Skip to main content
main-content
Erschienen in: Medizinische Klinik - Intensivmedizin und Notfallmedizin 7/2021

07.05.2021 | Beatmungsmedizin, inhalative Medizin | Pflege

„Patient self-inflicted lung injury“ (P-SILI)

Von der Pathophysiologie zur klinischen Evaluation mit differenziertem Management

verfasst von: Benjamin Neetz, Thomas Flohr, Felix J. F. Herth, Michael M. Müller

Erschienen in: Medizinische Klinik - Intensivmedizin und Notfallmedizin | Ausgabe 7/2021

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die Etablierung der unterstützten Spontanatmung gilt allgemein als eine vorteilhafte und wenig gefährdende Phase der Beatmungstherapie. Allerdings geben neuere Erkenntnisse Hinweise auf eine potenzielle Schädigung durch exzessive Spontanatembemühungen vor allem bei akuter Lungenschädigung. Das Syndrom wird unter dem Begriff „patient self-inflicted lung injury“ zusammengefasst. Ärzte, Pflegepersonen und Atmungstherapeuten sollten für diese Thematik sensibilisiert werden. Parameter, die mittels Ösophagusdruckmessung oder einfacher Manöver am Respirator bestimmt werden können, sind bei der Entscheidung zur Durchführung und zur Überwachung von Spontanatmung auch in den akuten Phasen der Lungenschädigung hilfreich. Weiterhin gibt es im Umgang mit hohem Atemantrieb oder erhöhter Atemanstrengung therapeutische Möglichkeiten, diesen zu begegnen.
Literatur
1.
Zurück zum Zitat Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369(22):2126–2136 PubMedCrossRef Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369(22):2126–2136 PubMedCrossRef
2.
Zurück zum Zitat Putensen C et al (2006) The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care 12(1):13–18 PubMedCrossRef Putensen C et al (2006) The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care 12(1):13–18 PubMedCrossRef
3.
Zurück zum Zitat Levine S et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358(13):1327–1335 PubMedCrossRef Levine S et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358(13):1327–1335 PubMedCrossRef
4.
5.
Zurück zum Zitat Goligher EC et al (2020) Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Intensive Care Med 46(12):2314–2326 PubMedPubMedCentralCrossRef Goligher EC et al (2020) Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Intensive Care Med 46(12):2314–2326 PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Yoshida T et al (2019) Impact of spontaneous breathing during mechanical ventilation in acute respiratory distress syndrome. Curr Opin Crit Care 25(2):192–198 PubMedCrossRef Yoshida T et al (2019) Impact of spontaneous breathing during mechanical ventilation in acute respiratory distress syndrome. Curr Opin Crit Care 25(2):192–198 PubMedCrossRef
8.
Zurück zum Zitat Spinelli E et al (2020) Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med 46(4):606–618 PubMedPubMedCentralCrossRef Spinelli E et al (2020) Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med 46(4):606–618 PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Mauri T et al (2016) Extremely high transpulmonary pressure in a spontaneously breathing patient with early severe ARDS on ECMO. Intensive Care Med 42(12):2101–2103 PubMedCrossRef Mauri T et al (2016) Extremely high transpulmonary pressure in a spontaneously breathing patient with early severe ARDS on ECMO. Intensive Care Med 42(12):2101–2103 PubMedCrossRef
10.
Zurück zum Zitat Yoshida T et al (2013) Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 188(12):1420–1427 PubMedCrossRef Yoshida T et al (2013) Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 188(12):1420–1427 PubMedCrossRef
11.
Zurück zum Zitat Yoshida T et al (2017) Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort. Am J Respir Crit Care Med 196(5):590–601 PubMedCrossRef Yoshida T et al (2017) Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort. Am J Respir Crit Care Med 196(5):590–601 PubMedCrossRef
12.
Zurück zum Zitat Yoshida T et al (2018) Reverse triggering causes an injurious inflation pattern during mechanical ventilation. Am J Respir Crit Care Med 198(8):1096–1099 PubMedCrossRef Yoshida T et al (2018) Reverse triggering causes an injurious inflation pattern during mechanical ventilation. Am J Respir Crit Care Med 198(8):1096–1099 PubMedCrossRef
13.
Zurück zum Zitat Loyd JE et al (1986) Effects of inspiratory resistance loading on lung fluid balance in awake sheep. J Appl Physiol 60(1):198–203 PubMedCrossRef Loyd JE et al (1986) Effects of inspiratory resistance loading on lung fluid balance in awake sheep. J Appl Physiol 60(1):198–203 PubMedCrossRef
14.
Zurück zum Zitat West JB, Mathieu-Costello O (1992) Stress failure of pulmonary capillaries: role in lung and heart disease. Lancet 340(8822):762–767 PubMedCrossRef West JB, Mathieu-Costello O (1992) Stress failure of pulmonary capillaries: role in lung and heart disease. Lancet 340(8822):762–767 PubMedCrossRef
15.
Zurück zum Zitat Kallet RH et al (1999) Exacerbation of acute pulmonary edema during assisted mechanical ventilation using a low-tidal volume, lung-protective ventilator strategy. Chest 116(6):1826–1832 PubMedCrossRef Kallet RH et al (1999) Exacerbation of acute pulmonary edema during assisted mechanical ventilation using a low-tidal volume, lung-protective ventilator strategy. Chest 116(6):1826–1832 PubMedCrossRef
16.
Zurück zum Zitat Mauri T et al (2016) Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med 42(9):1360–1373 PubMedCrossRef Mauri T et al (2016) Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med 42(9):1360–1373 PubMedCrossRef
17.
Zurück zum Zitat de Haro C et al (2018) Double cycling during mechanical ventilation: frequency, mechanisms, and physiologic implications. Crit Care Med 46(9):1385–1392 PubMedCrossRef de Haro C et al (2018) Double cycling during mechanical ventilation: frequency, mechanisms, and physiologic implications. Crit Care Med 46(9):1385–1392 PubMedCrossRef
18.
Zurück zum Zitat Beitler JR et al (2016) Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med 42(9):1427–1436 PubMedPubMedCentralCrossRef Beitler JR et al (2016) Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med 42(9):1427–1436 PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Pohlman MC et al (2008) Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med 36(11):3019–3023 PubMedCrossRef Pohlman MC et al (2008) Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med 36(11):3019–3023 PubMedCrossRef
20.
21.
Zurück zum Zitat Soundoulounaki S et al (2020) Airway pressure morphology and respiratory muscle activity during end-inspiratory occlusions im Druckure support ventilation. Crit Care 24(1):467 PubMedPubMedCentralCrossRef Soundoulounaki S et al (2020) Airway pressure morphology and respiratory muscle activity during end-inspiratory occlusions im Druckure support ventilation. Crit Care 24(1):467 PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Bertoni M et al (2019) A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care 23(1):346 PubMedPubMedCentralCrossRef Bertoni M et al (2019) A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care 23(1):346 PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Neetz B, Herth FJF, Muller MM (2020) Treatment recommendations for mechanical ventilation of COVID19 patients. Gefässchirurgie 25:408–416 CrossRef Neetz B, Herth FJF, Muller MM (2020) Treatment recommendations for mechanical ventilation of COVID19 patients. Gefässchirurgie 25:408–416 CrossRef
24.
Zurück zum Zitat Gattinoni L et al (2004) Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care 8(5):350–355 PubMedPubMedCentralCrossRef Gattinoni L et al (2004) Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care 8(5):350–355 PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Yoshida T et al (2018) Esophageal manometry and regional transpulmonary pressure in lung injury. Am J Respir Crit Care Med 197(8):1018–1026 PubMedCrossRef Yoshida T et al (2018) Esophageal manometry and regional transpulmonary pressure in lung injury. Am J Respir Crit Care Med 197(8):1018–1026 PubMedCrossRef
26.
Zurück zum Zitat Amato MB et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372(8):747–755 PubMedCrossRef Amato MB et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372(8):747–755 PubMedCrossRef
28.
Zurück zum Zitat Bellani G et al (2019) Driving pressure is associated with outcome during assisted ventilation in acute respiratory distress syndrome. Anesthesiology 131(3):594–604 PubMedCrossRef Bellani G et al (2019) Driving pressure is associated with outcome during assisted ventilation in acute respiratory distress syndrome. Anesthesiology 131(3):594–604 PubMedCrossRef
29.
Zurück zum Zitat Vaporidi K et al (2020) Respiratory drive in critically ill patients. Pathophysiology and clinical implications. Am J Respir Crit Care Med 201(1):20–32 PubMedCrossRef Vaporidi K et al (2020) Respiratory drive in critically ill patients. Pathophysiology and clinical implications. Am J Respir Crit Care Med 201(1):20–32 PubMedCrossRef
30.
Zurück zum Zitat Holle RH, Schoene RB, Pavlin EJ (1984) Effect of respiratory muscle weakness on P0.1 induced by partial curarization. J Appl Physiol Respir Environ Exerc Physiol 57(4):1150–1157 PubMed Holle RH, Schoene RB, Pavlin EJ (1984) Effect of respiratory muscle weakness on P0.1 induced by partial curarization. J Appl Physiol Respir Environ Exerc Physiol 57(4):1150–1157 PubMed
31.
Zurück zum Zitat Kera T, Aihara A, Inomata T (2013) Reliability of airway occlusion pressure as an index of respiratory motor output. respir care 58(5):845–849 PubMed Kera T, Aihara A, Inomata T (2013) Reliability of airway occlusion pressure as an index of respiratory motor output. respir care 58(5):845–849 PubMed
32.
Zurück zum Zitat Rittayamai N et al (2017) Effect of inspiratory synchronization during pressure-controlled ventilation on lung distension and inspiratory effort. Ann Intensive Care 7(1):100 PubMedPubMedCentralCrossRef Rittayamai N et al (2017) Effect of inspiratory synchronization during pressure-controlled ventilation on lung distension and inspiratory effort. Ann Intensive Care 7(1):100 PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Bertoni M, Spadaro S, Goligher EC (2020) Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation. Crit Care 24(1):106 PubMedPubMedCentralCrossRef Bertoni M, Spadaro S, Goligher EC (2020) Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation. Crit Care 24(1):106 PubMedPubMedCentralCrossRef
34.
35.
Zurück zum Zitat Mezidi M, Guerin C (2019) Complete assessment of respiratory mechanics during pressure support ventilation. Intensive Care Med 45(4):557–558 PubMedCrossRef Mezidi M, Guerin C (2019) Complete assessment of respiratory mechanics during pressure support ventilation. Intensive Care Med 45(4):557–558 PubMedCrossRef
36.
Zurück zum Zitat Roesthuis L, van den Berg M, van der Hoeven H (2021) Non-invasive method to detect high respiratory effort and transpulmonary driving pressures in COVID-19 patients during mechanical ventilation. Ann Intensive Care 11(1):26 PubMedPubMedCentralCrossRef Roesthuis L, van den Berg M, van der Hoeven H (2021) Non-invasive method to detect high respiratory effort and transpulmonary driving pressures in COVID-19 patients during mechanical ventilation. Ann Intensive Care 11(1):26 PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Yoshida T, Amato MBP, Kavanagh BP (2018) Understanding spontaneous vs. ventilator breaths: impact and monitoring. Intensive Care Med 44(12):2235–2238 PubMedCrossRef Yoshida T, Amato MBP, Kavanagh BP (2018) Understanding spontaneous vs. ventilator breaths: impact and monitoring. Intensive Care Med 44(12):2235–2238 PubMedCrossRef
40.
Zurück zum Zitat Morais CCA et al (2018) High positive end-expiratory pressure renders spontaneous effort noninjurious. Am J Respir Crit Care Med 197(10):1285–1296 PubMedPubMedCentralCrossRef Morais CCA et al (2018) High positive end-expiratory pressure renders spontaneous effort noninjurious. Am J Respir Crit Care Med 197(10):1285–1296 PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Dianti J, Bertoni M, Goligher EC (2020) Monitoring patient-ventilator interaction by an end-expiratory occlusion maneuver. Intensive Care Med 46(12):2338–2341 PubMedCrossRef Dianti J, Bertoni M, Goligher EC (2020) Monitoring patient-ventilator interaction by an end-expiratory occlusion maneuver. Intensive Care Med 46(12):2338–2341 PubMedCrossRef
42.
Zurück zum Zitat Marini JJ, Gattinoni L (2020) Time course of evolving ventilator-induced lung injury: the “shrinking baby lung”. Crit Care Med 48(8):1203–1209 PubMedPubMedCentralCrossRef Marini JJ, Gattinoni L (2020) Time course of evolving ventilator-induced lung injury: the “shrinking baby lung”. Crit Care Med 48(8):1203–1209 PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Iotti GA et al (1995) Respiratory mechanics by least squares fitting in mechanically ventilated patients: applications during paralysis and during pressure support ventilation. Intensive Care Med 21(5):406–413 PubMedCrossRef Iotti GA et al (1995) Respiratory mechanics by least squares fitting in mechanically ventilated patients: applications during paralysis and during pressure support ventilation. Intensive Care Med 21(5):406–413 PubMedCrossRef
44.
Zurück zum Zitat Cereda M et al (2019) Imaging the injured lung: mechanisms of action and clinical use. Anesthesiology 131(3):716–749 PubMedCrossRef Cereda M et al (2019) Imaging the injured lung: mechanisms of action and clinical use. Anesthesiology 131(3):716–749 PubMedCrossRef
46.
Zurück zum Zitat Van de Graaff WB et al (1991) Pressure support. Changes in ventilatory pattern and components of the work of breathing. Chest 100(4):1082–1089 PubMedCrossRef Van de Graaff WB et al (1991) Pressure support. Changes in ventilatory pattern and components of the work of breathing. Chest 100(4):1082–1089 PubMedCrossRef
47.
Zurück zum Zitat Alberti A et al (1995) P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med 21(7):547–553 PubMedCrossRef Alberti A et al (1995) P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med 21(7):547–553 PubMedCrossRef
48.
Zurück zum Zitat Chiumello D et al (2003) Effect of different inspiratory rise time and cycling off criteria during pressure support ventilation in patients recovering from acute lung injury. Crit Care Med 31(11):2604–2610 PubMedCrossRef Chiumello D et al (2003) Effect of different inspiratory rise time and cycling off criteria during pressure support ventilation in patients recovering from acute lung injury. Crit Care Med 31(11):2604–2610 PubMedCrossRef
49.
Zurück zum Zitat Doorduin J et al (2017) Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes. Am J Respir Crit Care Med 195(8):1033–1042 PubMedCrossRef Doorduin J et al (2017) Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes. Am J Respir Crit Care Med 195(8):1033–1042 PubMedCrossRef
50.
Zurück zum Zitat Somhorst P, Groot MW, Gommers D (2018) Partial neuromuscular blockage to promote weaning from mechanical ventilation in severe ARDS: a case report. Respir Med Case Rep 25:225–227 PubMedPubMedCentral Somhorst P, Groot MW, Gommers D (2018) Partial neuromuscular blockage to promote weaning from mechanical ventilation in severe ARDS: a case report. Respir Med Case Rep 25:225–227 PubMedPubMedCentral
51.
Zurück zum Zitat Mauri T et al (2016) Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology 125(1):159–167 PubMedCrossRef Mauri T et al (2016) Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology 125(1):159–167 PubMedCrossRef
52.
Zurück zum Zitat Crotti S et al (2017) Spontaneous breathing during extracorporeal membrane oxygenation in acute respiratory failure. Anesthesiology 126(4):678–687 CrossRefPubMed Crotti S et al (2017) Spontaneous breathing during extracorporeal membrane oxygenation in acute respiratory failure. Anesthesiology 126(4):678–687 CrossRefPubMed
Metadaten
Titel
„Patient self-inflicted lung injury“ (P-SILI)
Von der Pathophysiologie zur klinischen Evaluation mit differenziertem Management
verfasst von
Benjamin Neetz
Thomas Flohr
Felix J. F. Herth
Michael M. Müller
Publikationsdatum
07.05.2021
Verlag
Springer Medizin
Erschienen in
Medizinische Klinik - Intensivmedizin und Notfallmedizin / Ausgabe 7/2021
Print ISSN: 2193-6218
Elektronische ISSN: 2193-6226
DOI
https://doi.org/10.1007/s00063-021-00823-2

Weitere Artikel der Ausgabe 7/2021

Medizinische Klinik - Intensivmedizin und Notfallmedizin 7/2021 Zur Ausgabe

Passend zum Thema

ANZEIGE

COPD und nicht-invasive Behandlungsmethoden

Nicht-medikamentöse Behandlungsmethoden wie die nicht-invasive Beatmung (NIV) können die Leistungsfähigkeit und Lebensqualität von COPD-Patienten erheblich verbessern und das Sterberisiko senken. Die NIV-Therapie zur Behandlung von fortgeschrittener COPD hat Eingang in die neuen S2k-Leitlinien zur COPD-Therapie gefunden.

ANZEIGE

Neue Technologien bei außerklinischer NIV von COPD-Patienten

Einer aktuellen Studie von McDowell et. al.[1] zufolge kann im Gegensatz zur klinischen nicht-invasiven Beatmung (NIV) die außerklinische NIV in Ergänzung mit Telemonitoring und einem Hybridmodus den Zeitraum bis zur Rehospitalisierung oder zum Tod von hyperkapnischen COPD-Patienten verlängern.

ANZEIGE

Auch für ältere Patienten empfiehlt sich nicht-invasive Langzeitbeatmung

Nicht-invasive Beatmung ist für Menschen mit chronisch hyperkapnisch respiratorischer Insuffizienz eine bewährte Therapie. Eine Schweizer Studie untersuchte die Auswirkungen der Beatmung auf über 75-Jährige und belegt nun deren Wirksamkeit.