse model of pancreatic cancer. J Surg Res 164:248–255PubMedCrossRef Yam C, Zhao M, Hayashi K, Ma H, Kishimoto H, McElroy M, Bouvet M, Hoffman RM (2010) Monotherapy with a tumor-targeting mutant of S. typhimurium inhibits liver metastasis in a mouse model of pancreatic cancer. J Surg Res 164:248–255PubMedCrossRef
31.
Zurück zum Zitat Toso JF, Gill VJ, Hwu P et al (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 20:142–152PubMedCrossRef Toso JF, Gill VJ, Hwu P et al (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 20:142–152PubMedCrossRef
32.
Zurück zum Zitat Medina E, Goldmann O, Rohde M, Lengeling A, Chhatwal GS (2001) Genetic control of susceptibility to group A streptococcal infection in mice. J Infect Dis 184:846–852PubMedCrossRef Medina E, Goldmann O, Rohde M, Lengeling A, Chhatwal GS (2001) Genetic control of susceptibility to group A streptococcal infection in mice. J Infect Dis 184:846–852PubMedCrossRef
33.
Zurück zum Zitat Goldmann O, Chhatwal GS, Medina E (2005) Contribution of natural killer cells to the pathogenesis of septic shock induced by Streptococcus pyogenes in mice. J Infect Dis 191:1280–1286PubMedCrossRef Goldmann O, Chhatwal GS, Medina E (2005) Contribution of natural killer cells to the pathogenesis of septic shock induced by Streptococcus pyogenes in mice. J Infect Dis 191:1280–1286PubMedCrossRef
34.
Zurück zum Zitat Kreikemeyer B, Klenk M, Podbielski A (2004) The intracellular status of Streptococcus pyogenes: role of extracellular matrix-binding proteins and their regulation. Int J Med Microbiol 294:177–188PubMedCrossRef Kreikemeyer B, Klenk M, Podbielski A (2004) The intracellular status of Streptococcus pyogenes: role of extracellular matrix-binding proteins and their regulation. Int J Med Microbiol 294:177–188PubMedCrossRef
35.
Zurück zum Zitat Linnebacher M, Maletzki C, Emmrich J, Kreikemeyer B (2008) Lysates of S. pyogenes serotype M49 induce pancreatic tumor growth delay by specific and unspecific antitumor immune responses. J Immunother 31:704–713PubMedCrossRef Linnebacher M, Maletzki C, Emmrich J, Kreikemeyer B (2008) Lysates of S. pyogenes serotype M49 induce pancreatic tumor growth delay by specific and unspecific antitumor immune responses. J Immunother 31:704–713PubMedCrossRef
36.
Zurück zum Zitat Klier U, Maletzki C, Göttmann N, Kreikemeyer B, Linnebacher M (2011) Avitalized bacteria mediate tumor growth control via activation of innate immunity. Cell Immunol 269:120–127PubMedCrossRef Klier U, Maletzki C, Göttmann N, Kreikemeyer B, Linnebacher M (2011) Avitalized bacteria mediate tumor growth control via activation of innate immunity. Cell Immunol 269:120–127PubMedCrossRef
37.
Zurück zum Zitat Roca JM, Alonso V, Pericay C et al (2010) ACROSS Cooperative Group. Cetuximab given every 2 weeks plus irinotecan is an active and safe option for previously treated patients with metastatic colorectal cancer. Chemotherapy 56:142–146PubMedCrossRef Roca JM, Alonso V, Pericay C et al (2010) ACROSS Cooperative Group. Cetuximab given every 2 weeks plus irinotecan is an active and safe option for previously treated patients with metastatic colorectal cancer. Chemotherapy 56:142–146PubMedCrossRef
38.
Zurück zum Zitat Eng C (2010) The evolving role of monoclonal antibodies in colorectal cancer: early presumptions and impact on clinical trial development. Oncologist 15:73–84PubMedCrossRef Eng C (2010) The evolving role of monoclonal antibodies in colorectal cancer: early presumptions and impact on clinical trial development. Oncologist 15:73–84PubMedCrossRef
39.
Zurück zum Zitat Assenat E, Desseigne F, Thezenas S, et al (2011) Cetuximab Plus FOLFIRINOX (ERBIRINOX) as first-line treatment for unresectable metastatic colorectal cancer: a phase II trial. Oncologist. Oct 20 Assenat E, Desseigne F, Thezenas S, et al (2011) Cetuximab Plus FOLFIRINOX (ERBIRINOX) as first-line treatment for unresectable metastatic colorectal cancer: a phase II trial. Oncologist. Oct 20
40.
Zurück zum Zitat Rosevear HM, Lightfoot AJ, O'Donnell MA, Griffith TS (2009) The role of neutrophils and TNF-related apoptosis-inducing ligand (TRAIL) in bacillus Calmette–Guérin (BCG) immunotherapy for urothelial carcinoma of the bladder. Cancer Metastasis Rev 28:345–353PubMedCrossRef Rosevear HM, Lightfoot AJ, O'Donnell MA, Griffith TS (2009) The role of neutrophils and TNF-related apoptosis-inducing ligand (TRAIL) in bacillus Calmette–Guérin (BCG) immunotherapy for urothelial carcinoma of the bladder. Cancer Metastasis Rev 28:345–353PubMedCrossRef
41.
Zurück zum Zitat Azuma I, Seya T (2001) Development of immunoadjuvants for immunotherapy of cancer. Int Immunopharmacol 1:1249–1259PubMedCrossRef Azuma I, Seya T (2001) Development of immunoadjuvants for immunotherapy of cancer. Int Immunopharmacol 1:1249–1259PubMedCrossRef
42.
Zurück zum Zitat Udagawa M, Kudo-Saito C, Hasegawa G, Yano K, Yamamoto A, Yaguchi M, Toda M, Azuma I, Iwai T, Kawakami Y (2006) Enhancement of immunologic tumor regression by intratumoral administration of dendritic cells in combination with cryoablative tumor pretreatment and Bacillus Calmette–Guerin cell wall skeleton stimulation. Clin Cancer Res 12:7465–7475PubMedCrossRef Udagawa M, Kudo-Saito C, Hasegawa G, Yano K, Yamamoto A, Yaguchi M, Toda M, Azuma I, Iwai T, Kawakami Y (2006) Enhancement of immunologic tumor regression by intratumoral administration of dendritic cells in combination with cryoablative tumor pretreatment and Bacillus Calmette–Guerin cell wall skeleton stimulation. Clin Cancer Res 12:7465–7475PubMedCrossRef
43.
Zurück zum Zitat Seremet T, Brasseur F, Coulie PG (2011) Tumor-specific antigens and immunologic adjuvants in cancer immunotherapy. Cancer J 17:325–330PubMedCrossRef Seremet T, Brasseur F, Coulie PG (2011) Tumor-specific antigens and immunologic adjuvants in cancer immunotherapy. Cancer J 17:325–330PubMedCrossRef
44.
Zurück zum Zitat Chiang CL, Kandalaft LE, Coukos G (2011) Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines. Int Rev Immunol 30:150–182PubMedCrossRef Chiang CL, Kandalaft LE, Coukos G (2011) Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines. Int Rev Immunol 30:150–182PubMedCrossRef
45.
Zurück zum Zitat Paterson Y, Guirnalda PD, Wood LM (2010) Listeria and Salmonella bacterial vectors of tumor-associated antigens for cancer immunotherapy. Semin Immunol 22:183–189PubMedCrossRef Paterson Y, Guirnalda PD, Wood LM (2010) Listeria and Salmonella bacterial vectors of tumor-associated antigens for cancer immunotherapy. Semin Immunol 22:183–189PubMedCrossRef
46.
Zurück zum Zitat Xu F, Ulmer JB (2003) Attenuated salmonella and shigella as carriers for DNA vaccines. J Drug Target 11:481–488PubMedCrossRef Xu F, Ulmer JB (2003) Attenuated salmonella and shigella as carriers for DNA vaccines. J Drug Target 11:481–488PubMedCrossRef
47.
Zurück zum Zitat Daudel D, Weidinger G, Spreng S (2007) Use of attenuated bacteria as delivery vectors for DNA vaccines. Expert Rev Vaccines 6:97–110PubMedCrossRef Daudel D, Weidinger G, Spreng S (2007) Use of attenuated bacteria as delivery vectors for DNA vaccines. Expert Rev Vaccines 6:97–110PubMedCrossRef
48.
Zurück zum Zitat Zhu X, Zhou P, Cai J, Yang G, Liang S, Ren D (2010) Tumor antigen delivered by Salmonella III secretion protein fused with heat shock protein 70 induces protection and eradication against murine melanoma. Cancer Sci 101:2621–2628PubMedCrossRef Zhu X, Zhou P, Cai J, Yang G, Liang S, Ren D (2010) Tumor antigen delivered by Salmonella III secretion protein fused with heat shock protein 70 induces protection and eradication against murine melanoma. Cancer Sci 101:2621–2628PubMedCrossRef
49.
Zurück zum Zitat Gardlik R, Fruehauf JH (2010) Bacterial vectors and delivery systems in cancer therapy. IDrugs 13:701–706PubMed Gardlik R, Fruehauf JH (2010) Bacterial vectors and delivery systems in cancer therapy. IDrugs 13:701–706PubMed
50.
Zurück zum Zitat Kudela P, Koller VJ, Lubitz W (2010) Bacterial ghosts (BGs)—advanced antigen and drug delivery system. Vaccine 28:5760–5767PubMedCrossRef Kudela P, Koller VJ, Lubitz W (2010) Bacterial ghosts (BGs)—advanced antigen and drug delivery system. Vaccine 28:5760–5767PubMedCrossRef
51.
52.
53.
Zurück zum Zitat Suzuki H, Iwasaki E, Hibi T (2009) Helicobacter pylori and gastric cancer. Gastric Cancer 12:79–87PubMedCrossRef Suzuki H, Iwasaki E, Hibi T (2009) Helicobacter pylori and gastric cancer. Gastric Cancer 12:79–87PubMedCrossRef
54.
Zurück zum Zitat Chemin I, Zoulim F (2009) Hepatitis B virus induced hepatocellular carcinoma. Cancer Lett 286:52–59PubMedCrossRef Chemin I, Zoulim F (2009) Hepatitis B virus induced hepatocellular carcinoma. Cancer Lett 286:52–59PubMedCrossRef
55.
Zurück zum Zitat Huh WK (2009) Human papillomavirus infection: a concise review of natural history. Obstet Gynecol 114:139–143PubMed Huh WK (2009) Human papillomavirus infection: a concise review of natural history. Obstet Gynecol 114:139–143PubMed
56.
Zurück zum Zitat Schmitt M, Dalstein V, Waterboer T, Clavel C, Gissmann L, Pawlita M (2010) Diagnosing cervical cancer and high-grade precursors by HPV16 transcription patterns. Cancer Res 70:249–256PubMedCrossRef Schmitt M, Dalstein V, Waterboer T, Clavel C, Gissmann L, Pawlita M (2010) Diagnosing cervical cancer and high-grade precursors by HPV16 transcription patterns. Cancer Res 70:249–256PubMedCrossRef
57.
Zurück zum Zitat Kwon JH, Choi JY, Jang JW et al (2010) Impact of serial hepatitis B virus DNA on hepatocellular carcinoma development in patients with liver cirrhosis. Intervirology 53:111–118PubMedCrossRef Kwon JH, Choi JY, Jang JW et al (2010) Impact of serial hepatitis B virus DNA on hepatocellular carcinoma development in patients with liver cirrhosis. Intervirology 53:111–118PubMedCrossRef
58.
Zurück zum Zitat Sachs G, Scott DR, Wen Y (2011) Gastric infection by Helicobacter pylori. Curr Gastroenterol Rep 14 Sachs G, Scott DR, Wen Y (2011) Gastric infection by Helicobacter pylori. Curr Gastroenterol Rep 14
59.
Zurück zum Zitat Chang MH (2009) Cancer prevention by vaccination against hepatitis B. Recent Results Cancer Res 181:85–94PubMedCrossRef Chang MH (2009) Cancer prevention by vaccination against hepatitis B. Recent Results Cancer Res 181:85–94PubMedCrossRef
60.
Zurück zum Zitat Lu B, Kumar A, Castellsagué X, Giuliano AR (2011) Efficacy and safety of prophylactic vaccines against cervical HPV infection and diseases among women: a systematic review & meta-analysis. BMC Infect Dis 12(11):13CrossRef Lu B, Kumar A, Castellsagué X, Giuliano AR (2011) Efficacy and safety of prophylactic vaccines against cervical HPV infection and diseases among women: a systematic review & meta-analysis. BMC Infect Dis 12(11):13CrossRef
61.
Zurück zum Zitat Broad A, Kirby JA, Jones DE (2007) Applied Immunology and Transplantation Research Group. Toll-like receptor interactions: tolerance of MyD88-dependent cytokines but enhancement of MyD88-independent interferon-beta production. Immunology 120:103–111PubMedCrossRef Broad A, Kirby JA, Jones DE (2007) Applied Immunology and Transplantation Research Group. Toll-like receptor interactions: tolerance of MyD88-dependent cytokines but enhancement of MyD88-independent interferon-beta production. Immunology 120:103–111PubMedCrossRef
62.
Zurück zum Zitat Vanden Bush TJ, Bishop GA (2008) TLR7 and CD40 cooperate in IL-6 production via enhanced JNK and AP-1 activation. Eur J Immunol 38:400–409CrossRef Vanden Bush TJ, Bishop GA (2008) TLR7 and CD40 cooperate in IL-6 production via enhanced JNK and AP-1 activation. Eur J Immunol 38:400–409CrossRef
63.
Zurück zum Zitat Zhang X, Munegowda MA, Yuan J, Wei Y, Xiang J (2010) Optimal TLR9 signal converts tolerogenic CD4-8- DCs into immunogenic ones capable of stimulating antitumor immunity via activating CD4+ Th1/Th17 and NK cell responses. J Leukoc Biol 88:393–403PubMedCrossRef Zhang X, Munegowda MA, Yuan J, Wei Y, Xiang J (2010) Optimal TLR9 signal converts tolerogenic CD4-8- DCs into immunogenic ones capable of stimulating antitumor immunity via activating CD4+ Th1/Th17 and NK cell responses. J Leukoc Biol 88:393–403PubMedCrossRef
64.
Zurück zum Zitat Wesch D, Peters C, Oberg HH, Pietschmann K, Kabelitz D (2011) Modulation of γδ T cell responses by TLR ligands. Cell Mol Life Sci 68:2357–2370PubMedCrossRef Wesch D, Peters C, Oberg HH, Pietschmann K, Kabelitz D (2011) Modulation of γδ T cell responses by TLR ligands. Cell Mol Life Sci 68:2357–2370PubMedCrossRef
65.
Zurück zum Zitat Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, Mayer L, Unkeless JC, Xiong H (2005) Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res 65:5009–5014PubMedCrossRef Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, Mayer L, Unkeless JC, Xiong H (2005) Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res 65:5009–5014PubMedCrossRef
66.
Zurück zum Zitat Dalpke AH, Lehner MD, Hartung T, Heeg K (2005) Differential effects of CpG-DNA in Toll-like receptor-2/-4/-9 tolerance and cross-tolerance. Immunology 116:203–212PubMedCrossRef Dalpke AH, Lehner MD, Hartung T, Heeg K (2005) Differential effects of CpG-DNA in Toll-like receptor-2/-4/-9 tolerance and cross-tolerance. Immunology 116:203–212PubMedCrossRef
67.
Zurück zum Zitat Sheyhidin I, Nabi G, Hasim A, Zhang RP, Ainiwaer J, Ma H, Wang H (2011) Overexpression of TLR3, TLR4, TLR7 and TLR9 in esophageal squamous cell carcinoma. World J Gastroenterol 17:3745–3751PubMedCrossRef Sheyhidin I, Nabi G, Hasim A, Zhang RP, Ainiwaer J, Ma H, Wang H (2011) Overexpression of TLR3, TLR4, TLR7 and TLR9 in esophageal squamous cell carcinoma. World J Gastroenterol 17:3745–3751PubMedCrossRef
68.
Zurück zum Zitat Cherfils-Vicini J, Platonova S, Gillard M et al (2010) Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. J Clin Invest 120:1285–1297PubMedCrossRef Cherfils-Vicini J, Platonova S, Gillard M et al (2010) Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. J Clin Invest 120:1285–1297PubMedCrossRef
69.
Zurück zum Zitat Khan MN, Lee YS (2011) Cyclooxygenase inhibitors: scope of their use and development in cancer chemotherapy. Med Res Rev 31:161–201PubMedCrossRef Khan MN, Lee YS (2011) Cyclooxygenase inhibitors: scope of their use and development in cancer chemotherapy. Med Res Rev 31:161–201PubMedCrossRef
70.
Zurück zum Zitat Vinogradova Y, Coupland C, Hippisley-Cox J (2011) Exposure to cyclooxygenase-2 inhibitors and risk of cancer: nested case-control studies. Br J Cancer 105:452–459PubMedCrossRef Vinogradova Y, Coupland C, Hippisley-Cox J (2011) Exposure to cyclooxygenase-2 inhibitors and risk of cancer: nested case-control studies. Br J Cancer 105:452–459PubMedCrossRef
71.
Zurück zum Zitat Stagg J, Johnstone RW, Smyth MJ (2007) From cancer immunosurveillance to cancer immunotherapy. Immunol Rev 220:82–101PubMedCrossRef Stagg J, Johnstone RW, Smyth MJ (2007) From cancer immunosurveillance to cancer immunotherapy. Immunol Rev 220:82–101PubMedCrossRef
72.
Zurück zum Zitat Erreni M, Mantovani A, Allavena P (2011) Tumor-associated macrophages (TAM) and inflammation in colorectal cancer. Cancer Microenviron 4:141–154PubMedCrossRef Erreni M, Mantovani A, Allavena P (2011) Tumor-associated macrophages (TAM) and inflammation in colorectal cancer. Cancer Microenviron 4:141–154PubMedCrossRef
73.
Zurück zum Zitat Mantovani A, Sica A, Allavena P, Garlanda C, Locati M (2009) Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 70:325–330PubMedCrossRef Mantovani A, Sica A, Allavena P, Garlanda C, Locati M (2009) Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 70:325–330PubMedCrossRef
74.
Zurück zum Zitat Nagaraj S, Gabrilovich DI (2010) Myeloid-derived suppressor cells in human cancer. Cancer J 16:348–353PubMedCrossRef Nagaraj S, Gabrilovich DI (2010) Myeloid-derived suppressor cells in human cancer. Cancer J 16:348–353PubMedCrossRef
75.
Zurück zum Zitat Porta C, Subra Kumar B, Larghi P, Rubino L, Mancino A, Sica A (2007) Tumor promotion by tumor-associated macrophages. Adv Exp Med Biol 604:67–86PubMedCrossRef Porta C, Subra Kumar B, Larghi P, Rubino L, Mancino A, Sica A (2007) Tumor promotion by tumor-associated macrophages. Adv Exp Med Biol 604:67–86PubMedCrossRef
76.
Zurück zum Zitat Porta C, Riboldi E, Totaro MG, Strauss L, Sica A, Mantovani A (2011) Macrophages in cancer and infectious diseases: the 'good' and the 'bad'. Immunotherapy 3:1185–1202PubMedCrossRef Porta C, Riboldi E, Totaro MG, Strauss L, Sica A, Mantovani A (2011) Macrophages in cancer and infectious diseases: the 'good' and the 'bad'. Immunotherapy 3:1185–1202PubMedCrossRef
77.
Zurück zum Zitat Mantovani A, Germano G, Marchesi F, Locatelli M, Biswas SK (2011) Cancer-promoting tumor-associated macrophages: new vistas and open questions. Eur J Immunol 41:2522–2525PubMedCrossRef Mantovani A, Germano G, Marchesi F, Locatelli M, Biswas SK (2011) Cancer-promoting tumor-associated macrophages: new vistas and open questions. Eur J Immunol 41:2522–2525PubMedCrossRef
78.
Zurück zum Zitat Watkins SK, Li B, Richardson KS, Head K, Egilmez NK, Zeng Q, Suttles J, Stout RD (2009) Rapid release of cytoplasmic IL-15 from tumor-associated macrophages is an initial and critical event in IL-12-initiated tumor regression. Eur J Immunol 39:2126–2135PubMedCrossRef Watkins SK, Li B, Richardson KS, Head K, Egilmez NK, Zeng Q, Suttles J, Stout RD (2009) Rapid release of cytoplasmic IL-15 from tumor-associated macrophages is an initial and critical event in IL-12-initiated tumor regression. Eur J Immunol 39:2126–2135PubMedCrossRef
79.
Zurück zum Zitat Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121:4015–4029PubMedCrossRef Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121:4015–4029PubMedCrossRef
80.
Zurück zum Zitat Ladoire S, Martin F, Ghiringhelli F (2011) Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother 60:909–918PubMedCrossRef Ladoire S, Martin F, Ghiringhelli F (2011) Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother 60:909–918PubMedCrossRef
81.
Zurück zum Zitat Wilke CM, Kryczek I, Wei S, Zhao E, Wu K, Wang G, Zou W (2011) Th17 cells in cancer: help or hindrance? Carcinogenesis 32:643–649PubMedCrossRef Wilke CM, Kryczek I, Wei S, Zhao E, Wu K, Wang G, Zou W (2011) Th17 cells in cancer: help or hindrance? Carcinogenesis 32:643–649PubMedCrossRef
Metadaten
Titel
Bacterial immunotherapy of gastrointestinal tumors
verfasst von
Michael Linnebacher
Claudia Maletzki
Ulrike Klier
Ernst Klar
Publikationsdatum
01.04.2012
Verlag
Springer-Verlag
Erschienen in
Langenbeck's Archives of Surgery / Ausgabe 4/2012
Print ISSN: 1435-2443
Elektronische ISSN: 1435-2451
DOI
https://doi.org/10.1007/s00423-011-0892-6

Weitere Artikel der Ausgabe 4/2012

Langenbeck's Archives of Surgery 4/2012 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.