Skip to main content
Erschienen in: Brain Structure and Function 9/2017

28.06.2017 | Original Article

Basal forebrain activation enhances between-trial reliability of low-frequency local field potentials (LFP) and spiking activity in tree shrew primary visual cortex (V1)

verfasst von: Paolo De Luna, Julia Veit, Gregor Rainer

Erschienen in: Brain Structure and Function | Ausgabe 9/2017

Einloggen, um Zugang zu erhalten

Abstract

Brain state has profound effects on neural processing and stimulus encoding in sensory cortices. While the synchronized state is dominated by low-frequency local field potential (LFP) activity, low-frequency LFP power is suppressed in the desynchronized state, where a concurrent enhancement in gamma power is observed. Recently, it has been shown that cortical desynchronization co-occurs with enhanced between-trial reliability of spiking activity in sensory neurons, but it is currently unclear whether this effect is also evident in LFP signals. Here, we address this question by recording both spike trains and LFP in primary visual cortex during natural movie stimulation, and using isoflurane anesthesia and basal forebrain (BF) electrical activation as proxies for synchronized and desynchronized brain states. We show that indeed, low-frequency LFP modulations (“LFP events”) also occur more reliably following BF activation. Interestingly, while being more reliable, these LFP events are smaller in amplitude compared to those generated in the synchronized brain state. We further demonstrate that differences in reliability of spiking activity between cortical states can be linked to amplitude and probability of LFP events. The correlated temporal dynamics between low-frequency LFP and spiking response reliability in visual cortex suggests that these effects may both be the result of the same neural circuit activation triggered by BF stimulation, which facilitates switching between processing of incoming sensory information in the desynchronized and reverberation of internal signals in the synchronized state.
Literatur
Zurück zum Zitat Azouz R, Gray CM (1999) Cellular mechanisms contributing to response variability of cortical neurons in vivo. J Neurosci 19:2209–2223PubMed Azouz R, Gray CM (1999) Cellular mechanisms contributing to response variability of cortical neurons in vivo. J Neurosci 19:2209–2223PubMed
Zurück zum Zitat Bair W, Zohary E, Newsome WT (2001) Correlated firing in macaque visual area MT: time scales and relationship to behavior. J Neurosci 21:1676–1697PubMed Bair W, Zohary E, Newsome WT (2001) Correlated firing in macaque visual area MT: time scales and relationship to behavior. J Neurosci 21:1676–1697PubMed
Zurück zum Zitat Brainard DH (1997) The psychophysics toolbox. Spatial Vis 10:433–436CrossRef Brainard DH (1997) The psychophysics toolbox. Spatial Vis 10:433–436CrossRef
Zurück zum Zitat Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8:4007–4026PubMed Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8:4007–4026PubMed
Zurück zum Zitat Campagna JA, Miller KW, Forman SA (2003) Drug therapy: mechanisms of actions of inhaled anesthetics. N Engl J Med 348:2110–2124CrossRefPubMed Campagna JA, Miller KW, Forman SA (2003) Drug therapy: mechanisms of actions of inhaled anesthetics. N Engl J Med 348:2110–2124CrossRefPubMed
Zurück zum Zitat Chen NY, Sugihara H, Sur M (2015) An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity. Nat Neurosci 18:892-U340. doi:10.1038/nn.4002 Chen NY, Sugihara H, Sur M (2015) An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity. Nat Neurosci 18:892-U340. doi:10.​1038/​nn.​4002
Zurück zum Zitat Chisum HJ, Mooser F, Fitzpatrick D (2003) Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. J Neurosci 23:2947–2960 (pii: 23/7/2947) PubMed Chisum HJ, Mooser F, Fitzpatrick D (2003) Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. J Neurosci 23:2947–2960 (pii: 23/7/2947) PubMed
Zurück zum Zitat Christophe E, Roebuck A, Staiger JF, Lavery DJ, Charpak S, Audinat E (2002) Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons. J Neurophysiol 88:1318–1327. doi:10.1152/jn.00199.2002 PubMed Christophe E, Roebuck A, Staiger JF, Lavery DJ, Charpak S, Audinat E (2002) Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons. J Neurophysiol 88:1318–1327. doi:10.​1152/​jn.​00199.​2002 PubMed
Zurück zum Zitat Disney AA, Domakonda KV, Aoki C (2006) Differential expression of muscarinic acetylcholine receptors across excitatory and inhibitory cells in visual cortical areas V1 and V2 of the macaque monkey. J Comp Neurol 499:49–63. doi:10.1002/cne.21096 CrossRefPubMed Disney AA, Domakonda KV, Aoki C (2006) Differential expression of muscarinic acetylcholine receptors across excitatory and inhibitory cells in visual cortical areas V1 and V2 of the macaque monkey. J Comp Neurol 499:49–63. doi:10.​1002/​cne.​21096 CrossRefPubMed
Zurück zum Zitat Erisir A, Levey AI, Aoki C (2001) Muscarinic receptor M-2 in cat visual cortex: laminar distribution, relationship to gamma-aminobutyric acidergic neurons, and effect of cingulate lesions. J Comp Neurol 441:168–185. doi:10.1002/Cne.1405 CrossRefPubMed Erisir A, Levey AI, Aoki C (2001) Muscarinic receptor M-2 in cat visual cortex: laminar distribution, relationship to gamma-aminobutyric acidergic neurons, and effect of cingulate lesions. J Comp Neurol 441:168–185. doi:10.​1002/​Cne.​1405 CrossRefPubMed
Zurück zum Zitat Fitzpatrick D, Usrey WM, Schofield BR, Einstein G (1994) The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex. Vis Neurosci 11:307–315CrossRefPubMed Fitzpatrick D, Usrey WM, Schofield BR, Einstein G (1994) The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex. Vis Neurosci 11:307–315CrossRefPubMed
Zurück zum Zitat Gil Z, Connors BW, Amitai Y (1997) Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19:679–686 (pii: S0896-6273(00)80380-3) CrossRefPubMed Gil Z, Connors BW, Amitai Y (1997) Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19:679–686 (pii: S0896-6273(00)80380-3) CrossRefPubMed
Zurück zum Zitat Hsieh CY, Cruikshank SJ, Metherate R (2000) Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist. Brain Res 880:51–64 (pii: S0006-8993(00)02766-9) CrossRefPubMed Hsieh CY, Cruikshank SJ, Metherate R (2000) Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist. Brain Res 880:51–64 (pii: S0006-8993(00)02766-9) CrossRefPubMed
Zurück zum Zitat Kalmbach A, Waters J (2014) Modulation of high- and low-frequency components of the cortical local field potential via nicotinic and muscarinic acetylcholine receptors in anesthetized mice. J Neurophysiol 111:258–272. doi:10.1152/jn.00244.2013 CrossRefPubMed Kalmbach A, Waters J (2014) Modulation of high- and low-frequency components of the cortical local field potential via nicotinic and muscarinic acetylcholine receptors in anesthetized mice. J Neurophysiol 111:258–272. doi:10.​1152/​jn.​00244.​2013 CrossRefPubMed
Zurück zum Zitat Kim T et al (2015) Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations (vol 112, pg 3535. P Natl Acad Sci USA 112:E2848–E2848. doi:10.1073/pnas.1507465112 CrossRef Kim T et al (2015) Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations (vol 112, pg 3535. P Natl Acad Sci USA 112:E2848–E2848. doi:10.​1073/​pnas.​1507465112 CrossRef
Zurück zum Zitat Kleiner M, Brainard D, Pelli D (2007) What's new in psychtoolbox-3? In: Abstract supplement of the 30th European conference on visual perception (ECVP), vol 36, p 14 Kleiner M, Brainard D, Pelli D (2007) What's new in psychtoolbox-3? In: Abstract supplement of the 30th European conference on visual perception (ECVP), vol 36, p 14
Zurück zum Zitat Metherate R, Cox CL, Ashe JH (1992) Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. J Neurosci 12:4701–4711PubMed Metherate R, Cox CL, Ashe JH (1992) Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. J Neurosci 12:4701–4711PubMed
Zurück zum Zitat Munk AA, Adjemian RA, Zhao J, Ogbaghebriel A, Shrier A (1996) Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrioventricular node. J Physiol-Lond 493:801–818CrossRefPubMedPubMedCentral Munk AA, Adjemian RA, Zhao J, Ogbaghebriel A, Shrier A (1996) Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrioventricular node. J Physiol-Lond 493:801–818CrossRefPubMedPubMedCentral
Zurück zum Zitat Ringach DL, Sapiro G, Shapley R (1997) A subspace reverse-correlation technique for the study of visual neurons. Vision Res 37:2455–2464 (pii: S0042-6989(96)00247-7) CrossRefPubMed Ringach DL, Sapiro G, Shapley R (1997) A subspace reverse-correlation technique for the study of visual neurons. Vision Res 37:2455–2464 (pii: S0042-6989(96)00247-7) CrossRefPubMed
Zurück zum Zitat Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870–3896PubMed Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870–3896PubMed
Zurück zum Zitat Siegel M, Konig P (2003) A functional gamma-band defined by stimulus-dependent synchronization in area 18 of awake behaving cats. J Neurosci 23:4251–4260PubMed Siegel M, Konig P (2003) A functional gamma-band defined by stimulus-dependent synchronization in area 18 of awake behaving cats. J Neurosci 23:4251–4260PubMed
Zurück zum Zitat Softky WR, Koch C (1993) The highly irregular firing of cortical-cells is inconsistent with temporal integration of random EPSPS. J Neurosci 13:334–350PubMed Softky WR, Koch C (1993) The highly irregular firing of cortical-cells is inconsistent with temporal integration of random EPSPS. J Neurosci 13:334–350PubMed
Zurück zum Zitat Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85:1969–1985PubMed Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85:1969–1985PubMed
Zurück zum Zitat Thiele A, Herrero JL, Distler C, Hoffmann KP (2012) Contribution of cholinergic and GABAergic mechanisms to direction tuning, discriminability, response reliability, and neuronal rate correlations in macaque middle temporal area. J Neurosci 32:16602–16615. doi:10.1523/Jneurosci.0554-12.2012 CrossRefPubMed Thiele A, Herrero JL, Distler C, Hoffmann KP (2012) Contribution of cholinergic and GABAergic mechanisms to direction tuning, discriminability, response reliability, and neuronal rate correlations in macaque middle temporal area. J Neurosci 32:16602–16615. doi:10.​1523/​Jneurosci.​0554-12.​2012 CrossRefPubMed
Zurück zum Zitat Veit J, Bhattacharyya A, Kretz R, Rainer G (2011) Neural response dynamics of spiking and local field potential activity depend on CRT monitor refresh rate in the tree shrew primary visual cortex. J Neurophysiol 106:2303–2313. doi:10.1152/jn.00388.2011 CrossRefPubMed Veit J, Bhattacharyya A, Kretz R, Rainer G (2011) Neural response dynamics of spiking and local field potential activity depend on CRT monitor refresh rate in the tree shrew primary visual cortex. J Neurophysiol 106:2303–2313. doi:10.​1152/​jn.​00388.​2011 CrossRefPubMed
Zurück zum Zitat Worgotter F, Suder K, Zhao YQ, Kerscher N, Eysel UT, Funke K (1998) State-dependent receptive-field restructuring in the visual cortex. Nature 396:165–168. doi:10.1038/24157 CrossRefPubMed Worgotter F, Suder K, Zhao YQ, Kerscher N, Eysel UT, Funke K (1998) State-dependent receptive-field restructuring in the visual cortex. Nature 396:165–168. doi:10.​1038/​24157 CrossRefPubMed
Zurück zum Zitat Zhu YJ, Qiao WH, Liu KF, Zhong HY, Yao HS (2015) Control of response reliability by parvalbumin-expressing interneurons in visual cortex. Nat Commun. doi:10.1038/Ncomms7802 Zhu YJ, Qiao WH, Liu KF, Zhong HY, Yao HS (2015) Control of response reliability by parvalbumin-expressing interneurons in visual cortex. Nat Commun. doi:10.​1038/​Ncomms7802
Metadaten
Titel
Basal forebrain activation enhances between-trial reliability of low-frequency local field potentials (LFP) and spiking activity in tree shrew primary visual cortex (V1)
verfasst von
Paolo De Luna
Julia Veit
Gregor Rainer
Publikationsdatum
28.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 9/2017
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1468-1

Weitere Artikel der Ausgabe 9/2017

Brain Structure and Function 9/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.