Skip to main content
Erschienen in: Clinical and Molecular Allergy 1/2018

Open Access 01.12.2018 | Review

Bench to bedside review of myositis autoantibodies

verfasst von: Boaz Palterer, Gianfranco Vitiello, Alessia Carraresi, Maria Grazia Giudizi, Daniele Cammelli, Paola Parronchi

Erschienen in: Clinical and Molecular Allergy | Ausgabe 1/2018

Abstract

Idiopathic inflammatory myopathies represent a heterogeneous group of autoimmune diseases with systemic involvement. Even though numerous specific autoantibodies have been recognized, they have not been included, with the only exception of anti-Jo-1, into the 2017 Classification Criteria, thus perpetuating a clinical-serologic gap. The lack of homogeneous grouping based on the antibody profile deeply impacts the diagnostic approach, therapeutic choices and prognostic stratification of these patients. This review is intended to highlight the comprehensive scenario regarding myositis-related autoantibodies, from the molecular characterization and biological significance to target antigens, from the detection tools, with a special focus on immunofluorescence patterns on HEp-2 cells, to their relative prevalence and ethnic diversity, from the clinical presentation to prognosis. If, on the one hand, a notable body of literature is present, on the other data are fragmented, retrospectively based and collected from small case series, so that they do not sufficiently support the decision-making process (i.e. therapeutic approach) into the clinics.
Abkürzungen
SLE
systemic lupus erythematosus
CTD
connective tissue disease
SjS
Sjögren syndrome
SSc
systemic sclerosis
IIM
idiopathic inflammatory myopathies
PM
polymyositis
DM
dermatomyositis
MSA
myositis-specific autoantibodies
MAA
myositis-associated autoantibodies
ARS
anti-synthetase autoantibodies
IPAF
interstitial pneumonia with autoimmune features
IIF
indirect immuno-fluorescence
CIE
counter-immuno-electrophoresis
ID
immuno-diffusion
ELISA
enzyme-linked immunosorbent assay
FEIA
fluorescent enzyme-linked assay
CLIA
chemiluminescent immuno-assay
IP
immuno-precipitation
ALBIA
addressable laser beads immunoassay
ANA
anti-nuclear autoantibodies
IB
immunoblot
LIA
line blot assays
tRNA
transfer RNA
DID
double immune-diffusion
ILD
interstitial lung disease
ASSD
antisynthetase syndrome
PM/DM
polymyositis/dermatomyositis
NuRD
nucleosome remodelling deacetylase
sIBM
sporadic inclusion body myositis
CK
creatine kinase
SUMOs
small ubiquitin-like modifiers
SAE
SUMO-activating enzyme
MDA5
Melanoma Differentiation-Associated gene 5
RIG-I
retinoic acid-inducible gene I
RLR
RIG-I-like receptors family
RP-ILD
rapidly progressive interstitial lung disease
CADM
clinically amyopathic dermatomyositis
TIF1
transcription intermediary factors-1
TRIM
tripartite motif-containing proteins
NXP-2
nuclear matrix protein 2
PML
pro-myelocitic leukaemia bodies
SRP
signal recognition particle
IMNM
immune-mediated necrotizing myositis
HMGCR
3-hydroxy-3-methylglutaryl-coenzime A reductase
HALIP
anti-HMGCR antibody associated liver immunofluorescence pattern
MTCD
mixed connective tissue disease
sno
small nucleolar
cN-1A
cytosolic 5′nucleotidase
SMN
survival of motor neuron
NPC
nuclear pore complex
PBC
primary biliary cholangitis
AIH
autoimmune hepatitis
FHL1
anti-four-and-a-half LIM domain 1
AMA
anti-mitochondrial antibodies

Background

The detection of autoantibodies in autoimmune diseases, either systemic or organ specific, can have both diagnostic and prognostic importance. Some autoantibodies have a clear pathogenic role, such as anti-erythrocyte membrane proteins antibodies in autoimmune hemolytic anemia and anti-dsDNA in Systemic Lupus Erythematosus (SLE). However, the presence of autoantibodies is more frequently considered to be an epiphenomenon, even though their detection plays a critical role for the diagnosis of some connective tissue diseases (CTDs), [i.e. anti-SSA/Ro in Sjögren syndrome (SjS) and anti-Sm in SLE], as included into the classification criteria of CTDs [1, 2]. Repeated serum sampling might be informative about the clinical course of the disease and response to immunosuppressive therapy, as in the case of anti-dsDNA antibodies in SLE. Furthermore, the presence of some autoantibodies could help to discriminate specific clinical patterns within the same disease, as with diffuse and limited cutaneous systemic sclerosis (SSc) and their relationship with anti-Scl-70 and anti-centromere, respectively.
In idiopathic inflammatory myopathies (IIMs), albeit anti-Jo-1 autoantibody was discovered more than thirty years ago, the percentage of patients in whom an autoantibody could not be recognized (the so called “serologic gap”) was still high until recently. IIMs have been historically divided in polymyositis (PM) and dermatomyositis (DM) on a purely clinical basis despite phenotypic variability.
Due to this heterogeneity, the numerous autoantibodies and unavailability of reliable assays in all the laboratories, the clinical use of serology lagged behind and autoantibodies are not part of the most recent IIM Classification Criteria [3].
A comprehensive review regarding the clinical features, diagnostic work-up and relationship to some peculiar autoantibodies has been recently published by Milone [4].

Myositis-specific and –associated autoantibodies: definitions

Autoantibodies found in IIM patients have been classified into two main categories: myositis-specific autoantibodies (MSAs), which can be found in IIMs exclusively, and myositis-associated autoantibodies (MAAs), which can also be found in other CTDs [5, 6]. MSAs and MAAs are summarized in Table 1.
Table 1
Summary of the main features of MSAs and MAAs
Antibody
Antigen
IP
IIF
Clinical association
Proteins (kDa)
RNA
HEp-2
Myositis-specific autoantibodies (MSAs)
 Anti-Jo-1
Histidyl-tRNA synthetase
50
tRNAHis
Cytoplasmic fine speckled
Classic anti-synthetase syndrome with more frequent muscle involvement
 Anti-PL-7
Threonyl-tRNA synthetase
80
tRNAThr
Cytoplasmic dense fine speckled
Anti-synthetase syndrome with prevalent ILD
 Anti-PL-12
Alanyl-tRNA synthetase
110
tRNAAla
Cytoplasmic dense fine speckled
Anti-synthetase syndrome with prevalent ILD
 Anti-EJ
Glycyl-tRNA synthetase
75
tRNAGly
Cytoplasmic speckled
Anti-synthetase syndrome
 Anti-OJ
Isoleucyl-tRNA synthetase
150 + 170/130/75
tRNAIso
Cytoplasmic speckled
ILD alone or anti-synthetase syndrome
 Anti-KS
Asparaginyl-tRNA synthetase
65
tRNAAsp
Cytoplasmic speckled
ILD alone or anti-synthetase syndrome
 Anti-Zo
Phenylalanyl-tRNA synthetase
60/70
tRNAPhe
Cytoplasmic speckled
Myositis
 Anti-YRS/HA
Tyrosyl-tRNA synthetase
59
tRNATyr
Cytoplasmic speckled
Myositis
 Anti-Mi-2
Nucleosome Remodelling Deacetylase (NuRD) (Mi-2α/β)
240 + 200/150/75/65/63/50/34
 
Fine speckled
Classical DM
 Anti-SAE
Small ubiquitin-like modifier activating enzyme (SAE1/2)
40/90
 
Fine speckled
Severe cutaneous disease that classically precede DM with severe dysphagia and systemic symptoms
 Anti-MDA5 (anti-CADM140)
Melanoma Differentiation-Associated gene 5 (MDA5)
140
 
Negative or Cytoplasmic speckled
Hypo-amyopathic, ILD with possible RP-ILD and severe and peculiar skin involvement
 Anti-TIF1γ/α (anti-p155/p140)
Transcription intermediary factor 1 (TIF1γ/α)
155/140
 
Fine speckled
Juvenile DM. Cancer-associated hypo-myopathic DM
Anti-TIF1β
Transcription intermediary factor 1β
120
 
Fine speckled
DM
 Anti-NXP2 (anti-MJ)
Nuclear matrix protein (NXP-2)
140
 
Fine speckled and/or multiple nuclear dots
Juvenile DM, diffused calcinosis. Cancer-associated DM
 Anti-SRP
Signal recognition particle
72/68/54/19/14/9
7SL
Cytoplasmic dense fine speckled
IMNM with frequent esophageal involvement. Possible ILD
 Anti-HMGCR
HMG-CoA reductase
200/100
 
Negative or Cytoplasmic speckled
IMNM with or without history of statin exposure
Myositis-associated autoantibodies(MAAs)
 Anti-PM-Scl
Exosome protein complex (PM/Scl75/100)
75/100
 
Nucleolar homogeneous
Overlap PM/SSc
 Anti-C1D
Exosome associated protein
   
Overlap PM/SSc
 Anti-U1-RNP
U1 small nuclear RNP
11–70
U1
Coarse speckled
MCTD
 Anti-fibrillarin (anti-U3-snRNP)
Fibrillarin
34
U3
Nucleolar clumpy
SSc
 Anti-Ku
DNA-PK regulatory subunit
70/80
 
Fine speckled
PM/SSc. Potentially severe ILD
 Anti-Ro52
Ro-52/TRIM21
52
 
Negative, fine speckled or cytoplasmic speckled
ILD. Frequently coupled with other MSA
 Anti-Ro60/SSA
Ro-60/SS-A
60
 
Fine speckled
SjS, SLE
 Anti-La/SSB
SS-B
48
 
Fine speckled
SjS, SLE
 Anti-cN-1A (anti-Mup44)
Cytosolic 5′nucleotidase 1A
   
sIBM
Miscellaneous
 Anti-RuvBL1/2
RuvBL1/2 complex
48/49
 
Speckled
SSc, PM, Morphea
 Anti-Su/Ago2
Argonaute 2
100/102 and 200
 
Cytoplasmic discrete dots
ILD in absence of cancer. Frequently coupled with MSA, Ro-52 and other antibodies
 Anti-SMN
Survival of Motor Neuron
38 + 130/120/33
 
Few nuclear dots
PM/SSc
 Anti-NUP
Nup358/RanBP2, gp210, Nup90, p200/p130, Nup62
  
Punctate nuclear envelope
Subgroup of PM/SSc patients (so called NUP-syndrome). PBC
 Anti-mitochondrial (AMA-M2)
Branched-chain α-ketoacid dehydrogenase complex
  
Cytoplasmic reticular/AMA
Long-lasting myositis with muscle atrophy and cardiac involvement. PBC
 Anti-KJ
Translocation factor
30/43
 
Cytoplasmic speckled
Anti-synthetase-like syndrome
 Anti-Fer (anti-eEF1)
Eukaryotic elongation factor 1
   
Anti-synthetase-like syndrome
 Anti-Wa
 
48
 
Cytoplasmic speckled
Anti-synthetase-like syndrome
 Anti-Mas
selenocysteine seryl-tRNA-protein complex
48
tRNA[Ser]Sec
Cytoplasmic speckled
Non-immune mediated rhabdomyolysis. Autoimmune hepatitis
 Anti-PMS
DNA repair mismatch enzyme (PMS1, PMS2, MLH1)
   
Mild myositis
 Anti-cortactin
Cortactin
68
  
PM. Myasthenia gravis
 Anti-FHL1
Four-and-a-Half LIM domain 1
   
Myositis and muscular atrophy with severe systemic involvement
There is no agreement about the attribution of rare and newly discovered autoantibodies to either MSAs or MAAs group [7]. Anti-synthetase autoantibodies (ARS) themselves, especially anti-PL-7, PL-12 and KS, often detected in interstitial pneumonia with autoimmune features (IPAF) patients, independently from muscular involvement, are still discussed as MSAs [8].
The MAAs group contains Anti-Pm-Scl, U1/U2RNP and Ku, which are associated with overlap syndromes with muscular involvement [9]. Anti-fibrillarin and anti-U1-snRNP are sometimes considered as MAAs, even though they are more specific for the diagnosis of SSc and mixed connective tissue disease (MCTD), respectively [10, 11]. Anti-Ro52 are usually considered a MAA, even though they are more frequently found in association with other MSA (ARS, anti-MDA5 and anti-SRP, in particular) [12], and define a peculiar clinical spectrum in which the lung involvement is more common than the muscular one [13].

Detection methods

There are several methods to test for MSAs and MAAs, with variable sensibility, specificity, costs, complexity and feasibility in clinical and research settings. Indirect immuno-fluorescence (IIF) on HEp-2 cells, counter-immuno-electrophoresis (CIE), immuno-diffusion (ID) and immuno-enzymatic assays such as enzyme-linked immunosorbent assay (ELISA), fluorescent enzyme-linked assay (FEIA) and chemiluminescent immuno-assay (CLIA) are the most commonly adopted systems in diagnostic laboratories. However, immuno-precipitation (IP) of RNAs with silver staining and/or protein IP of cellular lysates (usually K562 cells) radiolabeled with 35S-methionin, is the gold standard for most antibodies. In order to streamline the detection of many autoantibodies at the same time in a cost/effective manner, recent multiplex assays, like immunoblots (IB) and Addressable Laser Beads Immuno Assay (ALBIA) have been developed [14].
Anti-nuclear autoantibodies (ANA) determination by IIF is virtually universally available and it can be considered an accessible screening method for many MSAs and MAAs [15]. Furthermore, the recognition of particular IIF patterns can hint to some specific autoantibodies. However, using ANA IIF as the sole screening method for MSAs/MAAs, is not recommended because of low sensitivity, very low specificity and/or lack of antigen expression by HEp-2 cells [16]. In addition to this, ANA IIF is burdened by reproducibility issues due to the operator-dependent recognition of rare patterns and variation among different commercial HEp-2 substrates [17].
CIE and ID have historically been the first methods to detect specific MSAs/MAAs. Even though they identify numerous specificities within a single assay, they are semi-quantitative, work-intensive and scarcely sensitive [14]. For all those reasons, they have been largely substituted by immunoenzymatic tests.
The main advantages of ELISAs are standardization, large-scale reproducibility and quantitative results. The disadvantage of the conjugation of antigens to a substrate resides on the possible loss of conformational epitopes and/or the formation of neo-epitopes, which may in turn impact the test performance [14].
Immunoblot (IB) assays can simultaneously test for many autoantibodies, albeit the denaturation of proteins during gel preparation implicates the recognition of linear epitopes only [14].
Commercial multiplex IBs, like dot blots or line blot assays (LIA), based on recombinant or synthetic peptides have been increasingly available, benefitting from pure antigens not requiring a gel passage [18, 19].
IP is the gold standard as it evaluates the binding of the autoantibodies to the RNA and protein complexes in their native conformation, yielding the best sensitivity and specificity [20]. The major limitations of IP are due to technical difficulties, costs and use of radioactive reagents [20]. In addition, interpretation may be complex because the target antigen can co-precipitate with non-target complexed proteins, with the consequence of multiple IP bands [20]. Thus, a comparison with reference sera or further purification and characterization with other methods (i.e. mass spectrometry) is necessary [14]. Quantitative PCR of reverse transcribed RNA components extracted from standard IP can be also used as a detection method for autoantibodies binding ribonucleoproteic complexes [21].

Myositis-specific autoantibodies

Anti-synthetases autoantibodies

ARS are a group of autoantibodies directed against the aminoacyl transfer RNA (tRNA) synthetases, which are amino acid-charging enzymes. Autoantibodies to eight tRNA synthetases have been discovered so far: histidyl (Jo-1), threonyl (PL-7), alanyl (PL-12), glycyl (EJ), isoleucyl (OJ), asparaginyl (KS), phenylalanyl (ZO), and tyrosyl (YRS/HA) tRNA synthetases [22].
Anti-Jo-1 antibodies were identified by double immune-diffusion (DID) of calf thymus extract in 1980 and were the first MSAs described [23]. IP represents the gold standard for their identification with the following protein bands: Jo-1 50 kDa, PL-7 80 kDa, PL-12 110 kDa, EJ 75 kDa, OJ 150 kDa and a multi-enzyme complex of 170, 130, and 75 kDa, KS 65 kDa, ZO 60/70 kDa, YRS/HA 59 kDa [22].
IIF on HEp-2 cells usually demonstrates a cytoplasmic pattern, ranging from fine (Jo-1) to dense fine speckled or homogeneous (PL-7, PL-12) whereas the nucleoplasm is usually negative (Fig. 1a–e) [24]. In these cases, also patients without muscular involvement should be assessed for ARS especially when interstitial lung disease (ILD), arthritis or scleroderma features are present [25].
Anti-Jo-1 is the only autoantibody routinely tested as widely available in most commercial ENA screening assays. An ELISA screening test has been recently developed to identify ARS, with high sensibility and specificity if compared to IP [26] and some commercially available IBs can identify some non-Jo-1 anti-synthetase antibodies [20, 25].
Anti-Jo-1 was first discovered in the ‘80ies in patients with PM [23]. Larger cohorts later demonstrated that its presence was associated with the classical triad of arthritis, myositis and ILD in the majority of patients, in addition to Raynaud’s phenomenon, mechanic’s hands and fever. This clinical presentation together with anti-Jo-1 autoantibodies, led to the description of the antisynthetase syndrome (ASSD), the first attempt to phenotype IIMs in clinical-serologic syndromes [27]. Anti-Jo-1 is detected in 15-25% of patients with polymyositis/dermatomyositis (PM/DM), whereas the other ARS are rarer (anti-PL-7 4-12%, PL-12 < 5%, EJ < 5%, OJ < 5% and only few cases reported with anti-KS, ZO e HA/YRS) [22]. In two-third of the cases, high titers of anti-Ro52 antibodies can be also detected and have been associated with an higher risk of ILD [28].
Clinically, anti-PL-7 patients more frequently present hypo-myopathic features [29, 30], whereas in anti-PL-12 and anti-KS patients the disease can be limited to the lung [3133]. In a quarter of anti-Jo-1 patients, a symmetrical polyarthritis mimicking rheumatoid arthritis is the main presenting finding and, in some of them, anti-cyclic citrullinated peptide antibodies and rheumatoid factors can be also detected [34].
Regardless of clinical characteristics at presentation (arthritis, myositis and ILD) every patient tends to develop the other features of ASSD when not properly treated [34]. Of note, the lower esophageal sphincter is involved more frequently if compared to the other IIMs [35]. ASSD is histopathologically classified within perimysial immune-myopathies in which perimysium fragmentation and muscle fiber necrosis are the main feature, differently from other DM biopsically characterized by atrophy and vasculopathy [36]. Type I interferon-signature in ASSD is responsible for MHC class I upregulation [37] and MHC class II perifascicular expression [38].

Anti-Mi-2

Anti-Mi-2 antibodies were the first autoantibodies specific for DM recognized by DID using calf thymus extract [39]. Mi-2 is a helicase of the Nucleosome Remodeling Deacetylase (NuRD) multi-protein complex with nucleosome remodeling and histone deacetylase/demethylase activities [40]. Anti-Mi-2 autoantibodies immunoprecipitate a major protein of 240 kDa, composed by two proteins, Mi-2α and Mi-2β of 220 and 218 kDa, respectively. Other NuRD complex proteins co-precipitate at 200, 150, 75, 65, 63, 50 and 34 kDa [41, 42]. IIF on HEp-2 cells reveals a characteristic fine speckled ANA pattern; during metaphase, chromatin mass is not stained but the nucleoplasm presents the same fine tiny speckles (Fig. 1f). Commercial ELISA and immunoblot kits identify anti-Mi-2 autoantibodies. Anti-Mi-2 are commonly detected in DM patients, either in adults (11–59%) or in children (4–10%), with a great variability among the studies. Their presence in PM and sporadic inclusion body myositis (sIBM) is rarer [40].
The Mi-2 protein is over-regulated during muscle regeneration in DM patients and thought to be related to UV rays exposition, sex and HLA (DRB1*0302 and DRB1*0701) [4345]. Anti-Mi-2 positive DM patients usually exhibit mild myopathy despite high creatine kinase (CK) levels, without lung involvement and/or cancer [43]. Overall, anti-Mi2 positive is associated with a positive prognosis and a good response to corticosteroids [43].

Anti-SAE

Small Ubiquitin-like Modifiers (SUMOs) have a key role in post-transcriptional modification of specific proteins in a ubiquitin-like fashion. This process is controlled by the SUMO-Activating Enzyme (SAE), a heterodimer composed of two subunits, SAE-1 and SAE-2 [46], representing the targets of anti-SAE autoantibodies. IP characteristically shows two bands of 40 and 90 kDa, respectively [46, 47]. The IIF ANA pattern is coarse or fine speckled and nucleoli are typically not stained (Fig. 1g) [47].
Anti-SAE are associated with a typical DM phenotype with different prevalence in European (4-10%) and Asian (1–3%) cohorts [4850], probably due to the strict association with HLADRB1*04-DQA1*03-DQB1*03 haplotypes [51].
The cutaneous involvement is usually severe and typically precedes the muscular involvement. Other clinical relationships cannot be excluded because of the few described cases. However, ILD seems to be rare, whereas severe dysphagia and systemic symptoms have been reported [47]. Only one case series claimed an association with cancer [52].

Anti-MDA5

Melanoma Differentiation-Associated gene 5 (MDA5) or Interferon-induced helicase C domain-containing protein 1 (IFIH1), is an innate cytosolic sensor, member of the retinoic acid-inducible gene I (RIG-I)-like receptors family (RLRs). MDA5 is able to recognize double-stranded RNA and to initiate signaling events leading to type I interferons production [53].
Anti-MDA5 autoantibodies were firstly detected in IP as a 140 kDa band in a Japanese case series of patients with clinically amyopathic dermatomyositis (CADM) and rapidly progressive interstitial lung disease (RP-ILD). For this reason, they were initially called anti-CADM-140 autoantibodies [54]. Nowadays, ELISA and IB tests are commercially available.
IIF on HEp-2 cells is usually negative. In our experience, a faint fine speckled cytoplasmic fluorescence may be detected in scattered cells (unpublished data) (Fig. 1h).
Clinically, DM anti-MDA5 positive patients present low grade/absent muscle inflammation and acute or subacute RP-ILD [55, 56], which is considered the major negative prognostic factor of this subgroup [57].
MDA5 represents the most frequent target antigen in DM patients of Asian ancestry (10–48% of cases) [58] whereas its prevalence in Europe and USA ranges from 0 to 13%, with great variability among the studies [5961] and a different clinical presentation. A forthcoming European case series is going to be presented at the European League Against Rheumatism 2018 Congress by Cavagna et al. (unpublished data). A seasonal pattern of CADM has been proposed by Muro et al. [62], suggesting the influence of environmental factors and HLA-DRB1*04:01 and *12:02 have been proposed as further predisposing factors [63].
In addition to classic DM-related cutaneous manifestations, skin involvement is usually severe and characterized by the so called “inverse Gottron papules”, which are tender palmar papules that tend to evolve towards ulcerated-necrotic lesions, with or without digital pulp ulcers [64, 65]. In addition, polyarthritis, recurrent oral aphtosis and diffuse alopecia have been described [66]. A juvenile DM with anti-MDA5 autoantibodies has been also described [67]. No association with malignancies has been demonstrated so far. Macrophage activation syndrome have been described in CADM associated RP-ILD patients. Particularly, a ferritin level of above 1500 ng/mL has been claimed as a predictor of death [68, 69]. Anti-MDA5 autoantibodies titer seems to correlate with disease activity and response to therapy [69].

Anti-TIF-1

The transcription intermediary factors-1 (TIF-1) family belongs to the tripartite motif-containing proteins (TRIM) superfamily and is involved in multiple biological processes, such as cycle regulation, mitosis and innate immunity [70].
Targoff et al. and Kaji et al. [71, 72] independently described two antibodies directed against a 155 and 140 kDa, rapidly identified as TIF-1γ (TRIM33) and TIF-1α (TRIM24), respectively. Subsequently, a third 120 kDa band, partially overlapping with anti-PL-12, was identified as TIF1β (TRIM28) [73].
IIF on HEp-2 cells demonstrates a fine speckled nuclear pattern (Fig. 1i). ELISA and IB, compared to IP, are reliable test for the detection of anti-TIF-1γ autoantibodies [74]. Two-thirds of the patients present anti-TIF-1γ and anti-TIF-1α autoantibodies, whereas the remaining one-third is positive for anti-TIF-1γ autoantibodies exclusively [70]. Albeit MSAs are claimed to be mutually exclusive, double-positive patients for anti-TIF-1α/Mi-2 autoantibodies have been described [75].
Hyper-expression of TIF-1γ has been found in tumors [76] and regenerating myofibres of DM patients [77]. A meta-analysis demonstrated that anti-TIF-1γ has a 78% sensitivity and 89% specificity for the diagnosis of cancer-associated myositis, with a 58% positive and 95% negative predictive value [78]. The risk of malignancy is higher in patients with anti-TIF-1γ/α than in those with anti-TIF-1γ alone [70].
Clinically, anti-TIF-1 positive patients can be classified in two age groups: (1) younger than 40-year-old patients, with a classical DM at presentation and (2) older than 40-year-old patients, with cancer-associated myositis [70]. Solid tumors, like ovary, lung and breast cancer are the most commonly associated neoplasia, but hematologic disorders and malignancies have been described as well [79]. In general anti-TIF-1γ patients exhibit a hypo-myopathic DM with reduced prevalence of systemic involvement, namely ILD, Raynaud’s phenomenon and arthritis [80]. Conversely, nutcracker esophagus is three times more frequent in anti-TIF-1γ patients than other IIMs [35]. Widespread cutaneous involvement is associated with unique features, such as palmar hyper-keratotic papules, psoriatic-like dermatitis and atrophic hypo-pigmented patches with telangiectasias [80]. An ovoid palatal patch may be present in about one half of patients, more frequently females with cancer-associated amyopathic disease [81].

Anti-NXP-2

Nuclear matrix protein 2 (NXP-2), encoded by the microrchidia 3 gene, is a 140 kDa protein involved in epigenetic regulation, RNA metabolism and preservation of nuclear chromatin architecture [82]. Anti-NXP-2 autoantibodies were found in a cohort of juvenile DM patients as a 140 kDa protein firstly named anti-MJ [83].
IIF on HEp-2 cells reveals a fine speckled nuclear pattern (Fig. 1k). Moreover, a nuclear dots pattern is detectable in 60% of sera [84], due to co-localization of NXP-2 with pro-myelocitic leukemia (PML) bodies [85] (Fig. 1j).
Anti-NXP-2 antibodies have been initially associated with a severe juvenile DM complicated by calcinosis, polyarthritis and intestinal vasculitis [86]. More recently, they have been also found in adult patients, with variable prevalence from 1.6 to 17% [8789]. Anti-NXP-2 autoantibodies show a bimodal spectrum of clinical association, with calcinosis being more frequent in younger patients and cancer more common in the elderly [90], especially in male gender [88], even though with a lower prevalence when compared to anti-TIF-1 [87, 88].

Anti-SRP

The signal recognition particle (SRP) is a complex of six proteins (9, 14, 19, 54, 68 and 72 kDa) and a 300 nucleotides long RNA (7SL RNA) involved in the recognition and transportation of proteins to the endoplasmic reticulum [91]. Anti-SRP autoantibodies are more frequently directed against the SRP-54 fragment, albeit anti-SRP-68, anti-SRP-72 and anti-7SL RNA autoantibodies have been also described [91].
A dense fine speckled cytoplasmic pattern has been associated with the presence of anti-SRP (Fig. 2a); moreover, IIF on stomach–liver–kidney rat sections demonstrates a cytoplasmic staining of gastric chief cells (Fig. 2b) and hepatocytes (Fig. 2c) [92].
Anti-SRP-54 autoantibodies ELISA tests are commercially available, but they are less sensitive than IP [93]. Anti-SRP antibodies can also be tested on LIA assays, however careful temperature control is necessary in order to avoid false positive results [19].
These autoantibodies are strongly associated with immune-mediated necrotizing myositis (IMNM) where they may play a pathogenic role [94]. Histopathologically, they are characterized by scarce inflammatory CD8+ endomysial infiltrate, class I MHC upregulation, necrosis and myofiber regeneration [36] with poor response to therapy, mimicking muscular dystrophy [95]. Being strongly associated to HLA-DR5, the prevalence of anti-SRP autoantibodies is higher in Asian (8–13%) than in European patients [96]. Prevalence of anti-SRP in IMNM is highly variable among studies, ranging from 0 to 54%, because of differences regarding the type of assay (IB vs IP), low number of patients and genetic background [97100]. In addition, esophageal involvement is common [101], whereas the possibility of a prominent cardiac involvement has not been yet confirmed [99, 102]. Lung involvement has been reported in a few cases [103], as well as an overlap with anti-synthetase antibodies like PL-12 and anti-Jo-1 [104, 105]. Intriguingly, autoantibodies level correlates to disease activity, CK levels and response to therapy [106].

Anti-HMGCR

The 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) is the rate-controlling enzyme of the mevalonate pathway, bringing to the production of cholesterol. Of note, HMGCR is the same enzyme targeted by statins. Autoantibodies towards a complex 200/100 kDa band were first described in patients with IMNM, and only after identified as anti-HMGCR autoantibodies [107].
IIF pattern is difficult to recognize. In a minority of cases finely granular cytoplasmic staining with a perinuclear reinforcement is visible on a small number of scattered cells (3% of the total cellularity) (Fig. 2g). On rat liver, a scattered cytoplasmic staining of hepatocytes around the liver lobules, namely anti-HMGCR Antibody Associated Liver Immunofluorescence Pattern (HALIP), can be noted (Fig. 2i) [108, 109]. Anti-HMGCR antibodies can be identified with different immunoenzymatic technologies, such as ELISA, CLIA, IB or ALBIA [110].
A history of statin exposure is not mandatory to develop anti-HMGCR positive IMNM, being of some relevance only in patients older than 50 [111, 112]. Anti-HMGCR antibodies are not found in self-limiting statin associated myopathy [113], albeit they may be associated with an increased risk of cancer [114]. An association with the DRB1*11:01 haplotype has been demonstrated, whereas DQA1 and DQB1 seem to have a protective role [115].
Anti-HMGCR positive patients present with a typical IMNM, responds well to immunosuppressive therapy and intravenous immunoglobulins [116], but tend to relapse after tapering [111]. Younger patients experience more severe disease with worse prognosis [117]. Autoantibody titers seem to correlate with CK levels, muscular weakness and response to therapy [111].

Myositis-associated autoantibodies

Numerous MAAs have been described so far. Characteristically, they can be found in IIMs, albeit not specific as found in other CTDs [118].

Anti-PM-Scl

Anti-PM-Scl autoantibodies are directed against the exosome, a macromolecular nucleolar complex composed by 11–16 proteins (from 20 to 110 kDa) that degrades mRNA. The two pivotal proteins of the complex are PM-Scl-75 and PM-Scl-100. IP represents the gold standard for their determination. Historically, an ID test after positive nucleolar staining in IIF was used to confirm anti-PM-Scl reactivity.
PM-Scl-100 and PM-Scl-75 were identified in 1992 and, in the following years, the immuno-dominant epitope PM1α was cloned and employed to develop reliable and specific ELISA tests [119]. PM1α ELISA and PM-Scl-100 LIA tests show concordance with IP at high level (> 90 and 98.3%, respectively), whereas PM-Scl-75 LIA has a lower specificity, especially when considering PM/SSc overlap syndromes [120]. Single positivity against PM-Scl-75 or -100 can be detected and associates with different disease phenotypes. HEp-2 IIF typically shows a mixed homogeneous nucleolar and fine speckled nuclear pattern when anti-PM-Scl-100 are present, whilst anti-PM1-α and PM-Scl-75 may show both nucleolar and non-nucleolar patterns (Fig. 3a, b).
PM-Scl autoantibodies are found in 4–12% of adult patients with myositis [121, 122] with low prevalence in Asiatic and paediatric cohorts [123]. Their presence has been associated with HLA-DQA1*0501, DQB1*02 and DRB1*0301 alleles [122].
Despite their presence in many connective tissue diseases, these autoantibodies are typically present in PM/SSc overlap syndromes with an increased risk of Raynaud’s phenomenon, arthritis, mechanic’s hands and ILD [124]. In detail, isolated anti-PM-Scl-75 have been more frequently found in patients with joint contractures and SSc, higher CK levels associate with anti-PM-Scl-100, whereas the simultaneous presence of anti-PM-Scl-75 and -100 are linked to muscle involvement, digital ulcers and ILD but lower prevalence of lung hypertension [125].
Autoantibodies directed against C1D, an exosome associated protein, were detected by ELISA and Western blot analysis in 23% of a PM/SSc overlap syndrome cohort, with frequencies comparable to anti-PM/Scl antibodies [126].

Anti-RNP

The RNP/Sm complex comprises several proteins (70 kD, A, A′, B, B′, B″, C, D, E, F, G) and five RNA (U1, U2, U4, U5 and U6). U1 RNA interacts with 70 kD, A and C to create the U1-snRNP [127]. High-titre anti-U1-snRNP and in particular when targeting the 70kD protein are considered specific markers of mixed connective tissue disease (MTCD), whereas low titres can be found in other CTDs [127].
Many home-made or commercial assays can detect anti-RNP autoantibodies, with differences among immunoassays depending on the immobilized antigen [127]. Usually, anti-U1-snRNP (more often the 70k subunit) and the anti-Sm (typically the D subunit) are the only autoantibodies tested in clinical practice. Large speckled and large coarse speckled are the most frequent HEp-2 IIF patterns observed (Fig. 3c).
Patients with myositis may exhibit anti-U1-snRNP positivity, especially those with a mild disease [128, 129]. They are usually steroid-responsive, even though ILD and/or neurological involvement may be part of the clinical presentation [128, 129]. Whether the only presence of anti-U1-snRNP and myositis has to be considered an incomplete form of MTCD or a true myositis, is still a matter of debate [128, 129]. In addition, anti-U2-RNP [130], U5-RNP [131] and anti-U4/U6-RNP [132] have been described in patients with PM/SSc overlap syndrome.

Anti-fibrillarin

Fibrillarin, a highly conserved nucleolar 34 kDa protein involved in the processing of ribosomal RNA, is part of the U3-small nucleolar (sno)-RNP complex together with other proteins and U3 RNA. Fibrillarin is the primary target of anti-U3-snoRNP autoantibodies [133]. IP is the gold standard for its detection showing good concordance with IB assays that use the recombinant protein [134].
HEp-2 IIF demonstrates a typical “clumpy” nucleolar pattern, with jagged staining of the nucleoli, coiled bodies and peri-chromosomal staining at the metaphase plates [135] (Fig. 3e).
Anti-fibrillarin antibodies are detected in a small percentage of SSc patients and rarely in SLE, primary Raynaud’s phenomenon and myositis [136]. In detail, they identify a subset of SSc patients more often of African origin, with serious cutaneous and visceral involvement and a higher prevalence of myositis [137, 138].

Anti-Ku

The Ku protein, involved in the canonical non-homologous end-joining pathway of the DNA repair, is a heterodimer consisting of the two subunits, 70 and 80 kDa [139]. Anti-Ku can be identified with numerous assays, such as ELISA, CIE or IB. IIF demonstrates a fine speckled nuclear pattern with a peculiar ring beam surrounding the metaphase on HEp-2 cells and a clumpy speckled pattern on primate’s liver [140] (Fig. 3d).
Anti-Ku autoantibodies have been identified in 9-19% of the patients with PM/SSc overlap syndromes and SLE, being associated with arthralgia, Raynaud’s phenomenon and ILD [141, 142]. Of note, whilst muscular involvement seems to be steroid-sensitive, ILD is more frequently progressive, severe and steroid-resistant [143].

Anti-Ro

Antibodies directed against the ribonucleoproteic complex SSA/Ro and SSB/La have been originally identified in SjS and SLE. Actually, antigen Ro is made by two separate complexes of 52 and 60 kDa called Ro52/TRIM21 and SSA/Ro60, respectively. Antigen SSB/La has a molecular weight of 48 kDa [144].
ANA may result falsely negative on traditional HEp-2 cells when isolate anti-Ro are present, because Ro52 is a cytoplasmic antigen and Ro60 may be lost during the preparation. For this reason, human SSA/Ro60-transfected HEp-2 cells (HEp-2000) are sometimes used [145, 146]. Otherwise, a characteristic pattern defined as “myriad discrete fine speckled” may be observed [147]. Anti-SSB autoantibodies show a similar pattern [148].
Anti-Ro52 can be found in IIMs [149] and are frequently associated with other MSAs, in particular anti-synthetase [28], anti-MDA5 [61] and anti-SRP autoantibodies [12].
They are known to be a negative prognostic factor regarding systemic involvement such as ILD, whereas their role in the severity of muscular involvement has not been identified [13]. Anti-Ro52 autoantibodies are known to be associated with atrioventricular congenital heart block [150].

Anti-cN-1A

Cytosolic 5′nucleotidase 1A (cN-1A o NT5C1A) is a protein involved in the hydrolysis of adenosine monophosphate, controlling energy and metabolic cell balance [151]. Anti-cN-1A autoantibodies, first called anti-Mup44, were simultaneously described by Salajegheh et al. and Pluk et al. [152, 153] as targeting a 44 kDa protein in patients with sIBM.
These autoantibodies were initially detected by immunoblotting from purified skeletal muscle extracts [153]. A novel standardized IgG ELISA is now available [154]. In addition to IgG, circulating IgA and IgM anti-cN-1A autoantibodies have been recognized [155]. IIF ANA pattern is still undefined.
Anti-cN-1A autoantibodies are demonstrated in one-third of the patients with sIBM and in less than 5% with other IIMs or neuromuscular diseases [151]. A recent study demonstrated that positive anti-cN-1A sIBM patients are included in a more severe sIBM subtype and represent a homogeneous group as exhibiting higher mortality risk, less proximal upper limb weakness (not typical of sIBMs) and a cytochrome oxidase deficiency in muscular fibers, when compared to negative patients [156].
It is not known whether they have to be considered as MSAs or MAAs as also demonstrated in other autoimmune diseases, such as SjS (30%) and SLE (20%) [157]. Furthermore, they have been recently demonstrated in a cohort of severe juvenile myositis with lung involvement, juvenile idiopathic arthritis, but also in 12% of healthy children [158].
Despite low sensitivity, anti-cN-1A autoantibodies are high specific and highly predictive of sIBM [159] thus being of particular importance when bioptic specimens are not diagnostic.

Miscellaneous autoantibodies in IIM

Several other autoantibodies have been identified as associated with IIMs, but little is known about their clinical relevance. In fact, they are not routinely determined because easy-to-perform routine specific immunoassays still lack and they are rarely found.

Anti-RuvBL1/2

RuvBL1 (49kD) and RuvBL2 (48kD) constitute a nuclear complex involved into DNA repair and transcription. Two distinct bands of approximately 50 kDa are found in IP [160]. By means of ELISA and/or IB techniques, anti-RuvBL1/2 have been found in several CTDs, but those involved in SSc and myositis recognize different conformational epitopes identified by IP exclusively [160]. On HEp-2 cells, a fine speckled pattern is associated with these antibodies, with increased fluorescence in prophase and decreased in metaphase. Additionally, a fine speckled pattern can be found in the cytoplasm of about 40% positive sera [160]. Anti-RuvBL1/2 antibodies are highly specific for SSc, are associated with PM/SSc overlaps with diffuse cutaneous sclerosis and more frequently found in older patients of male sex [160162] or, less frequently, in necrotizing polymyositis with morphea [162].

Anti-Su/Ago2

Anti-Su/Argonaute-2 (anti-Su/Ago2) autoantibodies have been originally identified in SLE patients by means of immunodiffusion technique in the late ‘80ies [163]. Although their high prevalence in CTDs, few studies are available.
By IP, two distinct 100 and 102 kDa adjacent bands can be seen in addition to a further 200 kDa band [164]. Argonaute-2 protein constitutes the 100 kDa band and plays a key role in miRNA and interference RNA maturation and metabolism [163]. Argonaute-2 colocalized with GW bodies, a cytoplasmic organelle associated with RNA metabolism [164]. Its location and function is responsible for the particular cytoplasmic pattern of these autoantibodies also known as “GW-bodies-like” or “cytoplasmic discrete dots” (Fig. 3f) [164].
Anti-Su/Ago2 autoantibodies are frequently associated with other MSA or MAA antibodies, in particular ARS, anti-TIF-1γ and anti-MDA5 [165]; anti-Ro52 antibodies are found in almost one half of the patients [166]. It has been reported that anti-Su/Ago2 antibodies can be demonstrated in about 7.5% of the patients of Japanese origin. Apparently, there is no statistical difference between anti-Su/Ago2 positive and negative patients; however, a correlation seems to exist with ILD and absence of cancers [165].

Anti-SMN

The Survival of Motor Neuron (SMN) is a multi-ribonucleoproteic complex able to interact with the RNP-complex related D–E–F-G proteins. The SMN complex is involved into the assembly of snRNPs and co-localizes with Cajal bodies. These autoantibodies have been first described in a small number of PM patients negative for anti-U1-snRNP and/or anti-Sm but positive for RNP D–E–F-G bands by IP. This observation was indeed responsible for the identification of other SMN-complex components, namely Gemin 2 (33 kDa), Gemin 3 (130 kDa), Gemin 4 (120 kDa) and SMN itself (38 kDa) [167].
Anti-SMN antibodies typically exhibit a few nuclear dots pattern on HEp-2 cells with well distinguished 2–7 nuclear dots, similarly to anti-p80-coilin, anti-NXP2 and anti-PML pattern, seldom associated to cytoplasmic or nuclear speckled patterns (Fig. 3g).
It is not clear whether positive patients exhibit distinct clinical features. Anyhow, in the original small group of positive patients [167] and a small Italian cohort [20], a PM/SSc overlap syndrome was present. It is of note that SMN-complex genetic mutations are frequently found in neuromuscular degenerative diseases such as spinal-muscle atrophy. That is why anti-SMN autoantibodies are of relevance in basic research [168].

Anti-NPC

Nuclear pore complex (NPC) regulates protein and RNA trafficking to the nucleus. It is constituted by a complex of several proteins including Nup358/RanBP2, Nup90, Nup62 and gp210 [169]. Anti-NPC autoantibodies, and, in particular, anti gp210 are typically associated to Primary Biliary Cholangitis (PBC) and Autoimmune Hepatitis (AIH) [170]. In a cohort study from Canada, anti-NPC antibodies were found in a PM/SSc overlap syndrome and called anti-NUP Syndrome, which was found to be associated with HLA-DQ1*0501. In this case, a typical nuclear speckled laminar pattern on HEp-2 cells was observed [171] (Fig. 3h).

AMA-M2

Among the ten different anti-mitochondrial antibodies (AMA), called M1–M10, anti-M2 antibodies (AMA-M2) are the hallmark of PBC [172]. However, they can be also found in 7–12% of IIM patients without PBC [173]. AMA antibodies are readily detectable on HEp-2 cells as they display a pathognomonic cytoplasmic reticular pattern, and in triple tissue slides (Fig. 2d–f). In a Japanese study, the presence of AMA-M2 in the course of IIM was associated with muscle atrophy, granuloma formation [173] and heart involvement with high risk of supraventricular arrhythmias [174]. A distinct inflammatory phenotype associated with chronic skeletal muscle disease and severe cardiac involvement was also found in a North American cohort [175]. These associations have not been confirmed in an European series [176].

Other antibodies

Several cytoplasmic autoantibodies are described in IIM patients such as anti-KJ towards a 30/43 kDa translocation factor [177], anti-Fer directed against the elongation factor 1 and anti-Wa recognizing a 48 kDa cytoplasmic protein with still unknown function [132]. All these antibodies are typically found in anti-synthetase-like syndromes. Anti-Mas antibodies are directed against a selenocysteine-containing tRNA complex lacking any tRNA-synthetase activity but involved in protein translocation. The band of precipitation is found at 48 kDa [178]. These antibodies have been described in AIH and in a single patient with non-immune mediated rhabdomyolysis [178].
DNA-repairing complexes, especially mismatch-repair complexes such as PMS1, PMS2 and MLH1, are frequently recognized as target antigens in IIMs [179]. Initially defined as MSAs, they do indeed frequently associate with other MSAs, in particular anti-Mi-2, but they can also be found in other non-muscular diseases, such as SLE. They generally mark mild disease [180].
Anti-cortactin antibodies have been initially found in IIM patients characterized by the simultaneous presence of anti-MDA5 or anti-HMGCR antibodies by ELISA [181]. As blot confirming assay identified an unexpected 68 kDa band, it was then found that MDA5 and HMGCR extracts used in the ELISA tests were contaminated by cortactin [181]. Anti-cortactin antibodies were originally found in myasthenia gravis [182] and later in IIM patients (about 20%) and other systemic connective tissue diseases [181].
Anti-Four-and-a-Half LIM domain 1 (FHL1) antibodies were identified in about 25% of IIM patients. These antibodies associated with a severe prognosis, muscle atrophy, vasculitis, dysphagia and advanced muscular damage. Curiously, FHL1 mutations cause hereditary X-linked congenital myopathies [183].

Conclusions

Although autoantibodies are considered to be epiphenomenon in autoimmunity, their presence frequently plays a pivotal role for the diagnosis of these diseases. Indeed, several of them exhibit a pathogenethic role in IIMs. Despite this, there is still a gap between bench and bedside because the intense basic research efforts have not been translated in clinical practice, as already futuristically underlined more than 20 years ago [96, 184]. As a fact, only anti-Jo-1 have been included into the 2017 Classification Criteria for Adult and Juvenile IIMs [3].
Remarkably, in the context of heterogeneously grouped diseases such as myositis, they should be even more appreciated as able to clinically stratify patients in terms of diagnostic work-up, histological patterns, peculiar organ involvement, severity, and, therefore, treatment intensity and prognosis. This process could be accomplished by a laboratory auto-immunologist [185] well-trained in recognition of IIF ANA nuclear and, also, cytoplasmic patterns, in strict collaboration with the clinical doctor, as a decision-maker for running in-depth analysis towards the identification of the culprit autoantibody.
In addition, multicentric studies with a multidisciplinary approach may help bridging the divide of the selection bias depending on the setting where patients are initially screened (i.e. pneumologic vs. dermatologic vs. immuno-rheumatologic vs. neurologic outpatient clinics).

Authors’ contributions

BP and GV drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank the team of Immunoallergology Laboratory, AOU-Careggi, Florence for the great deal of teamwork and constant readiness to our requests.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

Not applicable.
Not applicable.
Not applicable.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Petri M, Orbai A-M, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64:2677–86.PubMedPubMedCentralCrossRef Petri M, Orbai A-M, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64:2677–86.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren’s syndrome. Ann Rheum Dis. 2017;76:9–16.PubMedCrossRef Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren’s syndrome. Ann Rheum Dis. 2017;76:9–16.PubMedCrossRef
3.
Zurück zum Zitat Lundberg IE, Tjärnlund A, Bottai M, Werth VP, Pilkington C, de Visser M, et al. 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Ann Rheum Dis. 2017;76:1955–64.PubMedCrossRef Lundberg IE, Tjärnlund A, Bottai M, Werth VP, Pilkington C, de Visser M, et al. 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Ann Rheum Dis. 2017;76:1955–64.PubMedCrossRef
4.
Zurück zum Zitat Milone M. Diagnosis and Management of Immune-Mediated Myopathies. Mayo Clin Proc. 2017;92:826–37.PubMedCrossRef Milone M. Diagnosis and Management of Immune-Mediated Myopathies. Mayo Clin Proc. 2017;92:826–37.PubMedCrossRef
5.
Zurück zum Zitat Targoff IN. Autoantibodies in polymyositis. Rheum Dis Clin North Am. 1992;18:455–82.PubMed Targoff IN. Autoantibodies in polymyositis. Rheum Dis Clin North Am. 1992;18:455–82.PubMed
6.
Zurück zum Zitat Targoff IN. Idiopathic inflammatory myopathy: autoantibody update. Curr Rheumatol Rep. 2002;4:434–41.PubMedCrossRef Targoff IN. Idiopathic inflammatory myopathy: autoantibody update. Curr Rheumatol Rep. 2002;4:434–41.PubMedCrossRef
7.
Zurück zum Zitat Satoh M, Tanaka S, Ceribelli A, Calise SJ, Chan EKL. A comprehensive overview on myositis-specific antibodies: new and old biomarkers in idiopathic inflammatory myopathy. Clin Rev Allergy Immunol. 2015;52:1–9.CrossRef Satoh M, Tanaka S, Ceribelli A, Calise SJ, Chan EKL. A comprehensive overview on myositis-specific antibodies: new and old biomarkers in idiopathic inflammatory myopathy. Clin Rev Allergy Immunol. 2015;52:1–9.CrossRef
8.
Zurück zum Zitat Nakashima R, Imura Y, Hosono Y, Seto M, Murakami A, Watanabe K, et al. The multicenter study of a new assay for simultaneous detection of multiple anti-aminoacyl-tRNA synthetases in myositis and interstitial pneumonia. PLoS ONE. 2014;9:e85062.PubMedPubMedCentralCrossRef Nakashima R, Imura Y, Hosono Y, Seto M, Murakami A, Watanabe K, et al. The multicenter study of a new assay for simultaneous detection of multiple anti-aminoacyl-tRNA synthetases in myositis and interstitial pneumonia. PLoS ONE. 2014;9:e85062.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Colafrancesco S, Priori R, Valesini G. Inflammatory myopathies and overlap syndromes: update on histological and serological profile. Best Pract Res Clin Rheumatol. 2015;29:810–25.PubMedCrossRef Colafrancesco S, Priori R, Valesini G. Inflammatory myopathies and overlap syndromes: update on histological and serological profile. Best Pract Res Clin Rheumatol. 2015;29:810–25.PubMedCrossRef
10.
Zurück zum Zitat Gunawardena H, Betteridge ZE, McHugh NJ. Myositis-specific autoantibodies: their clinical and pathogenic significance in disease expression. Rheumatology (Oxford). 2009;48:607–12.CrossRef Gunawardena H, Betteridge ZE, McHugh NJ. Myositis-specific autoantibodies: their clinical and pathogenic significance in disease expression. Rheumatology (Oxford). 2009;48:607–12.CrossRef
11.
Zurück zum Zitat Chinoy H, Fertig N, Oddis CV, Ollier WER, Cooper RG. The diagnostic utility of myositis autoantibody testing for predicting the risk of cancer-associated myositis. Ann Rheum Dis. 2007;66:1345–9.PubMedPubMedCentralCrossRef Chinoy H, Fertig N, Oddis CV, Ollier WER, Cooper RG. The diagnostic utility of myositis autoantibody testing for predicting the risk of cancer-associated myositis. Ann Rheum Dis. 2007;66:1345–9.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Frank MB, McCubbin V, Trieu E, Wu Y, Isenberg DA, Targoff IN. The association of anti-Ro52 autoantibodies with myositis and scleroderma autoantibodies. J Autoimmun. 1999;12:137–42.PubMedCrossRef Frank MB, McCubbin V, Trieu E, Wu Y, Isenberg DA, Targoff IN. The association of anti-Ro52 autoantibodies with myositis and scleroderma autoantibodies. J Autoimmun. 1999;12:137–42.PubMedCrossRef
13.
Zurück zum Zitat Ferreira JP, Almeida I, Marinho A, Cerveira C, Vasconcelos C. Anti-ro52 antibodies and interstitial lung disease in connective tissue diseases excluding scleroderma. ISRN Rheumatol. 2012;2012:415272.PubMedPubMedCentralCrossRef Ferreira JP, Almeida I, Marinho A, Cerveira C, Vasconcelos C. Anti-ro52 antibodies and interstitial lung disease in connective tissue diseases excluding scleroderma. ISRN Rheumatol. 2012;2012:415272.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat van Dooren SHJ, van Venrooij WJ, Pruijn GJM. Myositis-specific autoantibodies: detection and clinical associations. Autoimmun Highlights. 2011;2:5–20.CrossRef van Dooren SHJ, van Venrooij WJ, Pruijn GJM. Myositis-specific autoantibodies: detection and clinical associations. Autoimmun Highlights. 2011;2:5–20.CrossRef
15.
Zurück zum Zitat Chan EKL, Damoiseaux J, Carballo OG, Conrad K, de Melo Cruvinel W, Francescantonio PLC, et al. Report of the first international consensus on standardized nomenclature of antinuclear antibody HEp-2 cell patterns 2014–2015. Front Immunol. 2015;6:412.PubMedPubMedCentralCrossRef Chan EKL, Damoiseaux J, Carballo OG, Conrad K, de Melo Cruvinel W, Francescantonio PLC, et al. Report of the first international consensus on standardized nomenclature of antinuclear antibody HEp-2 cell patterns 2014–2015. Front Immunol. 2015;6:412.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat García-DeLaTorre I. Clinical usefulness of autoantibodies in idiopathic inflammatory myositis. Front Immunol. 2015;6:331. García-DeLaTorre I. Clinical usefulness of autoantibodies in idiopathic inflammatory myositis. Front Immunol. 2015;6:331.
17.
Zurück zum Zitat Damoiseaux J, von Mühlen CA, Garcia-De La Torre I, Carballo OG, de Melo Cruvinel W, Francescantonio PLC, et al. International consensus on ANA patterns (ICAP): the bumpy road towards a consensus on reporting ANA results. Autoimmun Highlights. 2016;7:1–8.CrossRef Damoiseaux J, von Mühlen CA, Garcia-De La Torre I, Carballo OG, de Melo Cruvinel W, Francescantonio PLC, et al. International consensus on ANA patterns (ICAP): the bumpy road towards a consensus on reporting ANA results. Autoimmun Highlights. 2016;7:1–8.CrossRef
18.
Zurück zum Zitat Ghirardello A, Bendo R, Rampudda ME, Bassi N, Zampieri S, Doria A. Commercial blot assays in the diagnosis of systemic rheumatic diseases. Autoimmun Rev. 2009;8:645–9.PubMedCrossRef Ghirardello A, Bendo R, Rampudda ME, Bassi N, Zampieri S, Doria A. Commercial blot assays in the diagnosis of systemic rheumatic diseases. Autoimmun Rev. 2009;8:645–9.PubMedCrossRef
19.
Zurück zum Zitat Rönnelid J, Barbasso Helmers S, Storfors H, Grip K, Rönnblom L, Franck-Larsson K, et al. Use of a commercial line blot assay as a screening test for autoantibodies in inflammatory myopathies. Autoimmun Rev. 2009;9:58–61.PubMedCrossRef Rönnelid J, Barbasso Helmers S, Storfors H, Grip K, Rönnblom L, Franck-Larsson K, et al. Use of a commercial line blot assay as a screening test for autoantibodies in inflammatory myopathies. Autoimmun Rev. 2009;9:58–61.PubMedCrossRef
20.
Zurück zum Zitat Cavazzana I, Fredi M, Ceribelli A, Mordenti C, Ferrari F, Carabellese N, et al. Testing for myositis specific autoantibodies: comparison between line blot and immunoprecipitation assays in 57 myositis sera. J Immunol Methods. 2016;433:1–5.PubMedCrossRef Cavazzana I, Fredi M, Ceribelli A, Mordenti C, Ferrari F, Carabellese N, et al. Testing for myositis specific autoantibodies: comparison between line blot and immunoprecipitation assays in 57 myositis sera. J Immunol Methods. 2016;433:1–5.PubMedCrossRef
21.
Zurück zum Zitat Ceribelli A, Satoh M, Chan EK. A new immunoprecipitation-real time quantitative PCR assay for anti-Th/To and anti-U3RNP antibody detection in systemic sclerosis. Arthritis Res Ther. 2012;14:R128.PubMedPubMedCentralCrossRef Ceribelli A, Satoh M, Chan EK. A new immunoprecipitation-real time quantitative PCR assay for anti-Th/To and anti-U3RNP antibody detection in systemic sclerosis. Arthritis Res Ther. 2012;14:R128.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Mahler M, Miller FW, Fritzler MJ. Idiopathic inflammatory myopathies and the anti-synthetase syndrome: a comprehensive review. Autoimmun Rev. 2014;13:367–71.PubMedPubMedCentralCrossRef Mahler M, Miller FW, Fritzler MJ. Idiopathic inflammatory myopathies and the anti-synthetase syndrome: a comprehensive review. Autoimmun Rev. 2014;13:367–71.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Nishikai M, Reichlin M. Heterogeneity of precipitating antibodies in polymyositis and dermatomyositis. Characterization of the Jo-1 antibody system. Arthritis Rheum. 1980;23:881–8.PubMedCrossRef Nishikai M, Reichlin M. Heterogeneity of precipitating antibodies in polymyositis and dermatomyositis. Characterization of the Jo-1 antibody system. Arthritis Rheum. 1980;23:881–8.PubMedCrossRef
24.
Zurück zum Zitat Agmon-Levin N, Damoiseaux J, Kallenberg C, Sack U, Witte T, Herold M, et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann Rheum Dis. 2014;73:17–23.PubMedCrossRef Agmon-Levin N, Damoiseaux J, Kallenberg C, Sack U, Witte T, Herold M, et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann Rheum Dis. 2014;73:17–23.PubMedCrossRef
25.
Zurück zum Zitat Infantino M, Palterer B, Biagiotti R, et al. Reflex testing of speckled cytoplasmic patterns observed in routine ANA HEp-2 indirect immunofluorescence with a multiplex anti-synthetase dot-blot assay: a multicentric pilot study. Immunol Res. 2018;66(1):74–8.PubMedCrossRef Infantino M, Palterer B, Biagiotti R, et al. Reflex testing of speckled cytoplasmic patterns observed in routine ANA HEp-2 indirect immunofluorescence with a multiplex anti-synthetase dot-blot assay: a multicentric pilot study. Immunol Res. 2018;66(1):74–8.PubMedCrossRef
26.
Zurück zum Zitat Abe T, Tsunoda S, Nishioka A, Azuma K, Tsuboi K, Ogita C, et al. Reliability and clinical utility of enzyme-linked immunosorbent assay for detection of anti-aminoacyl-tRNA synthetase antibody. Nihon Rinsho Meneki Gakkai Kaishi. 2016;39:140–4.PubMedCrossRef Abe T, Tsunoda S, Nishioka A, Azuma K, Tsuboi K, Ogita C, et al. Reliability and clinical utility of enzyme-linked immunosorbent assay for detection of anti-aminoacyl-tRNA synthetase antibody. Nihon Rinsho Meneki Gakkai Kaishi. 2016;39:140–4.PubMedCrossRef
27.
Zurück zum Zitat Yoshida S, Akizuki M, Mimori T, Yamagata H, Inada S, Homma M. The precipitating antibody to an acidic nuclear protein antigen, the Jo-1, in connective tissue diseases. A marker for a subset of polymyositis with interstitial pulmonary fibrosis. Arthritis Rheum. 1983;26:604–11.PubMedCrossRef Yoshida S, Akizuki M, Mimori T, Yamagata H, Inada S, Homma M. The precipitating antibody to an acidic nuclear protein antigen, the Jo-1, in connective tissue diseases. A marker for a subset of polymyositis with interstitial pulmonary fibrosis. Arthritis Rheum. 1983;26:604–11.PubMedCrossRef
28.
Zurück zum Zitat Yamasaki Y, Satoh M, Mizushima M, Okazaki T, Nagafuchi H, Ooka S, et al. Clinical subsets associated with different anti-aminoacyl transfer RNA synthetase antibodies and their association with coexisting anti-Ro52. Mod Rheumatol. 2016;26:403–9.PubMedCrossRef Yamasaki Y, Satoh M, Mizushima M, Okazaki T, Nagafuchi H, Ooka S, et al. Clinical subsets associated with different anti-aminoacyl transfer RNA synthetase antibodies and their association with coexisting anti-Ro52. Mod Rheumatol. 2016;26:403–9.PubMedCrossRef
29.
Zurück zum Zitat Yamasaki Y, Yamada H, Nozaki T, Akaogi J, Nichols C, Lyons R, et al. Unusually high frequency of autoantibodies to PL-7 associated with milder muscle disease in Japanese patients with polymyositis/dermatomyositis. Arthritis Rheum. 2006;54:2004–9.PubMedCrossRef Yamasaki Y, Yamada H, Nozaki T, Akaogi J, Nichols C, Lyons R, et al. Unusually high frequency of autoantibodies to PL-7 associated with milder muscle disease in Japanese patients with polymyositis/dermatomyositis. Arthritis Rheum. 2006;54:2004–9.PubMedCrossRef
30.
Zurück zum Zitat Marie I, Josse S, Decaux O, Diot E, Landron C, Roblot P, et al. Clinical manifestations and outcome of anti-PL7 positive patients with antisynthetase syndrome. Eur J Intern Med. 2013;24:474–9.PubMedCrossRef Marie I, Josse S, Decaux O, Diot E, Landron C, Roblot P, et al. Clinical manifestations and outcome of anti-PL7 positive patients with antisynthetase syndrome. Eur J Intern Med. 2013;24:474–9.PubMedCrossRef
31.
Zurück zum Zitat Targoff IN, Arnett FC. Clinical manifestations in patients with antibody to PL-12 antigen (alanyl-tRNA synthetase). Am J Med. 1990;88:241–51.PubMedCrossRef Targoff IN, Arnett FC. Clinical manifestations in patients with antibody to PL-12 antigen (alanyl-tRNA synthetase). Am J Med. 1990;88:241–51.PubMedCrossRef
32.
Zurück zum Zitat Hirakata M, Suwa A, Nagai S, Kron MA, Trieu EP, Mimori T, et al. Anti-KS: identification of autoantibodies to asparaginyl-transfer RNA synthetase associated with interstitial lung disease. J Immunol. 1999;162:2315–20.PubMed Hirakata M, Suwa A, Nagai S, Kron MA, Trieu EP, Mimori T, et al. Anti-KS: identification of autoantibodies to asparaginyl-transfer RNA synthetase associated with interstitial lung disease. J Immunol. 1999;162:2315–20.PubMed
33.
Zurück zum Zitat Scirè CA, Gonzalez-Gay MA, Selva-O’Callaghan A, Cavagna L, Selva-O’Callaghan A, Cavagna L. Clinical spectrum time course of interstitial pneumonia with autoimmune features in patients positive for antisynthetase antibodies. Respir Med. 2017;132:265–6.PubMedCrossRef Scirè CA, Gonzalez-Gay MA, Selva-O’Callaghan A, Cavagna L, Selva-O’Callaghan A, Cavagna L. Clinical spectrum time course of interstitial pneumonia with autoimmune features in patients positive for antisynthetase antibodies. Respir Med. 2017;132:265–6.PubMedCrossRef
34.
Zurück zum Zitat Cavagna L, Nuño L, Scirè CA, Govoni M, Longo FJL, Franceschini F, et al. Clinical spectrum time course in anti Jo-1 positive antisynthetase syndrome: results from an international retrospective multicenter study. Medicine (Baltimore). 2015;94:e1144.PubMedPubMedCentralCrossRef Cavagna L, Nuño L, Scirè CA, Govoni M, Longo FJL, Franceschini F, et al. Clinical spectrum time course in anti Jo-1 positive antisynthetase syndrome: results from an international retrospective multicenter study. Medicine (Baltimore). 2015;94:e1144.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Casal-Dominguez M, Pinal-Fernandez I, Mego M, Accarino A, Jubany L, Azpiroz F, et al. High-resolution manometry in patients with idiopathic inflammatory myopathy: Elevated prevalence of esophageal involvement and differences according to autoantibody status and clinical subset. Muscle Nerve. 2016;45(suppl_4):iv18–21. Casal-Dominguez M, Pinal-Fernandez I, Mego M, Accarino A, Jubany L, Azpiroz F, et al. High-resolution manometry in patients with idiopathic inflammatory myopathy: Elevated prevalence of esophageal involvement and differences according to autoantibody status and clinical subset. Muscle Nerve. 2016;45(suppl_4):iv18–21.
36.
Zurück zum Zitat Pestronk A. Acquired immune and inflammatory myopathies. Curr Opin Rheumatol. 2011;23:595–604.PubMedCrossRef Pestronk A. Acquired immune and inflammatory myopathies. Curr Opin Rheumatol. 2011;23:595–604.PubMedCrossRef
37.
Zurück zum Zitat Mescam-Mancini L, Allenbach Y, Hervier B, Devilliers H, Mariampillay K, Dubourg O, et al. Anti-Jo-1 antibody-positive patients show a characteristic necrotizing perifascicular myositis. Brain. 2015;138(Pt 9):2485–92.PubMedCrossRef Mescam-Mancini L, Allenbach Y, Hervier B, Devilliers H, Mariampillay K, Dubourg O, et al. Anti-Jo-1 antibody-positive patients show a characteristic necrotizing perifascicular myositis. Brain. 2015;138(Pt 9):2485–92.PubMedCrossRef
38.
Zurück zum Zitat Aouizerate J, De Antonio M, Bassez G, Gherardi RK, Berenbaum F, Guillevin L, et al. Myofiber HLA-DR expression is a distinctive biomarker for antisynthetase-associated myopathy. Acta Neuropathol Commun. 2014;2:154.PubMedPubMedCentralCrossRef Aouizerate J, De Antonio M, Bassez G, Gherardi RK, Berenbaum F, Guillevin L, et al. Myofiber HLA-DR expression is a distinctive biomarker for antisynthetase-associated myopathy. Acta Neuropathol Commun. 2014;2:154.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Targoff IN, Reichlin M. The association between Mi-2 antibodies and dermatomyositis. Arthritis Rheum. 1985;28:796–803.PubMedCrossRef Targoff IN, Reichlin M. The association between Mi-2 antibodies and dermatomyositis. Arthritis Rheum. 1985;28:796–803.PubMedCrossRef
40.
Zurück zum Zitat Ghirardello A, Zampieri S, Iaccarino L, Tarricone E, Bendo R, Gambari PF, et al. Anti-Mi-2 antibodies. Autoimmunity. 2005;38:79–83.PubMedCrossRef Ghirardello A, Zampieri S, Iaccarino L, Tarricone E, Bendo R, Gambari PF, et al. Anti-Mi-2 antibodies. Autoimmunity. 2005;38:79–83.PubMedCrossRef
41.
Zurück zum Zitat Nilasena DS, Trieu EP, Targoff IN. Analysis of the Mi-2 autoantigen of dermatomyositis. Arthritis Rheum. 1995;38:123–8.PubMedCrossRef Nilasena DS, Trieu EP, Targoff IN. Analysis of the Mi-2 autoantigen of dermatomyositis. Arthritis Rheum. 1995;38:123–8.PubMedCrossRef
42.
Zurück zum Zitat Zhang Y, LeRoy G, Seelig HP, Lane WS, Reinberg D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell. 1998;95:279–89.PubMedCrossRef Zhang Y, LeRoy G, Seelig HP, Lane WS, Reinberg D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell. 1998;95:279–89.PubMedCrossRef
43.
Zurück zum Zitat Petri MH, Satoh M, Martin-Marquez BT, Vargas-Ramírez R, Jara LJ, Saavedra MA, et al. Implications in the difference of anti-Mi-2 and -p155/140 autoantibody prevalence in two dermatomyositis cohorts from Mexico City and Guadalajara. Arthritis Res Ther. 2013;15:R48.PubMedPubMedCentralCrossRef Petri MH, Satoh M, Martin-Marquez BT, Vargas-Ramírez R, Jara LJ, Saavedra MA, et al. Implications in the difference of anti-Mi-2 and -p155/140 autoantibody prevalence in two dermatomyositis cohorts from Mexico City and Guadalajara. Arthritis Res Ther. 2013;15:R48.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Love LA, Weinberg CR, McConnaughey DR, Oddis CV, Medsger TA, Reveille JD, et al. Ultraviolet radiation intensity predicts the relative distribution of dermatomyositis and anti-Mi-2 autoantibodies in women. Arthritis Rheum. 2009;60:2499–504.PubMedPubMedCentralCrossRef Love LA, Weinberg CR, McConnaughey DR, Oddis CV, Medsger TA, Reveille JD, et al. Ultraviolet radiation intensity predicts the relative distribution of dermatomyositis and anti-Mi-2 autoantibodies in women. Arthritis Rheum. 2009;60:2499–504.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Prieto S, Grau JM. The geoepidemiology of autoimmune muscle disease. Autoimmun Rev. 2010;9:A330–4.PubMedCrossRef Prieto S, Grau JM. The geoepidemiology of autoimmune muscle disease. Autoimmun Rev. 2010;9:A330–4.PubMedCrossRef
46.
Zurück zum Zitat Tarricone E, Ghirardello A, Rampudda M, Bassi N, Punzi L, Doria A. Anti-SAE antibodies in autoimmune myositis: identification by unlabelled protein immunoprecipitation in an Italian patient cohort. J Immunol Methods. 2012;384:128–34.PubMedCrossRef Tarricone E, Ghirardello A, Rampudda M, Bassi N, Punzi L, Doria A. Anti-SAE antibodies in autoimmune myositis: identification by unlabelled protein immunoprecipitation in an Italian patient cohort. J Immunol Methods. 2012;384:128–34.PubMedCrossRef
47.
Zurück zum Zitat Betteridge Z, Gunawardena H, North J, Slinn J, McHugh N. Identification of a novel autoantibody directed against small ubiquitin-like modifier activating enzyme in dermatomyositis. Arthritis Rheum. 2007;56:3132–7.PubMedCrossRef Betteridge Z, Gunawardena H, North J, Slinn J, McHugh N. Identification of a novel autoantibody directed against small ubiquitin-like modifier activating enzyme in dermatomyositis. Arthritis Rheum. 2007;56:3132–7.PubMedCrossRef
48.
Zurück zum Zitat Ge Y, Lu X, Shu X, Peng Q, Wang G. Clinical characteristics of anti-SAE antibodies in Chinese patients with dermatomyositis in comparison with different patient cohorts. Sci Rep. 2017;7:188.PubMedPubMedCentralCrossRef Ge Y, Lu X, Shu X, Peng Q, Wang G. Clinical characteristics of anti-SAE antibodies in Chinese patients with dermatomyositis in comparison with different patient cohorts. Sci Rep. 2017;7:188.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Muro Y, Sugiura K, Akiyama M. Low prevalence of anti-small ubiquitin-like modifier activating enzyme antibodies in dermatomyositis patients. Autoimmunity. 2013;46:279–84.PubMedCrossRef Muro Y, Sugiura K, Akiyama M. Low prevalence of anti-small ubiquitin-like modifier activating enzyme antibodies in dermatomyositis patients. Autoimmunity. 2013;46:279–84.PubMedCrossRef
50.
Zurück zum Zitat Fujimoto M, Matsushita T, Hamaguchi Y, Kaji K, Asano Y, Ogawa F, et al. Autoantibodies to small ubiquitin-like modifier activating enzymes in Japanese patients with dermatomyositis: comparison with a UK Caucasian cohort. Ann Rheum Dis. 2013;72:151–3.PubMedCrossRef Fujimoto M, Matsushita T, Hamaguchi Y, Kaji K, Asano Y, Ogawa F, et al. Autoantibodies to small ubiquitin-like modifier activating enzymes in Japanese patients with dermatomyositis: comparison with a UK Caucasian cohort. Ann Rheum Dis. 2013;72:151–3.PubMedCrossRef
51.
Zurück zum Zitat Betteridge ZE, Gunawardena H, Chinoy H, North J, Ollier WER, Cooper RG, et al. Clinical and human leucocyte antigen class II haplotype associations of autoantibodies to small ubiquitin-like modifier enzyme, a dermatomyositis-specific autoantigen target, in UK Caucasian adult-onset myositis. Ann Rheum Dis. 2009;68:1621–5.PubMedCrossRef Betteridge ZE, Gunawardena H, Chinoy H, North J, Ollier WER, Cooper RG, et al. Clinical and human leucocyte antigen class II haplotype associations of autoantibodies to small ubiquitin-like modifier enzyme, a dermatomyositis-specific autoantigen target, in UK Caucasian adult-onset myositis. Ann Rheum Dis. 2009;68:1621–5.PubMedCrossRef
52.
Zurück zum Zitat Muro Y, Sugiura K, Nara M, Sakamoto I, Suzuki N, Akiyama M. High incidence of cancer in anti-small ubiquitin-like modifier activating enzyme antibody-positive dermatomyositis. Rheumatology (Oxford). 2015;54:1745–7.CrossRef Muro Y, Sugiura K, Nara M, Sakamoto I, Suzuki N, Akiyama M. High incidence of cancer in anti-small ubiquitin-like modifier activating enzyme antibody-positive dermatomyositis. Rheumatology (Oxford). 2015;54:1745–7.CrossRef
53.
Zurück zum Zitat Nakashima R, Imura Y, Kobayashi S, Yukawa N, Yoshifuji H, Nojima T, et al. The RIG-I-like receptor IFIH1/MDA5 is a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody. Rheumatology (Oxford). 2010;49:433–40.CrossRef Nakashima R, Imura Y, Kobayashi S, Yukawa N, Yoshifuji H, Nojima T, et al. The RIG-I-like receptor IFIH1/MDA5 is a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody. Rheumatology (Oxford). 2010;49:433–40.CrossRef
54.
Zurück zum Zitat Sato S, Hirakata M, Kuwana M, Suwa A, Inada S, Mimori T, et al. Autoantibodies to a 140-kd polypeptide, CADM-140, in Japanese patients with clinically amyopathic dermatomyositis. Arthritis Rheum. 2005;52:1571–6.PubMedCrossRef Sato S, Hirakata M, Kuwana M, Suwa A, Inada S, Mimori T, et al. Autoantibodies to a 140-kd polypeptide, CADM-140, in Japanese patients with clinically amyopathic dermatomyositis. Arthritis Rheum. 2005;52:1571–6.PubMedCrossRef
55.
Zurück zum Zitat Sato S, Hoshino K, Satoh T, Fujita T, Kawakami Y, Fujita T, et al. RNA helicase encoded by melanoma differentiation-associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis: association with rapidly progressive interstitial lung disease. Arthritis Rheum. 2009;60:2193–200.PubMedCrossRef Sato S, Hoshino K, Satoh T, Fujita T, Kawakami Y, Fujita T, et al. RNA helicase encoded by melanoma differentiation-associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis: association with rapidly progressive interstitial lung disease. Arthritis Rheum. 2009;60:2193–200.PubMedCrossRef
56.
Zurück zum Zitat Parronchi P, Radice A, Palterer B, Liotta F, Scaletti C. MDA5-positive dermatomyositis: an uncommon entity in Europe with variable clinical presentations. Clin Mol Allergy. 2015;13:22.PubMedPubMedCentralCrossRef Parronchi P, Radice A, Palterer B, Liotta F, Scaletti C. MDA5-positive dermatomyositis: an uncommon entity in Europe with variable clinical presentations. Clin Mol Allergy. 2015;13:22.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Zhang L, Wu G, Gao D, Liu G, Pan L, Ni L, et al. Factors Associated with interstitial lung disease in patients with polymyositis and dermatomyositis: a systematic review and meta-analysis. PLoS ONE. 2016;11:e0155381.PubMedPubMedCentralCrossRef Zhang L, Wu G, Gao D, Liu G, Pan L, Ni L, et al. Factors Associated with interstitial lung disease in patients with polymyositis and dermatomyositis: a systematic review and meta-analysis. PLoS ONE. 2016;11:e0155381.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Chen Z, Hu W, Wang Y, Guo Z, Sun L, Kuwana M. Distinct profiles of myositis-specific autoantibodies in Chinese and Japanese patients with polymyositis/dermatomyositis. Clin Rheumatol. 2015;34:1627–31.PubMedCrossRef Chen Z, Hu W, Wang Y, Guo Z, Sun L, Kuwana M. Distinct profiles of myositis-specific autoantibodies in Chinese and Japanese patients with polymyositis/dermatomyositis. Clin Rheumatol. 2015;34:1627–31.PubMedCrossRef
59.
Zurück zum Zitat Ceribelli A, Fredi M, Taraborelli M, Cavazzana I, Tincani A, Selmi C, et al. Prevalence and clinical significance of anti-MDA5 antibodies in European patients with polymyositis/dermatomyositis. Clin Exp Rheumatol. 2014;32:891–7.PubMed Ceribelli A, Fredi M, Taraborelli M, Cavazzana I, Tincani A, Selmi C, et al. Prevalence and clinical significance of anti-MDA5 antibodies in European patients with polymyositis/dermatomyositis. Clin Exp Rheumatol. 2014;32:891–7.PubMed
60.
Zurück zum Zitat Labrador-Horrillo M, Martinez MA, Selva-O’Callaghan A, Trallero-Araguas E, Balada E, Vilardell-Tarres M, et al. Anti-MDA5 antibodies in a large Mediterranean population of adults with dermatomyositis. J Immunol Res. 2014;2014:290797.PubMedPubMedCentralCrossRef Labrador-Horrillo M, Martinez MA, Selva-O’Callaghan A, Trallero-Araguas E, Balada E, Vilardell-Tarres M, et al. Anti-MDA5 antibodies in a large Mediterranean population of adults with dermatomyositis. J Immunol Res. 2014;2014:290797.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Hall JC, Casciola-Rosen L, Samedy L-A, Werner J, Owoyemi K, Danoff SK, et al. Anti-melanoma differentiation-associated protein 5-associated dermatomyositis: expanding the clinical spectrum. Arthritis Care Res (Hoboken). 2013;65:1307–15.PubMedPubMedCentralCrossRef Hall JC, Casciola-Rosen L, Samedy L-A, Werner J, Owoyemi K, Danoff SK, et al. Anti-melanoma differentiation-associated protein 5-associated dermatomyositis: expanding the clinical spectrum. Arthritis Care Res (Hoboken). 2013;65:1307–15.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Muro Y, Sugiura K, Hoshino K, Akiyama M, Tamakoshi K. Epidemiologic study of clinically amyopathic dermatomyositis and anti-melanoma differentiation-associated gene 5 antibodies in central Japan. Arthritis Res Ther. 2011;13:R214.PubMedPubMedCentralCrossRef Muro Y, Sugiura K, Hoshino K, Akiyama M, Tamakoshi K. Epidemiologic study of clinically amyopathic dermatomyositis and anti-melanoma differentiation-associated gene 5 antibodies in central Japan. Arthritis Res Ther. 2011;13:R214.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Chen Z, Wang Y, Kuwana M, Xu X, Hu W, Feng X, et al. HLA-DRB1 alleles as genetic risk factors for the development of anti-MDA5 antibodies in patients with dermatomyositis. J Rheumatol. 2017;44:1389–93.PubMedCrossRef Chen Z, Wang Y, Kuwana M, Xu X, Hu W, Feng X, et al. HLA-DRB1 alleles as genetic risk factors for the development of anti-MDA5 antibodies in patients with dermatomyositis. J Rheumatol. 2017;44:1389–93.PubMedCrossRef
64.
Zurück zum Zitat Ward I, Hiles P, Arroyo R, Downs W, Bell D. Digital pulp ulcerations and inverse gottron papules in melanoma differentiation-associated gene 5-related dermatomyositis. J Clin Rheumatol. 2016;22:274–5.PubMedCrossRef Ward I, Hiles P, Arroyo R, Downs W, Bell D. Digital pulp ulcerations and inverse gottron papules in melanoma differentiation-associated gene 5-related dermatomyositis. J Clin Rheumatol. 2016;22:274–5.PubMedCrossRef
65.
Zurück zum Zitat Cao H, Xia Q, Pan M, Zhao X, Li X, Shi R, et al. Gottron papules and gottron sign with ulceration: a distinctive cutaneous feature in a subset of patients with classic dermatomyositis and clinically amyopathic dermatomyositis. J Rheumatol. 2016;43:1735–42.PubMedCrossRef Cao H, Xia Q, Pan M, Zhao X, Li X, Shi R, et al. Gottron papules and gottron sign with ulceration: a distinctive cutaneous feature in a subset of patients with classic dermatomyositis and clinically amyopathic dermatomyositis. J Rheumatol. 2016;43:1735–42.PubMedCrossRef
66.
Zurück zum Zitat Fiorentino D, Chung L, Zwerner J, Rosen A, Casciola-Rosen L. The mucocutaneous and systemic phenotype of dermatomyositis patients with antibodies to MDA5 (CADM-140): a retrospective study. J Am Acad Dermatol. 2011;65:25–34.PubMedPubMedCentralCrossRef Fiorentino D, Chung L, Zwerner J, Rosen A, Casciola-Rosen L. The mucocutaneous and systemic phenotype of dermatomyositis patients with antibodies to MDA5 (CADM-140): a retrospective study. J Am Acad Dermatol. 2011;65:25–34.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Tansley SL, Simou S, Shaddick G, Betteridge ZE, Almeida B, Gunawardena H, et al. Autoantibodies in juvenile-onset myositis: their diagnostic value and associated clinical phenotype in a large UK cohort. J Autoimmun. 2017;84:55–64.PubMedPubMedCentralCrossRef Tansley SL, Simou S, Shaddick G, Betteridge ZE, Almeida B, Gunawardena H, et al. Autoantibodies in juvenile-onset myositis: their diagnostic value and associated clinical phenotype in a large UK cohort. J Autoimmun. 2017;84:55–64.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Gono T, Kawaguchi Y, Hara M, Masuda I, Katsumata Y, Shinozaki M, et al. Increased ferritin predicts development and severity of acute interstitial lung disease as a complication of dermatomyositis. Rheumatology (Oxford). 2010;49:1354–60.CrossRef Gono T, Kawaguchi Y, Hara M, Masuda I, Katsumata Y, Shinozaki M, et al. Increased ferritin predicts development and severity of acute interstitial lung disease as a complication of dermatomyositis. Rheumatology (Oxford). 2010;49:1354–60.CrossRef
69.
Zurück zum Zitat Muro Y, Sugiura K, Akiyama M. Limitations of a single-point evaluation of anti-MDA5 antibody, ferritin, and IL-18 in predicting the prognosis of interstitial lung disease with anti-MDA5 antibody-positive dermatomyositis. Clin Rheumatol. 2013;32:395–8.PubMedCrossRef Muro Y, Sugiura K, Akiyama M. Limitations of a single-point evaluation of anti-MDA5 antibody, ferritin, and IL-18 in predicting the prognosis of interstitial lung disease with anti-MDA5 antibody-positive dermatomyositis. Clin Rheumatol. 2013;32:395–8.PubMedCrossRef
70.
Zurück zum Zitat Fujimoto M, Hamaguchi Y, Kaji K, Matsushita T, Ichimura Y, Kodera M, et al. Myositis-specific anti-155/140 autoantibodies target transcription intermediary factor 1 family proteins. Arthritis Rheum. 2012;64:513–22.PubMedCrossRef Fujimoto M, Hamaguchi Y, Kaji K, Matsushita T, Ichimura Y, Kodera M, et al. Myositis-specific anti-155/140 autoantibodies target transcription intermediary factor 1 family proteins. Arthritis Rheum. 2012;64:513–22.PubMedCrossRef
71.
Zurück zum Zitat Targoff IN, Mamyrova G, Trieu EP, Perurena O, Koneru B, O’Hanlon TP, et al. A novel autoantibody to a 155-kd protein is associated with dermatomyositis. Arthritis Rheum. 2006;54:3682–9.PubMedCrossRef Targoff IN, Mamyrova G, Trieu EP, Perurena O, Koneru B, O’Hanlon TP, et al. A novel autoantibody to a 155-kd protein is associated with dermatomyositis. Arthritis Rheum. 2006;54:3682–9.PubMedCrossRef
72.
Zurück zum Zitat Kaji K, Fujimoto M, Hasegawa M, Kondo M, Saito Y, Komura K, et al. Identification of a novel autoantibody reactive with 155 and 140 kDa nuclear proteins in patients with dermatomyositis: an association with malignancy. Rheumatology (Oxford). 2007;46:25–8.CrossRef Kaji K, Fujimoto M, Hasegawa M, Kondo M, Saito Y, Komura K, et al. Identification of a novel autoantibody reactive with 155 and 140 kDa nuclear proteins in patients with dermatomyositis: an association with malignancy. Rheumatology (Oxford). 2007;46:25–8.CrossRef
73.
Zurück zum Zitat Satoh M, Chan JYF, Ross SJ, Li Y, Yamasaki Y, Yamada H, et al. Autoantibodies to transcription intermediary factor TIF1β associated with dermatomyositis. Arthritis Res Ther. 2012;14:R79.PubMedPubMedCentralCrossRef Satoh M, Chan JYF, Ross SJ, Li Y, Yamasaki Y, Yamada H, et al. Autoantibodies to transcription intermediary factor TIF1β associated with dermatomyositis. Arthritis Res Ther. 2012;14:R79.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Labrador-Horrillo M, Martínez MA, Selva-O’Callaghan A, Trallero-Araguás E, Balada E, Vilardell-Tarrés M, et al. Anti-TIF1γ antibodies (anti-p155) in adult patients with dermatomyositis: comparison of different diagnostic assays. Ann Rheum Dis. 2012;71:993–6.PubMedCrossRef Labrador-Horrillo M, Martínez MA, Selva-O’Callaghan A, Trallero-Araguás E, Balada E, Vilardell-Tarrés M, et al. Anti-TIF1γ antibodies (anti-p155) in adult patients with dermatomyositis: comparison of different diagnostic assays. Ann Rheum Dis. 2012;71:993–6.PubMedCrossRef
75.
Zurück zum Zitat Muro Y, Ishikawa A, Sugiura K, Akiyama M. Clinical features of anti-TIF1-α antibody-positive dermatomyositis patients are closely associated with coexistent dermatomyositis-specific autoantibodies and anti-TIF1-γ or anti-Mi-2 autoantibodies. Rheumatology (Oxford). 2012;51:1508–13.CrossRef Muro Y, Ishikawa A, Sugiura K, Akiyama M. Clinical features of anti-TIF1-α antibody-positive dermatomyositis patients are closely associated with coexistent dermatomyositis-specific autoantibodies and anti-TIF1-γ or anti-Mi-2 autoantibodies. Rheumatology (Oxford). 2012;51:1508–13.CrossRef
76.
Zurück zum Zitat Kasuya A, Hamaguchi Y, Fujimoto M, Tokura Y. TIF1γ-overexpressing, highly progressive endometrial carcinoma in a patient with dermato-myositis positive for malignancy-associated anti-p155/140 autoantibody. Acta Derm Venereol. 2013;93:715–6.PubMedCrossRef Kasuya A, Hamaguchi Y, Fujimoto M, Tokura Y. TIF1γ-overexpressing, highly progressive endometrial carcinoma in a patient with dermato-myositis positive for malignancy-associated anti-p155/140 autoantibody. Acta Derm Venereol. 2013;93:715–6.PubMedCrossRef
77.
Zurück zum Zitat Mohassel P, Rosen P, Casciola-Rosen L, Pak K, Mammen AL. Expression of the dermatomyositis autoantigen transcription intermediary factor 1γ in regenerating muscle. Arthritis Rheumatol. 2015;67:266–72.PubMedPubMedCentralCrossRef Mohassel P, Rosen P, Casciola-Rosen L, Pak K, Mammen AL. Expression of the dermatomyositis autoantigen transcription intermediary factor 1γ in regenerating muscle. Arthritis Rheumatol. 2015;67:266–72.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Trallero-Araguás E, Rodrigo-Pendás JÁ, Selva-O’Callaghan A, Martínez-Gõmez X, Bosch X, Labrador-Horrillo M, et al. Usefulness of anti-p155 autoantibody for diagnosing cancer-associated dermatomyositis: a systematic review and meta-analysis. Arthritis Rheum. 2012;64:523–32.PubMedCrossRef Trallero-Araguás E, Rodrigo-Pendás JÁ, Selva-O’Callaghan A, Martínez-Gõmez X, Bosch X, Labrador-Horrillo M, et al. Usefulness of anti-p155 autoantibody for diagnosing cancer-associated dermatomyositis: a systematic review and meta-analysis. Arthritis Rheum. 2012;64:523–32.PubMedCrossRef
79.
Zurück zum Zitat Palterer B, Vitiello G, Cammelli D. First report of anti-TIF1γ dermatomyositis in a patient with myelodysplastic syndrome. Reumatismo. 2017;69:75–7.PubMedCrossRef Palterer B, Vitiello G, Cammelli D. First report of anti-TIF1γ dermatomyositis in a patient with myelodysplastic syndrome. Reumatismo. 2017;69:75–7.PubMedCrossRef
80.
Zurück zum Zitat Fiorentino DF, Kuo K, Chung L, Zaba L, Li S, Casciola-Rosen L. Distinctive cutaneous and systemic features associated with antitranscriptional intermediary factor-1γ antibodies in adults with dermatomyositis. J Am Acad Dermatol. 2015;72:449–55.PubMedPubMedCentralCrossRef Fiorentino DF, Kuo K, Chung L, Zaba L, Li S, Casciola-Rosen L. Distinctive cutaneous and systemic features associated with antitranscriptional intermediary factor-1γ antibodies in adults with dermatomyositis. J Am Acad Dermatol. 2015;72:449–55.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Bernet LL, Lewis MA, Rieger KE, Casciola-Rosen L, Fiorentino DF. Ovoid palatal patch in dermatomyositis: a novel finding associated with anti-TIF1γ (p155) antibodies. JAMA Dermatol. 2016;152:1049–51.PubMedPubMedCentralCrossRef Bernet LL, Lewis MA, Rieger KE, Casciola-Rosen L, Fiorentino DF. Ovoid palatal patch in dermatomyositis: a novel finding associated with anti-TIF1γ (p155) antibodies. JAMA Dermatol. 2016;152:1049–51.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Kimura Y, Sakai F, Nakano O, Kisaki O, Sugimoto H, Sawamura T, et al. The newly identified human nuclear protein NXP-2 possesses three distinct domains, the nuclear matrix-binding, RNA-binding, and coiled-coil domains. J Biol Chem. 2002;277:20611–7.PubMedCrossRef Kimura Y, Sakai F, Nakano O, Kisaki O, Sugimoto H, Sawamura T, et al. The newly identified human nuclear protein NXP-2 possesses three distinct domains, the nuclear matrix-binding, RNA-binding, and coiled-coil domains. J Biol Chem. 2002;277:20611–7.PubMedCrossRef
83.
Zurück zum Zitat Targoff IN, Trieu EP, Levy-Neto M. Sera with autoantibodies to the MJ antigen react with NXP2. Arthritis Rheum. 2007;56:S787. Targoff IN, Trieu EP, Levy-Neto M. Sera with autoantibodies to the MJ antigen react with NXP2. Arthritis Rheum. 2007;56:S787.
84.
Zurück zum Zitat Fredi M, Bartoli F, Cavazzana I, Ceribelli A, Carabellese N, Tincani A, et al. Calcinosis in poly-dermatomyositis: clinical and laboratory predictors and treatment options. Clin Exp Rheumatol. 2017;35:303–8.PubMed Fredi M, Bartoli F, Cavazzana I, Ceribelli A, Carabellese N, Tincani A, et al. Calcinosis in poly-dermatomyositis: clinical and laboratory predictors and treatment options. Clin Exp Rheumatol. 2017;35:303–8.PubMed
85.
Zurück zum Zitat Mimura Y, Takahashi K, Kawata K, Akazawa T, Inoue N. Two-step colocalization of MORC3 with PML nuclear bodies. J Cell Sci. 2010;123(Pt 12):2014–24.PubMedCrossRef Mimura Y, Takahashi K, Kawata K, Akazawa T, Inoue N. Two-step colocalization of MORC3 with PML nuclear bodies. J Cell Sci. 2010;123(Pt 12):2014–24.PubMedCrossRef
86.
Zurück zum Zitat Espada G, Maldonado Cocco JA, Fertig N, Oddis CV. Clinical and serologic characterization of an Argentine pediatric myositis cohort: identification of a novel autoantibody (anti-MJ) to a 142-kDa protein. J Rheumatol. 2009;36:2547–51.PubMedCrossRef Espada G, Maldonado Cocco JA, Fertig N, Oddis CV. Clinical and serologic characterization of an Argentine pediatric myositis cohort: identification of a novel autoantibody (anti-MJ) to a 142-kDa protein. J Rheumatol. 2009;36:2547–51.PubMedCrossRef
87.
Zurück zum Zitat Ichimura Y, Matsushita T, Hamaguchi Y, Kaji K, Hasegawa M, Tanino Y, et al. Anti-NXP2 autoantibodies in adult patients with idiopathic inflammatory myopathies: possible association with malignancy. Ann Rheum Dis. 2012;71:710–3.PubMedCrossRef Ichimura Y, Matsushita T, Hamaguchi Y, Kaji K, Hasegawa M, Tanino Y, et al. Anti-NXP2 autoantibodies in adult patients with idiopathic inflammatory myopathies: possible association with malignancy. Ann Rheum Dis. 2012;71:710–3.PubMedCrossRef
88.
Zurück zum Zitat Fiorentino DF, Chung LS, Christopher-Stine L, Zaba L, Li S, Mammen AL, et al. Most patients with cancer-associated dermatomyositis have antibodies to nuclear matrix protein NXP-2 or transcription intermediary factor 1γ. Arthritis Rheum. 2013;65:2954–62.PubMedPubMedCentralCrossRef Fiorentino DF, Chung LS, Christopher-Stine L, Zaba L, Li S, Mammen AL, et al. Most patients with cancer-associated dermatomyositis have antibodies to nuclear matrix protein NXP-2 or transcription intermediary factor 1γ. Arthritis Rheum. 2013;65:2954–62.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Ceribelli A, Fredi M, Taraborelli M, Cavazzana I, Franceschini F, Quinzanini M, et al. Anti-MJ/NXP-2 autoantibody specificity in a cohort of adult Italian patients with polymyositis/dermatomyositis. Arthritis Res Ther. 2012;14:R97.PubMedPubMedCentralCrossRef Ceribelli A, Fredi M, Taraborelli M, Cavazzana I, Franceschini F, Quinzanini M, et al. Anti-MJ/NXP-2 autoantibody specificity in a cohort of adult Italian patients with polymyositis/dermatomyositis. Arthritis Res Ther. 2012;14:R97.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Tansley SL, Betteridge ZE, Shaddick G, Gunawardena H, Arnold K, Wedderburn LR, et al. Calcinosis in juvenile dermatomyositis is influenced by both anti-NXP2 autoantibody status and age at disease onset. Rheumatology (Oxford). 2014;53:2204–8.CrossRef Tansley SL, Betteridge ZE, Shaddick G, Gunawardena H, Arnold K, Wedderburn LR, et al. Calcinosis in juvenile dermatomyositis is influenced by both anti-NXP2 autoantibody status and age at disease onset. Rheumatology (Oxford). 2014;53:2204–8.CrossRef
91.
92.
Zurück zum Zitat Picard C, Vincent T, Lega J-CC, Hue S, Fortenfant F, Lakomy D, et al. Heterogeneous clinical spectrum of anti-SRP myositis and importance of the methods of detection of anti-SRP autoantibodies: a multicentric study. Immunol Res. 2016;64:677–86.PubMedCrossRef Picard C, Vincent T, Lega J-CC, Hue S, Fortenfant F, Lakomy D, et al. Heterogeneous clinical spectrum of anti-SRP myositis and importance of the methods of detection of anti-SRP autoantibodies: a multicentric study. Immunol Res. 2016;64:677–86.PubMedCrossRef
93.
Zurück zum Zitat Suzuki S, Nishikawa A, Kuwana M, Nishimura H, Watanabe Y, Nakahara J, et al. Inflammatory myopathy with anti-signal recognition particle antibodies: case series of 100 patients. Orphanet J Rare Dis. 2015;10:61.PubMedPubMedCentralCrossRef Suzuki S, Nishikawa A, Kuwana M, Nishimura H, Watanabe Y, Nakahara J, et al. Inflammatory myopathy with anti-signal recognition particle antibodies: case series of 100 patients. Orphanet J Rare Dis. 2015;10:61.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Allenbach Y, Arouche-Delaperche L, Preusse C, et al. Necrosis in anti-SRP+ and anti-HMGCR+myopathies: role of autoantibodies and complement. Neurology. 2018;90(6):e507–17.PubMedCrossRef Allenbach Y, Arouche-Delaperche L, Preusse C, et al. Necrosis in anti-SRP+ and anti-HMGCR+myopathies: role of autoantibodies and complement. Neurology. 2018;90(6):e507–17.PubMedCrossRef
95.
Zurück zum Zitat Ikeda K, Mori-Yoshimura M, Yamamoto T, Sonoo M, Suzuki S, Kondo Y, et al. Chronic myopathy associated with anti-signal recognition particle antibodies can be misdiagnosed as facioscapulohumeral muscular dystrophy. J Clin Neuromuscul Dis. 2016;17:197–206.PubMedCrossRef Ikeda K, Mori-Yoshimura M, Yamamoto T, Sonoo M, Suzuki S, Kondo Y, et al. Chronic myopathy associated with anti-signal recognition particle antibodies can be misdiagnosed as facioscapulohumeral muscular dystrophy. J Clin Neuromuscul Dis. 2016;17:197–206.PubMedCrossRef
96.
Zurück zum Zitat Love LA, Leff RL, Fraser DD, Targoff IN, Dalakas M, Plotz PH, et al. A new approach to the classification of idiopathic inflammatory myopathy: myositis-specific autoantibodies define useful homogeneous patient groups. Medicine (Baltimore). 1991;70:360–74.PubMedCrossRef Love LA, Leff RL, Fraser DD, Targoff IN, Dalakas M, Plotz PH, et al. A new approach to the classification of idiopathic inflammatory myopathy: myositis-specific autoantibodies define useful homogeneous patient groups. Medicine (Baltimore). 1991;70:360–74.PubMedCrossRef
97.
Zurück zum Zitat Aggarwal R, Oddis CV, Goudeau D, Fertig N, Metes I, Stephens C, et al. Anti-signal recognition particle autoantibody ELISA validation and clinical associations. Rheumatology. 2015;54:1194–9.PubMedCrossRef Aggarwal R, Oddis CV, Goudeau D, Fertig N, Metes I, Stephens C, et al. Anti-signal recognition particle autoantibody ELISA validation and clinical associations. Rheumatology. 2015;54:1194–9.PubMedCrossRef
98.
Zurück zum Zitat Suzuki S, Yonekawa T, Kuwana M, Hayashi YK, Okazaki Y, Kawaguchi Y, et al. Clinical and histological findings associated with autoantibodies detected by RNA immunoprecipitation in inflammatory myopathies. J Neuroimmunol. 2014;274:202–8.PubMedCrossRef Suzuki S, Yonekawa T, Kuwana M, Hayashi YK, Okazaki Y, Kawaguchi Y, et al. Clinical and histological findings associated with autoantibodies detected by RNA immunoprecipitation in inflammatory myopathies. J Neuroimmunol. 2014;274:202–8.PubMedCrossRef
99.
Zurück zum Zitat Wang L, Liu L, Hao H, Gao F, Liu X, Wang Z, et al. Myopathy with anti-signal recognition particle antibodies: clinical and histopathological features in Chinese patients. Neuromuscul Disord. 2014;24:335–41.PubMedCrossRef Wang L, Liu L, Hao H, Gao F, Liu X, Wang Z, et al. Myopathy with anti-signal recognition particle antibodies: clinical and histopathological features in Chinese patients. Neuromuscul Disord. 2014;24:335–41.PubMedCrossRef
100.
Zurück zum Zitat Ellis E, Ann Tan J, Lester S, Tucker G, Blumbergs P, Roberts-Thomson P, et al. Necrotizing myopathy: clinicoserologic associations. Muscle Nerve. 2012;45:189–94.PubMedCrossRef Ellis E, Ann Tan J, Lester S, Tucker G, Blumbergs P, Roberts-Thomson P, et al. Necrotizing myopathy: clinicoserologic associations. Muscle Nerve. 2012;45:189–94.PubMedCrossRef
101.
Zurück zum Zitat Kao AH, Lacomis D, Lucas M, Fertig N, Oddis CV. Anti-signal recognition particle autoantibody in patients with and patients without idiopathic inflammatory myopathy. Arthritis Rheum. 2004;50:209–15.PubMedCrossRef Kao AH, Lacomis D, Lucas M, Fertig N, Oddis CV. Anti-signal recognition particle autoantibody in patients with and patients without idiopathic inflammatory myopathy. Arthritis Rheum. 2004;50:209–15.PubMedCrossRef
102.
Zurück zum Zitat Takada T, Hirakata M, Suwa A, Kaneko Y, Kuwana M, Ishihara T, et al. Clinical and histopathological features of myopathies in Japanese patients with anti-SRP autoantibodies. Mod Rheumatol. 2009;19:156–64.PubMedCrossRef Takada T, Hirakata M, Suwa A, Kaneko Y, Kuwana M, Ishihara T, et al. Clinical and histopathological features of myopathies in Japanese patients with anti-SRP autoantibodies. Mod Rheumatol. 2009;19:156–64.PubMedCrossRef
103.
Zurück zum Zitat Togawa R, Tanino Y, Nikaido T, Fukuhara N, Uematsu M, Misa K, et al. Three cases of interstitial pneumonia with anti-signal recognition particle antibody. Allergol Int. 2017;66:485–7.PubMedCrossRef Togawa R, Tanino Y, Nikaido T, Fukuhara N, Uematsu M, Misa K, et al. Three cases of interstitial pneumonia with anti-signal recognition particle antibody. Allergol Int. 2017;66:485–7.PubMedCrossRef
104.
Zurück zum Zitat Sugie K, Tonomura Y, Ueno S. Characterization of dermatomyositis with coexistence of anti-Jo-1 and anti-SRP antibodies. Intern Med. 2012;51:799–802.PubMedCrossRef Sugie K, Tonomura Y, Ueno S. Characterization of dermatomyositis with coexistence of anti-Jo-1 and anti-SRP antibodies. Intern Med. 2012;51:799–802.PubMedCrossRef
105.
Zurück zum Zitat Malkan A, Cappelen-Smith C, Beran R, Griffith N, Toong C, Wang M-X, et al. Anti-synthetase syndrome associated with anti PL-12 and anti-Signal recognition particle antibodies and a necrotizing auto-immune myositis. J Clin Neurosci. 2015;22:396–8.PubMedCrossRef Malkan A, Cappelen-Smith C, Beran R, Griffith N, Toong C, Wang M-X, et al. Anti-synthetase syndrome associated with anti PL-12 and anti-Signal recognition particle antibodies and a necrotizing auto-immune myositis. J Clin Neurosci. 2015;22:396–8.PubMedCrossRef
106.
Zurück zum Zitat Benveniste O, Drouot L, Jouen F, Charuel J-L, Bloch-Queyrat C, Behin A, et al. Correlation of anti-signal recognition particle autoantibody levels with creatine kinase activity in patients with necrotizing myopathy. Arthritis Rheum. 2011;63:1961–71.PubMedCrossRef Benveniste O, Drouot L, Jouen F, Charuel J-L, Bloch-Queyrat C, Behin A, et al. Correlation of anti-signal recognition particle autoantibody levels with creatine kinase activity in patients with necrotizing myopathy. Arthritis Rheum. 2011;63:1961–71.PubMedCrossRef
107.
Zurück zum Zitat Christopher-Stine L, Casciola-Rosen LA, Hong G, Chung T, Corse AM, Mammen AL. A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathy. Arthritis Rheum. 2010;62:2757–66.PubMedPubMedCentralCrossRef Christopher-Stine L, Casciola-Rosen LA, Hong G, Chung T, Corse AM, Mammen AL. A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathy. Arthritis Rheum. 2010;62:2757–66.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Alvarado-Cardenas M, Marin-Sánchez A, Martínez MA, Martínez-Martínez L, Pinal-Fernandez I, Labrador-Horrillo M, et al. Statin-associated autoimmune myopathy: a distinct new IFL pattern can increase the rate of HMGCR antibody detection by clinical laboratories. Autoimmun Rev. 2016;15:1161–6.PubMedCrossRef Alvarado-Cardenas M, Marin-Sánchez A, Martínez MA, Martínez-Martínez L, Pinal-Fernandez I, Labrador-Horrillo M, et al. Statin-associated autoimmune myopathy: a distinct new IFL pattern can increase the rate of HMGCR antibody detection by clinical laboratories. Autoimmun Rev. 2016;15:1161–6.PubMedCrossRef
109.
Zurück zum Zitat Palterer B, Cammelli D, Vitiello G, Giudizi MGMG, Cammelli D, Giudizi MGMG, et al. Anti-HMGCR and anti-DFS70 antibodies immunofluorescence patterns. Autoimmune Dis. 2017;16:321–2. Palterer B, Cammelli D, Vitiello G, Giudizi MGMG, Cammelli D, Giudizi MGMG, et al. Anti-HMGCR and anti-DFS70 antibodies immunofluorescence patterns. Autoimmune Dis. 2017;16:321–2.
110.
Zurück zum Zitat Musset L, Miyara M, Benveniste O, Charuel J-L, Shikhman A, Boyer O, et al. Analysis of autoantibodies to 3-hydroxy-3-methylglutaryl-coenzyme A reductase using different technologies. J Immunol Res. 2014;2014:1–8.CrossRef Musset L, Miyara M, Benveniste O, Charuel J-L, Shikhman A, Boyer O, et al. Analysis of autoantibodies to 3-hydroxy-3-methylglutaryl-coenzyme A reductase using different technologies. J Immunol Res. 2014;2014:1–8.CrossRef
111.
Zurück zum Zitat Musset L, Allenbach Y, Benveniste O, Boyer O, Bossuyt X, Bentow C, et al. Anti-HMGCR antibodies as a biomarker for immune-mediated necrotizing myopathies: a history of statins and experience from a large international multi-center study. Autoimmun Rev. 2016;15:983–93.PubMedCrossRef Musset L, Allenbach Y, Benveniste O, Boyer O, Bossuyt X, Bentow C, et al. Anti-HMGCR antibodies as a biomarker for immune-mediated necrotizing myopathies: a history of statins and experience from a large international multi-center study. Autoimmun Rev. 2016;15:983–93.PubMedCrossRef
113.
Zurück zum Zitat Keating P, Young J, George P, Florkowski C, Spellerberg M, Kennedy N. Anti-HMGCR autoantibodies in self-limiting statin-induced myopathy. Int J Rheum Dis. 2017;20:2179–81.PubMedCrossRef Keating P, Young J, George P, Florkowski C, Spellerberg M, Kennedy N. Anti-HMGCR autoantibodies in self-limiting statin-induced myopathy. Int J Rheum Dis. 2017;20:2179–81.PubMedCrossRef
114.
Zurück zum Zitat Kadoya M, Hida A, Hashimoto Maeda M, Taira K, Ikenaga C, Uchio N, et al. Cancer association as a risk factor for anti-HMGCR antibody-positive myopathy. Neurol Neuroimmunol Neuroinflamm. 2016;3:e290.PubMedPubMedCentralCrossRef Kadoya M, Hida A, Hashimoto Maeda M, Taira K, Ikenaga C, Uchio N, et al. Cancer association as a risk factor for anti-HMGCR antibody-positive myopathy. Neurol Neuroimmunol Neuroinflamm. 2016;3:e290.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Mammen AL, Gaudet D, Brisson D, Christopher-Stine L, Lloyd TE, Leffell MS, et al. Increased frequency of DRB1*11:01 in anti-HMG-CoA reductase-associated autoimmune myopathy. Arthritis Care Res (Hoboken). 2012;64:1233–7.PubMedPubMedCentralCrossRef Mammen AL, Gaudet D, Brisson D, Christopher-Stine L, Lloyd TE, Leffell MS, et al. Increased frequency of DRB1*11:01 in anti-HMG-CoA reductase-associated autoimmune myopathy. Arthritis Care Res (Hoboken). 2012;64:1233–7.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Giudizi M, Cammelli D, Vivarelli E, Biagiotti R, Ferraro A, Bentow C, et al. Anti-HMGCR antibody-associated necrotizing myopathy: diagnosis and treatment illustrated using a case report. Scand J Rheumatol. 2016;45:427–9.PubMedCrossRef Giudizi M, Cammelli D, Vivarelli E, Biagiotti R, Ferraro A, Bentow C, et al. Anti-HMGCR antibody-associated necrotizing myopathy: diagnosis and treatment illustrated using a case report. Scand J Rheumatol. 2016;45:427–9.PubMedCrossRef
117.
Zurück zum Zitat Tiniakou E, Pinal-Fernandez I, Lloyd TE, Albayda J, Paik J, Werner JL, et al. More severe disease and slower recovery in younger patients with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Rheumatology (Oxford). 2017;56:787–94. Tiniakou E, Pinal-Fernandez I, Lloyd TE, Albayda J, Paik J, Werner JL, et al. More severe disease and slower recovery in younger patients with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Rheumatology (Oxford). 2017;56:787–94.
118.
Zurück zum Zitat Rider LG, Shah M, Mamyrova G, Huber AM, Rice MM, Targoff IN, et al. The myositis autoantibody phenotypes of the juvenile idiopathic inflammatory myopathies. Medicine (Baltimore). 2013;92:223–43.PubMedPubMedCentralCrossRef Rider LG, Shah M, Mamyrova G, Huber AM, Rice MM, Targoff IN, et al. The myositis autoantibody phenotypes of the juvenile idiopathic inflammatory myopathies. Medicine (Baltimore). 2013;92:223–43.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Mahler M, Fritzler MJ. PM1-Alpha ELISA: the assay of choice for the detection of anti-PM/Scl autoantibodies? Autoimmun Rev. 2009;8:373–8.PubMedCrossRef Mahler M, Fritzler MJ. PM1-Alpha ELISA: the assay of choice for the detection of anti-PM/Scl autoantibodies? Autoimmun Rev. 2009;8:373–8.PubMedCrossRef
120.
Zurück zum Zitat Jaskowski TD, Wilson A, Hill HR, Tebo AE. Diagnostic assays for Anti-PM/Scl IgG antibodies: heterogeneity in antibody response or lack of standardization? Clin Chim Acta. 2011;412:1100–5.PubMedCrossRef Jaskowski TD, Wilson A, Hill HR, Tebo AE. Diagnostic assays for Anti-PM/Scl IgG antibodies: heterogeneity in antibody response or lack of standardization? Clin Chim Acta. 2011;412:1100–5.PubMedCrossRef
121.
Zurück zum Zitat Lega J-CC, Fabien N, Reynaud Q, Durieu I, Durupt SS, Dutertre M, et al. The clinical phenotype associated with myositis-specific and associated autoantibodies: a meta-analysis revisiting the so-called antisynthetase syndrome. Autoimmun Rev. 2014;13:883–91.PubMedCrossRef Lega J-CC, Fabien N, Reynaud Q, Durieu I, Durupt SS, Dutertre M, et al. The clinical phenotype associated with myositis-specific and associated autoantibodies: a meta-analysis revisiting the so-called antisynthetase syndrome. Autoimmun Rev. 2014;13:883–91.PubMedCrossRef
122.
Zurück zum Zitat Mahler M, Raijmakers R. Novel aspects of autoantibodies to the PM/Scl complex: clinical, genetic and diagnostic insights. Autoimmun Rev. 2007;6:432–7.PubMedCrossRef Mahler M, Raijmakers R. Novel aspects of autoantibodies to the PM/Scl complex: clinical, genetic and diagnostic insights. Autoimmun Rev. 2007;6:432–7.PubMedCrossRef
123.
Zurück zum Zitat Muro Y, Hosono Y, Sugiura K, Ogawa Y, Mimori T, Akiyama M. Anti-PM/Scl antibodies are found in Japanese patients with various systemic autoimmune conditions besides myositis and scleroderma. Arthritis Res Ther. 2015;17:57.PubMedPubMedCentralCrossRef Muro Y, Hosono Y, Sugiura K, Ogawa Y, Mimori T, Akiyama M. Anti-PM/Scl antibodies are found in Japanese patients with various systemic autoimmune conditions besides myositis and scleroderma. Arthritis Res Ther. 2015;17:57.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Aguila LA, Lopes MRU, Pretti FZ, Sampaio-Barros PD, Carlos De Souza FH, Borba EF, et al. Clinical and laboratory features of overlap syndromes of idiopathic inflammatory myopathies associated with systemic lupus erythematosus, systemic sclerosis, or rheumatoid arthritis. Clin Rheumatol. 2014;33:1093–8.PubMedCrossRef Aguila LA, Lopes MRU, Pretti FZ, Sampaio-Barros PD, Carlos De Souza FH, Borba EF, et al. Clinical and laboratory features of overlap syndromes of idiopathic inflammatory myopathies associated with systemic lupus erythematosus, systemic sclerosis, or rheumatoid arthritis. Clin Rheumatol. 2014;33:1093–8.PubMedCrossRef
125.
Zurück zum Zitat Hanke K, Brückner CS, Dähnrich C, Huscher D, Komorowski L, Meyer W, et al. Antibodies against PM/Scl-75 and PM/Scl-100 are independent markers for different subsets of systemic sclerosis patients. Arthritis Res Ther. 2009;11:R22.PubMedPubMedCentralCrossRef Hanke K, Brückner CS, Dähnrich C, Huscher D, Komorowski L, Meyer W, et al. Antibodies against PM/Scl-75 and PM/Scl-100 are independent markers for different subsets of systemic sclerosis patients. Arthritis Res Ther. 2009;11:R22.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Schilders G, Egberts WV, Raijmakers R, Pruijn GJM. C1D is a major autoantibody target in patients with the polymyositis-scleroderma overlap syndrome. Arthritis Rheum. 2007;56:2449–54.PubMedCrossRef Schilders G, Egberts WV, Raijmakers R, Pruijn GJM. C1D is a major autoantibody target in patients with the polymyositis-scleroderma overlap syndrome. Arthritis Rheum. 2007;56:2449–54.PubMedCrossRef
127.
Zurück zum Zitat Migliorini P, Baldini C, Rocchi V, Bombardieri S. Anti-Sm and anti-RNP antibodies. Autoimmunity. 2005;38:47–54.PubMedCrossRef Migliorini P, Baldini C, Rocchi V, Bombardieri S. Anti-Sm and anti-RNP antibodies. Autoimmunity. 2005;38:47–54.PubMedCrossRef
128.
Zurück zum Zitat Lundberg I, Nennesmo I, Hedfors E. A clinical, serological, and histopathological study of myositis patients with and without anti-RNP antibodies. Semin Arthritis Rheum. 1992;22:127–38.PubMedCrossRef Lundberg I, Nennesmo I, Hedfors E. A clinical, serological, and histopathological study of myositis patients with and without anti-RNP antibodies. Semin Arthritis Rheum. 1992;22:127–38.PubMedCrossRef
129.
Zurück zum Zitat Coppo P, Clauvel JP, Bengoufa D, Oksenhendler E, Lacroix C, Lassoued K. Inflammatory myositis associated with anti-U1-small nuclear ribonucleoprotein antibodies: a subset of myositis associated with a favourable outcome. Rheumatology (Oxford). 2002;41:1040–6.CrossRef Coppo P, Clauvel JP, Bengoufa D, Oksenhendler E, Lacroix C, Lassoued K. Inflammatory myositis associated with anti-U1-small nuclear ribonucleoprotein antibodies: a subset of myositis associated with a favourable outcome. Rheumatology (Oxford). 2002;41:1040–6.CrossRef
130.
Zurück zum Zitat Craft J, Mimori T, Olsen TL, Hardin JA. The U2 small nuclear ribonucleoprotein particle as an autoantigen. Analysis with sera from patients with overlap syndromes. J Clin Invest. 1988;81:1716–24.PubMedPubMedCentralCrossRef Craft J, Mimori T, Olsen TL, Hardin JA. The U2 small nuclear ribonucleoprotein particle as an autoantigen. Analysis with sera from patients with overlap syndromes. J Clin Invest. 1988;81:1716–24.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Kubo M, Ihn H, Kuwana M, Asano Y, Tamaki T, Yamane K, et al. Anti-U5 snRNP antibody as a possible serological marker for scleroderma-polymyositis overlap. Rheumatology (Oxford). 2002;41:531–4.CrossRef Kubo M, Ihn H, Kuwana M, Asano Y, Tamaki T, Yamane K, et al. Anti-U5 snRNP antibody as a possible serological marker for scleroderma-polymyositis overlap. Rheumatology (Oxford). 2002;41:531–4.CrossRef
132.
Zurück zum Zitat Sibilia J, Chatelus E, Meyer A, Gottenberg J-E, Sordet C, Goetz J. How can we diagnose and better understand inflammatory myopathies? The usefulness of auto-antibodies. Presse Med. 2010;39:1010–25.PubMedCrossRef Sibilia J, Chatelus E, Meyer A, Gottenberg J-E, Sordet C, Goetz J. How can we diagnose and better understand inflammatory myopathies? The usefulness of auto-antibodies. Presse Med. 2010;39:1010–25.PubMedCrossRef
133.
Zurück zum Zitat Van Eenennaam H, Vogelzangs JHP, Bisschops L, Te Boome LCJ, Seelig HP, Renz M, et al. Autoantibodies against small nucleolar ribonucleoprotein complexes and their clinical associations. Clin Exp Immunol. 2002;130:532–40.PubMedCrossRef Van Eenennaam H, Vogelzangs JHP, Bisschops L, Te Boome LCJ, Seelig HP, Renz M, et al. Autoantibodies against small nucleolar ribonucleoprotein complexes and their clinical associations. Clin Exp Immunol. 2002;130:532–40.PubMedCrossRef
134.
Zurück zum Zitat Peterson LK, Jaskowski TD, Mayes MD, Tebo AE. Detection of anti-U3-RNP/fibrillarin IgG antibodies by line immunoblot assay has comparable clinical significance to immunoprecipitation testing in systemic sclerosis. Immunol Res. 2016;64:483–8.PubMedCrossRef Peterson LK, Jaskowski TD, Mayes MD, Tebo AE. Detection of anti-U3-RNP/fibrillarin IgG antibodies by line immunoblot assay has comparable clinical significance to immunoprecipitation testing in systemic sclerosis. Immunol Res. 2016;64:483–8.PubMedCrossRef
135.
Zurück zum Zitat Reimer G, Steen VD, Penning CA, Medsger TA, Tan EM. Correlates between autoantibodies to nucleolar antigens and clinical features in patients with systemic sclerosis (scleroderma). Arthritis Rheum. 1988;31:525–32.PubMedCrossRef Reimer G, Steen VD, Penning CA, Medsger TA, Tan EM. Correlates between autoantibodies to nucleolar antigens and clinical features in patients with systemic sclerosis (scleroderma). Arthritis Rheum. 1988;31:525–32.PubMedCrossRef
136.
Zurück zum Zitat Murata K-Y, Nakatani K, Yananeki M, Nakanishi I, Ito H. Anti-U3 ribonucleoprotein antibody-positive inflammatory myopathy: a case report. J Med Case Rep. 2016;10:169.PubMedPubMedCentralCrossRef Murata K-Y, Nakatani K, Yananeki M, Nakanishi I, Ito H. Anti-U3 ribonucleoprotein antibody-positive inflammatory myopathy: a case report. J Med Case Rep. 2016;10:169.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Tall F, Dechomet M, Riviere S, Cottin V, Ballot E, Tiev KP, et al. The clinical relevance of antifibrillarin (anti-U3-RNP) autoantibodies in systemic sclerosis. Scand J Immunol. 2017;85:73–9.PubMedCrossRef Tall F, Dechomet M, Riviere S, Cottin V, Ballot E, Tiev KP, et al. The clinical relevance of antifibrillarin (anti-U3-RNP) autoantibodies in systemic sclerosis. Scand J Immunol. 2017;85:73–9.PubMedCrossRef
138.
Zurück zum Zitat Tormey VJ, Bunn CC, Denton CP, Black CM. Anti-fibrillarin antibodies in systemic sclerosis. Rheumatology (Oxford). 2001;40:1157–62.CrossRef Tormey VJ, Bunn CC, Denton CP, Black CM. Anti-fibrillarin antibodies in systemic sclerosis. Rheumatology (Oxford). 2001;40:1157–62.CrossRef
139.
Zurück zum Zitat Belizna C, Henrion D, Beucher A, Lavigne C, Ghaali A, Lévesque H. Anti-Ku antibodies: clinical, genetic and diagnostic insights. Autoimmun Rev. 2010;9:691–4.PubMedCrossRef Belizna C, Henrion D, Beucher A, Lavigne C, Ghaali A, Lévesque H. Anti-Ku antibodies: clinical, genetic and diagnostic insights. Autoimmun Rev. 2010;9:691–4.PubMedCrossRef
140.
Zurück zum Zitat Cooley HM, Melny BJ, Gleeson R, Greco T, Kay TW. Clinical and serological associations of anti-Ku antibody. J Rheumatol. 1999;26:563–7.PubMed Cooley HM, Melny BJ, Gleeson R, Greco T, Kay TW. Clinical and serological associations of anti-Ku antibody. J Rheumatol. 1999;26:563–7.PubMed
141.
Zurück zum Zitat Mimori T, Hardin JA, Steitz JA. Characterization of the DNA-binding protein antigen Ku recognized by autoantibodies from patients with rheumatic disorders. J Biol Chem. 1986;261:2274–8.PubMed Mimori T, Hardin JA, Steitz JA. Characterization of the DNA-binding protein antigen Ku recognized by autoantibodies from patients with rheumatic disorders. J Biol Chem. 1986;261:2274–8.PubMed
142.
Zurück zum Zitat Cavazzana I, Ceribelli A, Quinzanini M, Scarsi M, Airò P, Cattaneo R, et al. Prevalence and clinical associations of anti-Ku antibodies in systemic autoimmune diseases. Lupus. 2008;17:727–32.PubMedCrossRef Cavazzana I, Ceribelli A, Quinzanini M, Scarsi M, Airò P, Cattaneo R, et al. Prevalence and clinical associations of anti-Ku antibodies in systemic autoimmune diseases. Lupus. 2008;17:727–32.PubMedCrossRef
143.
Zurück zum Zitat Rigolet A, Musset L, Dubourg O, Maisonobe T, Grenier P, Charuel J-L, et al. Inflammatory myopathies with anti-Ku antibodies: a prognosis dependent on associated lung disease. Medicine (Baltimore). 2012;91:95–102.PubMedCrossRef Rigolet A, Musset L, Dubourg O, Maisonobe T, Grenier P, Charuel J-L, et al. Inflammatory myopathies with anti-Ku antibodies: a prognosis dependent on associated lung disease. Medicine (Baltimore). 2012;91:95–102.PubMedCrossRef
144.
Zurück zum Zitat Franceschini F, Cavazzana I. Anti-Ro/SSA and La/SSB antibodies. Autoimmunity. 2005;38:55–63.PubMedCrossRef Franceschini F, Cavazzana I. Anti-Ro/SSA and La/SSB antibodies. Autoimmunity. 2005;38:55–63.PubMedCrossRef
145.
Zurück zum Zitat Pollock W, Toh BH. Routine immunofluorescence detection of Ro/SS-A autoantibody using HEp-2 cells transfected with human 60 kDa Ro/SS-A. J Clin Pathol. 1999;52:684–7.PubMedPubMedCentralCrossRef Pollock W, Toh BH. Routine immunofluorescence detection of Ro/SS-A autoantibody using HEp-2 cells transfected with human 60 kDa Ro/SS-A. J Clin Pathol. 1999;52:684–7.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Fritzler MJ, Hanson C, Miller J, Eystathioy T. Specificity of autoantibodies to SS-A/Ro on a transfected and overexpressed human 60 kDa Ro autoantigen substrate. J Clin Lab Anal. 2002;16:103–8.PubMedCrossRef Fritzler MJ, Hanson C, Miller J, Eystathioy T. Specificity of autoantibodies to SS-A/Ro on a transfected and overexpressed human 60 kDa Ro autoantigen substrate. J Clin Lab Anal. 2002;16:103–8.PubMedCrossRef
147.
Zurück zum Zitat Dellavance A, Alvarenga RR, Rodrigues SSH, Barbosa SH, Camilo ACP, Shiguedomi HSO, et al. Autoantibodies to 60 kDa SS-A/Ro yield a specific nuclear myriad discrete fine speckled immunofluorescence pattern. J Immunol Methods. 2013;390:35–40.PubMedCrossRef Dellavance A, Alvarenga RR, Rodrigues SSH, Barbosa SH, Camilo ACP, Shiguedomi HSO, et al. Autoantibodies to 60 kDa SS-A/Ro yield a specific nuclear myriad discrete fine speckled immunofluorescence pattern. J Immunol Methods. 2013;390:35–40.PubMedCrossRef
148.
Zurück zum Zitat Defendenti C, Atzeni F, Spina MF, Grosso S, Cereda A, Guercilena G, et al. Clinical and laboratory aspects of Ro/SSA-52 autoantibodies. Autoimmun Rev. 2011;10:150–4.PubMedCrossRef Defendenti C, Atzeni F, Spina MF, Grosso S, Cereda A, Guercilena G, et al. Clinical and laboratory aspects of Ro/SSA-52 autoantibodies. Autoimmun Rev. 2011;10:150–4.PubMedCrossRef
149.
Zurück zum Zitat Ghillani P, André C, Toly C, Rouquette AM, Bengoufa D, Nicaise P, et al. Clinical significance of anti-Ro52 (TRIM21) antibodies non-associated with anti-SSA 60 kDa antibodies: results of a multicentric study. Autoimmun Rev. 2011;10:509–13.PubMedCrossRef Ghillani P, André C, Toly C, Rouquette AM, Bengoufa D, Nicaise P, et al. Clinical significance of anti-Ro52 (TRIM21) antibodies non-associated with anti-SSA 60 kDa antibodies: results of a multicentric study. Autoimmun Rev. 2011;10:509–13.PubMedCrossRef
150.
Zurück zum Zitat Sonesson S-E, Hedlund M, Ambrosi A, Wahren-Herlenius M. Factors influencing fetal cardiac conduction in anti-Ro/SSA-positive pregnancies. Rheumatology (Oxford). 2017;56:1755–62.CrossRef Sonesson S-E, Hedlund M, Ambrosi A, Wahren-Herlenius M. Factors influencing fetal cardiac conduction in anti-Ro/SSA-positive pregnancies. Rheumatology (Oxford). 2017;56:1755–62.CrossRef
151.
Zurück zum Zitat Lloyd TE, Christopher-Stine L, Pinal-Fernandez I, Tiniakou E, Petri M, Baer A, et al. Cytosolic 5′-nucleotidase 1A As a target of circulating autoantibodies in autoimmune diseases. Arthritis Care Res (Hoboken). 2016;68:66–71.PubMedPubMedCentralCrossRef Lloyd TE, Christopher-Stine L, Pinal-Fernandez I, Tiniakou E, Petri M, Baer A, et al. Cytosolic 5′-nucleotidase 1A As a target of circulating autoantibodies in autoimmune diseases. Arthritis Care Res (Hoboken). 2016;68:66–71.PubMedPubMedCentralCrossRef
152.
153.
Zurück zum Zitat Pluk H, van Hoeve BJA, van Dooren SHJ, Stammen-Vogelzangs J, van der Heijden A, Schelhaas HJ, et al. Autoantibodies to cytosolic 5′-nucleotidase 1A in inclusion body myositis. Ann Neurol. 2013;73:397–407.PubMedCrossRef Pluk H, van Hoeve BJA, van Dooren SHJ, Stammen-Vogelzangs J, van der Heijden A, Schelhaas HJ, et al. Autoantibodies to cytosolic 5′-nucleotidase 1A in inclusion body myositis. Ann Neurol. 2013;73:397–407.PubMedCrossRef
154.
Zurück zum Zitat Kramp SL, Karayev D, Shen G, Metzger AL, Morris RI, Karayev E, et al. Development and evaluation of a standardized ELISA for the determination of autoantibodies against cN-1A (Mup44, NT5C1A) in sporadic inclusion body myositis. Auto Immun highlights. 2016;7:16.PubMedPubMedCentralCrossRef Kramp SL, Karayev D, Shen G, Metzger AL, Morris RI, Karayev E, et al. Development and evaluation of a standardized ELISA for the determination of autoantibodies against cN-1A (Mup44, NT5C1A) in sporadic inclusion body myositis. Auto Immun highlights. 2016;7:16.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Greenberg SA. Cytoplasmic 5′-nucleotidase autoantibodies in inclusion body myositis: isotypes and diagnostic utility. Muscle Nerve. 2014;50:488–92.PubMedCrossRef Greenberg SA. Cytoplasmic 5′-nucleotidase autoantibodies in inclusion body myositis: isotypes and diagnostic utility. Muscle Nerve. 2014;50:488–92.PubMedCrossRef
156.
Zurück zum Zitat Lilleker JB, Rietveld A, Pye SR, Mariampillai K, Benveniste O, Peeters MTJ, et al. Cytosolic 5′-nucleotidase 1A autoantibody profile and clinical characteristics in inclusion body myositis. Ann Rheum Dis. 2017;76:862–8.PubMedPubMedCentralCrossRef Lilleker JB, Rietveld A, Pye SR, Mariampillai K, Benveniste O, Peeters MTJ, et al. Cytosolic 5′-nucleotidase 1A autoantibody profile and clinical characteristics in inclusion body myositis. Ann Rheum Dis. 2017;76:862–8.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Herbert MK, Stammen-Vogelzangs J, Verbeek MM, Rietveld A, Lundberg IE, Chinoy H, et al. Disease specificity of autoantibodies to cytosolic 5′-nucleotidase 1A in sporadic inclusion body myositis versus known autoimmune diseases. Ann Rheum Dis. 2016;75:696–701.PubMedCrossRef Herbert MK, Stammen-Vogelzangs J, Verbeek MM, Rietveld A, Lundberg IE, Chinoy H, et al. Disease specificity of autoantibodies to cytosolic 5′-nucleotidase 1A in sporadic inclusion body myositis versus known autoimmune diseases. Ann Rheum Dis. 2016;75:696–701.PubMedCrossRef
159.
Zurück zum Zitat Herbert MK, Pruijn GJM. Novel serology testing for sporadic inclusion body myositis: disease-specificity and diagnostic utility. Curr Opin Rheumatol. 2015;27:595–600.PubMedCrossRef Herbert MK, Pruijn GJM. Novel serology testing for sporadic inclusion body myositis: disease-specificity and diagnostic utility. Curr Opin Rheumatol. 2015;27:595–600.PubMedCrossRef
160.
Zurück zum Zitat Kaji K, Fertig N, Medsger TA, Satoh T, Hoshino K, Hamaguchi Y, et al. Autoantibodies to RuvBL1 and RuvBL2: a novel systemic sclerosis-related antibody associated with diffuse cutaneous and skeletal muscle involvement. Arthritis Care Res. 2014;66:575–84.CrossRef Kaji K, Fertig N, Medsger TA, Satoh T, Hoshino K, Hamaguchi Y, et al. Autoantibodies to RuvBL1 and RuvBL2: a novel systemic sclerosis-related antibody associated with diffuse cutaneous and skeletal muscle involvement. Arthritis Care Res. 2014;66:575–84.CrossRef
161.
Zurück zum Zitat Pauling JD, Salazar G, Lu H, Betteridge ZE, Assassi S, Mayes MD, et al. Presence of anti-eukaryotic initiation factor-2B, anti-RuvBL1/2 and anti-synthetase antibodies in patients with anti-nuclear antibody negative systemic sclerosis. Rheumatology. 2017. https://doi.org/10.1093/rheumatology/kex458. Pauling JD, Salazar G, Lu H, Betteridge ZE, Assassi S, Mayes MD, et al. Presence of anti-eukaryotic initiation factor-2B, anti-RuvBL1/2 and anti-synthetase antibodies in patients with anti-nuclear antibody negative systemic sclerosis. Rheumatology. 2017. https://​doi.​org/​10.​1093/​rheumatology/​kex458.
162.
Zurück zum Zitat Takahashi T, Nakanishi T, Hamaguchi Y, Tanaka T, Fujimoto N. Case of anti-RuvBL1/2 antibody-positive morphea and polymyositis. J Dermatol. 2017:44:1188–90.PubMedCrossRef Takahashi T, Nakanishi T, Hamaguchi Y, Tanaka T, Fujimoto N. Case of anti-RuvBL1/2 antibody-positive morphea and polymyositis. J Dermatol. 2017:44:1188–90.PubMedCrossRef
163.
Zurück zum Zitat Satoh M, Langdon JJ, Chou C-H, McCauliffe DP, Treadwell EL, Ogasawara T, et al. Characterization of the Su antigen, a macromolecular complex of 100/102 and 200-kDa proteins recognized by autoantibodies in systemic rheumatic diseases. Clin Immunol Immunopathol. 1994;73:132–41.PubMedCrossRef Satoh M, Langdon JJ, Chou C-H, McCauliffe DP, Treadwell EL, Ogasawara T, et al. Characterization of the Su antigen, a macromolecular complex of 100/102 and 200-kDa proteins recognized by autoantibodies in systemic rheumatic diseases. Clin Immunol Immunopathol. 1994;73:132–41.PubMedCrossRef
164.
Zurück zum Zitat Satoh M, Chan JYF, Ceribelli A, Vazquez del-Mercado M, EKL A. Autoantibodies to argonaute 2 (Su antigen). Adv Exp Med Biol. 2013;768:45–59.PubMedCrossRef Satoh M, Chan JYF, Ceribelli A, Vazquez del-Mercado M, EKL A. Autoantibodies to argonaute 2 (Su antigen). Adv Exp Med Biol. 2013;768:45–59.PubMedCrossRef
165.
Zurück zum Zitat Ogawa-Momohara M, Muro Y, Satoh M, Akiyama M. Autoantibodies to Su/Argonaute 2 in Japanese patients with inflammatory myopathy. Clin Chim Acta. 2017;471:304–7.PubMedCrossRef Ogawa-Momohara M, Muro Y, Satoh M, Akiyama M. Autoantibodies to Su/Argonaute 2 in Japanese patients with inflammatory myopathy. Clin Chim Acta. 2017;471:304–7.PubMedCrossRef
166.
Zurück zum Zitat Bhanji RA, Eystathioy T, Chan EKL, Bloch DB, Fritzler MJ. Clinical and serological features of patients with autoantibodies to GW/P bodies. Clin Immunol. 2007;125:247–56.PubMedPubMedCentralCrossRef Bhanji RA, Eystathioy T, Chan EKL, Bloch DB, Fritzler MJ. Clinical and serological features of patients with autoantibodies to GW/P bodies. Clin Immunol. 2007;125:247–56.PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Satoh M, Chan JYF, Ross SJ, Ceribelli A, Cavazzana I, Franceschini F, et al. Autoantibodies to survival of motor neuron complex in patients with polymyositis: immunoprecipitation of D, E, F, and G proteins without other components of small nuclear ribonucleoproteins. Arthritis Rheum. 2011;63:1972–8.PubMedPubMedCentralCrossRef Satoh M, Chan JYF, Ross SJ, Ceribelli A, Cavazzana I, Franceschini F, et al. Autoantibodies to survival of motor neuron complex in patients with polymyositis: immunoprecipitation of D, E, F, and G proteins without other components of small nuclear ribonucleoproteins. Arthritis Rheum. 2011;63:1972–8.PubMedPubMedCentralCrossRef
168.
Zurück zum Zitat Cobben JM, de Visser M, Scheffer H. From gene to disease; “survival” motor neuron protein and hereditary proximal spinal muscle atrophy. Ned Tijdschr Geneeskd. 2001;145:2525–7.PubMed Cobben JM, de Visser M, Scheffer H. From gene to disease; “survival” motor neuron protein and hereditary proximal spinal muscle atrophy. Ned Tijdschr Geneeskd. 2001;145:2525–7.PubMed
169.
Zurück zum Zitat Enarson P, Rattner JB, Ou Y, Miyachi K, Horigome T, Fritzler MJ. Autoantigens of the nuclear pore complex. J Mol Med (Berl). 2004;82:423–33.PubMedCrossRef Enarson P, Rattner JB, Ou Y, Miyachi K, Horigome T, Fritzler MJ. Autoantigens of the nuclear pore complex. J Mol Med (Berl). 2004;82:423–33.PubMedCrossRef
170.
Zurück zum Zitat Nishio A, Water J, Leung PS, Joplin R, Neuberger JM, Lake J, et al. Comparative studies of antimitochondrial autoantibodies in sera and bile in primary biliary cirrhosis. Hepatology. 1997;25:1085–9.PubMedCrossRef Nishio A, Water J, Leung PS, Joplin R, Neuberger JM, Lake J, et al. Comparative studies of antimitochondrial autoantibodies in sera and bile in primary biliary cirrhosis. Hepatology. 1997;25:1085–9.PubMedCrossRef
171.
Zurück zum Zitat Senécal J-L, Isabelle C, Fritzler MJ, Targoff IN, Goldstein R, Gagné M, et al. An autoimmune myositis-overlap syndrome associated with autoantibodies to nuclear pore complexes. Medicine (Baltimore). 2014;93:383–94.PubMedPubMedCentralCrossRef Senécal J-L, Isabelle C, Fritzler MJ, Targoff IN, Goldstein R, Gagné M, et al. An autoimmune myositis-overlap syndrome associated with autoantibodies to nuclear pore complexes. Medicine (Baltimore). 2014;93:383–94.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Lleo A, Marzorati S, Anaya J-M, Gershwin ME. Primary biliary cholangitis: a comprehensive overview. Hepatol Int. 2017;11:485–99.PubMedCrossRef Lleo A, Marzorati S, Anaya J-M, Gershwin ME. Primary biliary cholangitis: a comprehensive overview. Hepatol Int. 2017;11:485–99.PubMedCrossRef
173.
Zurück zum Zitat Maeda MH, Tsuji S, Shimizu J. Inflammatory myopathies associated with anti-mitochondrial antibodies. Brain. 2012;135(Pt 6):1767–77.PubMedCrossRef Maeda MH, Tsuji S, Shimizu J. Inflammatory myopathies associated with anti-mitochondrial antibodies. Brain. 2012;135(Pt 6):1767–77.PubMedCrossRef
174.
Zurück zum Zitat Konishi H, Fukuzawa K, Mori S, Satomi-Kobayashi S, Kiuchi K, Suzuki A, et al. Anti-mitochondrial M2 antibodies enhance the risk of supraventricular arrhythmias in patients with elevated hepatobiliary enzyme levels. Intern Med. 2017;56:1771–9.PubMedPubMedCentralCrossRef Konishi H, Fukuzawa K, Mori S, Satomi-Kobayashi S, Kiuchi K, Suzuki A, et al. Anti-mitochondrial M2 antibodies enhance the risk of supraventricular arrhythmias in patients with elevated hepatobiliary enzyme levels. Intern Med. 2017;56:1771–9.PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Albayda J, Khan A, Casciola-Rosen L, Corse AM, Paik JJ, Christopher-Stine L. Inflammatory myopathy associated with anti-mitochondrial antibodies: a distinct phenotype with cardiac involvement. Semin Arthritis Rheum. 2018;47:552–6.PubMedCrossRef Albayda J, Khan A, Casciola-Rosen L, Corse AM, Paik JJ, Christopher-Stine L. Inflammatory myopathy associated with anti-mitochondrial antibodies: a distinct phenotype with cardiac involvement. Semin Arthritis Rheum. 2018;47:552–6.PubMedCrossRef
177.
Zurück zum Zitat Targoff IN, Arnett FC, Berman L, O’Brien C, Reichlin M. Anti-KJ: a new antibody associated with the syndrome of polymyositis and interstitial lung disease. J Clin Invest. 1989;84:162–72.PubMedPubMedCentralCrossRef Targoff IN, Arnett FC, Berman L, O’Brien C, Reichlin M. Anti-KJ: a new antibody associated with the syndrome of polymyositis and interstitial lung disease. J Clin Invest. 1989;84:162–72.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Gelpi C, Sontheimer EJ, Rodriguez-Sanchez JL. Autoantibodies against a serine tRNA-protein complex implicated in cotranslational selenocysteine insertion. Proc Natl Acad Sci USA. 1992;89:9739–43.PubMedPubMedCentralCrossRef Gelpi C, Sontheimer EJ, Rodriguez-Sanchez JL. Autoantibodies against a serine tRNA-protein complex implicated in cotranslational selenocysteine insertion. Proc Natl Acad Sci USA. 1992;89:9739–43.PubMedPubMedCentralCrossRef
179.
Zurück zum Zitat Casciola-Rosen LA, Pluta AF, Plotz PH, Cox AE, Morris S, Wigley FM, et al. The DNA mismatch repair enzyme PMS1 is a myositis-specific autoantigen. Arthritis Rheum. 2001;44:389–96.PubMedCrossRef Casciola-Rosen LA, Pluta AF, Plotz PH, Cox AE, Morris S, Wigley FM, et al. The DNA mismatch repair enzyme PMS1 is a myositis-specific autoantigen. Arthritis Rheum. 2001;44:389–96.PubMedCrossRef
180.
Zurück zum Zitat Muro Y, Nakashima R, Hosono Y, Sugiura K, Mimori T, Akiyama M. Autoantibodies to DNA mismatch repair enzymes in polymyositis/dermatomyositis and other autoimmune diseases: a possible marker of favorable prognosis. Arthritis Rheumatol (Hoboken, NJ). 2014;66:3457–62.CrossRef Muro Y, Nakashima R, Hosono Y, Sugiura K, Mimori T, Akiyama M. Autoantibodies to DNA mismatch repair enzymes in polymyositis/dermatomyositis and other autoimmune diseases: a possible marker of favorable prognosis. Arthritis Rheumatol (Hoboken, NJ). 2014;66:3457–62.CrossRef
181.
Zurück zum Zitat Labrador-Horrillo M, Martínez MA, Selva-O’Callaghan A, Trallero-Araguás E, Grau-Junyent JM, Vilardell-Tarrés M, et al. Identification of a novel myositis-associated antibody directed against cortactin. Autoimmun Rev. 2014;13:1008–12.PubMedCrossRef Labrador-Horrillo M, Martínez MA, Selva-O’Callaghan A, Trallero-Araguás E, Grau-Junyent JM, Vilardell-Tarrés M, et al. Identification of a novel myositis-associated antibody directed against cortactin. Autoimmun Rev. 2014;13:1008–12.PubMedCrossRef
182.
Zurück zum Zitat Berrih-Aknin S. Cortactin: a new target in autoimmune myositis and myasthenia gravis. Autoimmun Rev. 2014;13:1001–2.PubMedCrossRef Berrih-Aknin S. Cortactin: a new target in autoimmune myositis and myasthenia gravis. Autoimmun Rev. 2014;13:1001–2.PubMedCrossRef
183.
Zurück zum Zitat Albrecht I, Wick C, Hallgren Å, Tjärnlund A, Nagaraju K, Andrade F, et al. Development of autoantibodies against muscle-specific FHL1 in severe inflammatory myopathies. J Clin Invest. 2015;125:4612–24.PubMedPubMedCentralCrossRef Albrecht I, Wick C, Hallgren Å, Tjärnlund A, Nagaraju K, Andrade F, et al. Development of autoantibodies against muscle-specific FHL1 in severe inflammatory myopathies. J Clin Invest. 2015;125:4612–24.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Amato AA, Griggs RC. Unicorns, dragons, polymyositis, and other mythological beasts. Neurology. 2003;61:288–9.PubMedCrossRef Amato AA, Griggs RC. Unicorns, dragons, polymyositis, and other mythological beasts. Neurology. 2003;61:288–9.PubMedCrossRef
185.
Zurück zum Zitat Tozzoli R, Villalta D, Bizzaro N. Challenges in the standardization of autoantibody testing: a comprehensive review. Clin Rev Allergy Immunol. 2017;53:68–77.PubMedCrossRef Tozzoli R, Villalta D, Bizzaro N. Challenges in the standardization of autoantibody testing: a comprehensive review. Clin Rev Allergy Immunol. 2017;53:68–77.PubMedCrossRef
Metadaten
Titel
Bench to bedside review of myositis autoantibodies
verfasst von
Boaz Palterer
Gianfranco Vitiello
Alessia Carraresi
Maria Grazia Giudizi
Daniele Cammelli
Paola Parronchi
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Clinical and Molecular Allergy / Ausgabe 1/2018
Elektronische ISSN: 1476-7961
DOI
https://doi.org/10.1186/s12948-018-0084-9

Weitere Artikel der Ausgabe 1/2018

Clinical and Molecular Allergy 1/2018 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.