Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2018

27.10.2017

Beneficial Role of Some Natural Products to Attenuate the Diabetic Cardiomyopathy Through Nrf2 Pathway in Cell Culture and Animal Models

verfasst von: V. V. Sathibabu Uddandrao, Parim Brahmanaidu, P. R. Nivedha, S. Vadivukkarasi, Ganapathy Saravanan

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Diabetic cardiomyopathy, as one of the main cardiac complications in diabetic patients, is identified to connect with oxidative stress that is due to interruption in balance between reactive oxygen species or/and reactive nitrogen species generation and their clearance by antioxidant protection systems. Transcription factor the nuclear factor erythroid 2-related factor 2 (Nrf2) plays a significant role in maintaining the oxidative homeostasis by regulating multiple downstream antioxidants. The Nrf2 plays a significant role in ARE-mediated basal and inducible expression of more than 200 genes that can be grouped into numerous categories as well as antioxidant genes and phase II detoxifying enzymes. On the other hand, activation of Nrf2 by natural and synthetic therapeutics or antioxidants has been revealed effective for the prevention and treatment of toxicities and diseases connected with oxidative stress. Hence, recently focus has been shifted toward plants and plant-based medicines in curing such chronic diseases, as they are supposed to be less toxic. In this review, we focused on the role of some natural products on diabetic cardiomyopathy through Nrf2 pathway.
Literatur
1.
Zurück zum Zitat Cai, L., & Kang, Y. J. (2001). Oxidative stress and diabetic cardiomyopathy: A brief review. Cardiovascular Toxicology, 1, 181–193.CrossRefPubMed Cai, L., & Kang, Y. J. (2001). Oxidative stress and diabetic cardiomyopathy: A brief review. Cardiovascular Toxicology, 1, 181–193.CrossRefPubMed
2.
Zurück zum Zitat Cai, L., Wang, Y., Zhou, G., Chen, T., Song, Y., Li, X., et al. (2006). Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. Journal of the American College of Cardiology, 48, 1688–1697.CrossRefPubMed Cai, L., Wang, Y., Zhou, G., Chen, T., Song, Y., Li, X., et al. (2006). Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. Journal of the American College of Cardiology, 48, 1688–1697.CrossRefPubMed
3.
Zurück zum Zitat Boudina, S., & Abel, E. D. (2007). Diabetic cardiomyopathy revisited. Circulation, 115, 3213–3223.CrossRefPubMed Boudina, S., & Abel, E. D. (2007). Diabetic cardiomyopathy revisited. Circulation, 115, 3213–3223.CrossRefPubMed
4.
Zurück zum Zitat Carolyn, (2015). Diabetic cardiomyopathy: An expression of stage B heart failure with preserved ejection fraction. Diabetes & Vascular Disease Research, 12(4), 234–238.CrossRef Carolyn, (2015). Diabetic cardiomyopathy: An expression of stage B heart failure with preserved ejection fraction. Diabetes & Vascular Disease Research, 12(4), 234–238.CrossRef
5.
Zurück zum Zitat Mark Waddingham, T., Amanda Edgley, J., Tsuchimochi, H., Darren Kelly, J., Shirai, M., & James Pearson, T. (2015). Contractile apparatus dysfunction early in the pathophysiology of diabetic cardiomyopathy. World Journal of Diabetes, 6(7), 943–960.CrossRefPubMedPubMedCentral Mark Waddingham, T., Amanda Edgley, J., Tsuchimochi, H., Darren Kelly, J., Shirai, M., & James Pearson, T. (2015). Contractile apparatus dysfunction early in the pathophysiology of diabetic cardiomyopathy. World Journal of Diabetes, 6(7), 943–960.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Hamblin, M., Friedman, D. B., Hill, S., Caprioli, R. M., Smith, H. M., & Hill, M. F. (2007). Alterations in the diabetic myocardial proteome coupled with increased myocardial oxidative stress underlies diabetic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 42, 884–895.CrossRefPubMedPubMedCentral Hamblin, M., Friedman, D. B., Hill, S., Caprioli, R. M., Smith, H. M., & Hill, M. F. (2007). Alterations in the diabetic myocardial proteome coupled with increased myocardial oxidative stress underlies diabetic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 42, 884–895.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Adeghate, E. (2004). Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: A short review. Molecular and Cellular Biochemistry, 261, 187–191.CrossRefPubMed Adeghate, E. (2004). Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: A short review. Molecular and Cellular Biochemistry, 261, 187–191.CrossRefPubMed
8.
Zurück zum Zitat Robertson, A. P. (2004). Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. Journal of Biological Chemistry, 279, 42351–42354.CrossRefPubMed Robertson, A. P. (2004). Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. Journal of Biological Chemistry, 279, 42351–42354.CrossRefPubMed
9.
Zurück zum Zitat Zhou, S., Sun, W., Zhang, Z., et al. (2014). The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxidative Medicine and Cellular Longevity, 1, 260429. Zhou, S., Sun, W., Zhang, Z., et al. (2014). The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxidative Medicine and Cellular Longevity, 1, 260429.
10.
Zurück zum Zitat Erkens, R., Kramer, C. M., Luckstadt, W., Panknin, C., Krause, L., Weidenbach, M., et al. (2015). Left ventricular diastolic dysfunction in Nrf2 knockout mice is associated with cardiac hypertrophy, decreased expression of SERCA2a, and preserved endothelial function. Free Radical Biology and Medicine, 89, 906–917.CrossRefPubMed Erkens, R., Kramer, C. M., Luckstadt, W., Panknin, C., Krause, L., Weidenbach, M., et al. (2015). Left ventricular diastolic dysfunction in Nrf2 knockout mice is associated with cardiac hypertrophy, decreased expression of SERCA2a, and preserved endothelial function. Free Radical Biology and Medicine, 89, 906–917.CrossRefPubMed
11.
Zurück zum Zitat Mozaffarian, D., Benjamin, E. J., Go, A. S., et al. (2015). Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation, 133(4), e38–e360.CrossRefPubMed Mozaffarian, D., Benjamin, E. J., Go, A. S., et al. (2015). Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation, 133(4), e38–e360.CrossRefPubMed
12.
Zurück zum Zitat Li, H., Yao, W., Irwin, M. G., et al. (2015). Adiponectin ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction by concomitantly activating Nrf2 and Brg1. Free Radical Biology and Medicine, 84, 311–321.CrossRefPubMed Li, H., Yao, W., Irwin, M. G., et al. (2015). Adiponectin ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction by concomitantly activating Nrf2 and Brg1. Free Radical Biology and Medicine, 84, 311–321.CrossRefPubMed
13.
Zurück zum Zitat Calvert, J. W., Jha, S., Gundewar, S., Elrod, J. W., Ramachandran, A., et al. (2009). Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circulation Research, 105, 365–374.CrossRefPubMedPubMedCentral Calvert, J. W., Jha, S., Gundewar, S., Elrod, J. W., Ramachandran, A., et al. (2009). Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circulation Research, 105, 365–374.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Tian, H., Zhang, B., Di, J., Jiang, G., Chen, F., Li, H., et al. (2012). Keap1: One stone kills three birds Nrf 2, IKKbeta and Bcl-2/Bcl-xL. Cancer Letters, 325, 26–34.CrossRefPubMed Tian, H., Zhang, B., Di, J., Jiang, G., Chen, F., Li, H., et al. (2012). Keap1: One stone kills three birds Nrf 2, IKKbeta and Bcl-2/Bcl-xL. Cancer Letters, 325, 26–34.CrossRefPubMed
15.
Zurück zum Zitat Zhang, Z., et al. (2014). Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. Journal of Molecular and Cellular Cardiology, 77, 42–52.CrossRefPubMed Zhang, Z., et al. (2014). Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. Journal of Molecular and Cellular Cardiology, 77, 42–52.CrossRefPubMed
16.
Zurück zum Zitat Sathibabu Uddandrao, V. V., Brahmanaidu, P., & Saravanan, G. (2016). Therapeutical perspectives of S-allylcysteine: Effect on diabetes and other disorders in animal models. Cardiovascular & Hematological Agents in Medicinal Chemistry. doi:10.2174/1871525714666160418114120.CrossRef Sathibabu Uddandrao, V. V., Brahmanaidu, P., & Saravanan, G. (2016). Therapeutical perspectives of S-allylcysteine: Effect on diabetes and other disorders in animal models. Cardiovascular & Hematological Agents in Medicinal Chemistry. doi:10.​2174/​1871525714666160​418114120.CrossRef
17.
Zurück zum Zitat Saravanan, G., & Ponmurugan, P. (2012). Antidiabetic effect of S-allylcysteine: Effect on thyroid hormone and circulatory antioxidant system in experimental diabetic rats. Journal of Diabete and its Complications, 26, 280–285.CrossRef Saravanan, G., & Ponmurugan, P. (2012). Antidiabetic effect of S-allylcysteine: Effect on thyroid hormone and circulatory antioxidant system in experimental diabetic rats. Journal of Diabete and its Complications, 26, 280–285.CrossRef
18.
Zurück zum Zitat Brahmanaidu, P., Sathibabu Uddandrao, V. V., Pothani, S., Naik, R. R., Begum, M. S., Varatharaju, C., et al. (2016). Effects of S-allylcysteine on biomarkers of polyol pathway in experimental type II diabetes in rats. Canadian Journal of Diabetes, 40, 442–448.CrossRef Brahmanaidu, P., Sathibabu Uddandrao, V. V., Pothani, S., Naik, R. R., Begum, M. S., Varatharaju, C., et al. (2016). Effects of S-allylcysteine on biomarkers of polyol pathway in experimental type II diabetes in rats. Canadian Journal of Diabetes, 40, 442–448.CrossRef
19.
Zurück zum Zitat Padiya, R., & Banerjee, S. K. (2013). Garlic as an anti-diabetic agent: Recent progress and patent reviews. Recent Patents on Food, Nutrition & Agriculture, 5, 105–127.CrossRef Padiya, R., & Banerjee, S. K. (2013). Garlic as an anti-diabetic agent: Recent progress and patent reviews. Recent Patents on Food, Nutrition & Agriculture, 5, 105–127.CrossRef
20.
Zurück zum Zitat Das, D. K. (2007). Hydrogen sulfide preconditioning by garlic when it starts to smell. The American Journal of Physiology-Heart and Circulatory Physiology, 293, 2629–2630.CrossRef Das, D. K. (2007). Hydrogen sulfide preconditioning by garlic when it starts to smell. The American Journal of Physiology-Heart and Circulatory Physiology, 293, 2629–2630.CrossRef
21.
Zurück zum Zitat Erejuwa, O. O., Sulaiman, S. A., AbWahab, M. S., Sirajudeen, K. N., Salleh, S., et al. (2012). Honey supplementation in spontaneously hypertensive rats elicits antihypertensive effect via amelioration of renal oxidative stress. Oxidative Medicine and Cellular Longevity, 2012, 374037.CrossRefPubMedPubMedCentral Erejuwa, O. O., Sulaiman, S. A., AbWahab, M. S., Sirajudeen, K. N., Salleh, S., et al. (2012). Honey supplementation in spontaneously hypertensive rats elicits antihypertensive effect via amelioration of renal oxidative stress. Oxidative Medicine and Cellular Longevity, 2012, 374037.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Palsamy, P., & Subramanian, S. (2011). Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2–Keap1 signaling. Biochimica et Biophysica Acta, 1812, 719–731.CrossRefPubMed Palsamy, P., & Subramanian, S. (2011). Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2–Keap1 signaling. Biochimica et Biophysica Acta, 1812, 719–731.CrossRefPubMed
23.
Zurück zum Zitat Amagase, H., Petesch, B. L., Matsuura, H., Kasuga, S., & Itakura, Y. (2001). Intake of garlic and its bioactive components. Journal of Nutrition, 131, 955S–962S.CrossRefPubMed Amagase, H., Petesch, B. L., Matsuura, H., Kasuga, S., & Itakura, Y. (2001). Intake of garlic and its bioactive components. Journal of Nutrition, 131, 955S–962S.CrossRefPubMed
24.
Zurück zum Zitat Motohashi, H., & Yamamoto, M. (2004). Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends in Molecular Medicine, 10, 549–557.CrossRefPubMed Motohashi, H., & Yamamoto, M. (2004). Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends in Molecular Medicine, 10, 549–557.CrossRefPubMed
25.
Zurück zum Zitat Reuland, D. J., McCord, J. M., & Hamilton, K. L. (2013). The role of nrf2 in the attenuation of cardiovascular disease. Exercise and Sport Sciences Reviews, 41, 162–168.CrossRefPubMed Reuland, D. J., McCord, J. M., & Hamilton, K. L. (2013). The role of nrf2 in the attenuation of cardiovascular disease. Exercise and Sport Sciences Reviews, 41, 162–168.CrossRefPubMed
26.
Zurück zum Zitat Hiramatsu, K., Tsuneyoshi, T., Ogawa, T., & Morihara, N. (2016). Aged garlic extract enhances heme oxygenase-1 and glutamate–cysteine ligase modifier subunit expression via the nuclear factor erythroid 2-related factor 2-antioxidant response element signaling pathway in human endothelial cells. Nutrition Research, 36, 143–149.CrossRefPubMed Hiramatsu, K., Tsuneyoshi, T., Ogawa, T., & Morihara, N. (2016). Aged garlic extract enhances heme oxygenase-1 and glutamate–cysteine ligase modifier subunit expression via the nuclear factor erythroid 2-related factor 2-antioxidant response element signaling pathway in human endothelial cells. Nutrition Research, 36, 143–149.CrossRefPubMed
27.
Zurück zum Zitat Kundu, J. K., & Surh, Y. J. (2008). Inflammation: Gearing the journey to cancer. Mutation Research, 659, 15–30.CrossRefPubMed Kundu, J. K., & Surh, Y. J. (2008). Inflammation: Gearing the journey to cancer. Mutation Research, 659, 15–30.CrossRefPubMed
28.
Zurück zum Zitat Sun, Z., Chin, Y. E., & Zhang, D. D. (2009). Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. Molecular and Cellular Biology, 29, 2658–2672.CrossRefPubMedPubMedCentral Sun, Z., Chin, Y. E., & Zhang, D. D. (2009). Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. Molecular and Cellular Biology, 29, 2658–2672.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Nioi, P., McMahon, M., Itoh, K., Yamamoto, M., & Hayes, J. D. (2003). Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: Reassessment of the ARE consensus sequence. Biochemical Journal, 374, 337–348.CrossRefPubMedPubMedCentral Nioi, P., McMahon, M., Itoh, K., Yamamoto, M., & Hayes, J. D. (2003). Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: Reassessment of the ARE consensus sequence. Biochemical Journal, 374, 337–348.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Kohda, K., Goda, H., Itoh, K., Samejima, K., & Fukuuchi, T. (2013). Aged garlic extract reduces ROS production and cell death induced by 6-hydroxydopamine through activation of the Nrf2–ARE pathway in SH-SY5Y cells. Pharmacology & Pharmacy, 4, 31–40.CrossRef Kohda, K., Goda, H., Itoh, K., Samejima, K., & Fukuuchi, T. (2013). Aged garlic extract reduces ROS production and cell death induced by 6-hydroxydopamine through activation of the Nrf2–ARE pathway in SH-SY5Y cells. Pharmacology & Pharmacy, 4, 31–40.CrossRef
31.
Zurück zum Zitat Khatua, T. N., Adela, R., & Banerjee, S. K. (2013). Garlic and cardioprotection: Insights into the molecular mechanisms. Canadian Journal of Physiology and Pharmacology, 91, 448–458.CrossRefPubMed Khatua, T. N., Adela, R., & Banerjee, S. K. (2013). Garlic and cardioprotection: Insights into the molecular mechanisms. Canadian Journal of Physiology and Pharmacology, 91, 448–458.CrossRefPubMed
32.
Zurück zum Zitat Hatcher, H., Planalp, R., Cho, J., Torti, F. M., & Torti, S. V. (2008). Curcumin: From ancient medicine to current clinical trials. Cellular and Molecular Life Sciences. CMLS, 65, 1631–1652.CrossRefPubMedPubMedCentral Hatcher, H., Planalp, R., Cho, J., Torti, F. M., & Torti, S. V. (2008). Curcumin: From ancient medicine to current clinical trials. Cellular and Molecular Life Sciences. CMLS, 65, 1631–1652.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Baird, L., & Dinkova-Kostova, A. T. (2011). The cytoprotective role of the Keap1–Nrf2 pathway. Archives of Toxicology, 85, 241–272.CrossRefPubMed Baird, L., & Dinkova-Kostova, A. T. (2011). The cytoprotective role of the Keap1–Nrf2 pathway. Archives of Toxicology, 85, 241–272.CrossRefPubMed
35.
Zurück zum Zitat Kaspar, J. W., Niture, S. K., & Jaiswal, A. K. (2009). Nrf 2:INrf2 (Keap1) signaling in oxidative stress. Free Radical Biology and Medicine, 47, 1304–1309.CrossRefPubMed Kaspar, J. W., Niture, S. K., & Jaiswal, A. K. (2009). Nrf 2:INrf2 (Keap1) signaling in oxidative stress. Free Radical Biology and Medicine, 47, 1304–1309.CrossRefPubMed
36.
Zurück zum Zitat Calvert, J. W., Elston, M., Nicholson, C. K., et al. (2010). Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation, 122(1), 11–19.CrossRefPubMedPubMedCentral Calvert, J. W., Elston, M., Nicholson, C. K., et al. (2010). Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation, 122(1), 11–19.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Shehzad, A., & Lee, Y. S. (2013). Molecular mechanisms of curcumin action: Signal transduction. BioFactors, 39, 27–36.CrossRefPubMed Shehzad, A., & Lee, Y. S. (2013). Molecular mechanisms of curcumin action: Signal transduction. BioFactors, 39, 27–36.CrossRefPubMed
38.
Zurück zum Zitat Niture, S. K., & Jaiswal, A. K. (2011). INrf2 (Keap1) targets Bcl-2 degradation and controls cellular apoptosis. Cell Death and Differentiation, 18, 439–451.CrossRefPubMed Niture, S. K., & Jaiswal, A. K. (2011). INrf2 (Keap1) targets Bcl-2 degradation and controls cellular apoptosis. Cell Death and Differentiation, 18, 439–451.CrossRefPubMed
39.
Zurück zum Zitat Ashrafian, H., Czibik, G., Bellahcene, M., Aksentijevic, D., et al. (2012). Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metabolism, 15, 361–371.CrossRefPubMedPubMedCentral Ashrafian, H., Czibik, G., Bellahcene, M., Aksentijevic, D., et al. (2012). Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metabolism, 15, 361–371.CrossRefPubMedPubMedCentral
40.
41.
Zurück zum Zitat Wu, H., et al. (2015). Metallothionein plays a prominent role in the prevention of diabetic nephropathy by sulforaphane via up-regulation of Nrf2. Free Radical Biology and Medicine, 89, 431–442.CrossRefPubMed Wu, H., et al. (2015). Metallothionein plays a prominent role in the prevention of diabetic nephropathy by sulforaphane via up-regulation of Nrf2. Free Radical Biology and Medicine, 89, 431–442.CrossRefPubMed
42.
Zurück zum Zitat Tsuda, H., Ohshima, Y., Nomoto, H., Fujita, K., Matsuda, E., Iigo, M., et al. (2004). Cancer prevention by natural compounds. Drug Metabolism and Pharmacokinetics, 19, 245–263.CrossRefPubMed Tsuda, H., Ohshima, Y., Nomoto, H., Fujita, K., Matsuda, E., Iigo, M., et al. (2004). Cancer prevention by natural compounds. Drug Metabolism and Pharmacokinetics, 19, 245–263.CrossRefPubMed
43.
Zurück zum Zitat Femia, A. P., Caderni, G., Vignali, F., Salvadori, M., Giannini, A., Biggeri, A., et al. (2005). Effect of polyphenolic extracts from red wine and 4-OH-coumaric acid on 1,2-dimethylhydrazine-induced colon carcinogenesis in rats. European Journal of Nutrition, 44, 79–84.CrossRefPubMed Femia, A. P., Caderni, G., Vignali, F., Salvadori, M., Giannini, A., Biggeri, A., et al. (2005). Effect of polyphenolic extracts from red wine and 4-OH-coumaric acid on 1,2-dimethylhydrazine-induced colon carcinogenesis in rats. European Journal of Nutrition, 44, 79–84.CrossRefPubMed
44.
Zurück zum Zitat Yeha, C.-T., Chingb, L.-C., & Yen, G.-C. (2009). Inducing gene expression of cardiac antioxidant enzymes by dietary phenolic acids in rats. Journal of Nutritional Biochemistry, 20, 163–171.CrossRef Yeha, C.-T., Chingb, L.-C., & Yen, G.-C. (2009). Inducing gene expression of cardiac antioxidant enzymes by dietary phenolic acids in rats. Journal of Nutritional Biochemistry, 20, 163–171.CrossRef
45.
Zurück zum Zitat Leung, L., Kwong, M., Hou, S., Lee, C., & Chan, J. Y. (2003). Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. The Journal of biological chemistry, 278, 48021–48029.CrossRefPubMed Leung, L., Kwong, M., Hou, S., Lee, C., & Chan, J. Y. (2003). Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. The Journal of biological chemistry, 278, 48021–48029.CrossRefPubMed
46.
Zurück zum Zitat Iida, K., Itoh, K., Kumagai, Y., Oyasu, R., Hattori, K., Kawai, K., et al. (2004). Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Research, 64, 6424–6431.CrossRefPubMed Iida, K., Itoh, K., Kumagai, Y., Oyasu, R., Hattori, K., Kawai, K., et al. (2004). Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Research, 64, 6424–6431.CrossRefPubMed
47.
Zurück zum Zitat Lee, J. M., Li, J., Johnson, D. A., Stein, T. D., Kraft, A. D., Calkins, M. J., et al. (2005). Nrf2, a multi-organ protector? FASEB Journal, 19, 1061–1066.CrossRefPubMed Lee, J. M., Li, J., Johnson, D. A., Stein, T. D., Kraft, A. D., Calkins, M. J., et al. (2005). Nrf2, a multi-organ protector? FASEB Journal, 19, 1061–1066.CrossRefPubMed
48.
Zurück zum Zitat Martin, D., Rojo, A. I., Salinas, M., Diaz, R., Gallardo, G., Alam, J., et al. (2004). Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. The Journal of biological chemistry, 279, 8919–8929.CrossRefPubMed Martin, D., Rojo, A. I., Salinas, M., Diaz, R., Gallardo, G., Alam, J., et al. (2004). Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. The Journal of biological chemistry, 279, 8919–8929.CrossRefPubMed
49.
Zurück zum Zitat Keum, Y. S., Yu, S., Chang, P. P., Yuan, X., Kim, J. H., Xu, C., et al. (2006). Mechanism of action of sulforaphane: Inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells. Cancer Research, 66, 8804–8813.CrossRefPubMed Keum, Y. S., Yu, S., Chang, P. P., Yuan, X., Kim, J. H., Xu, C., et al. (2006). Mechanism of action of sulforaphane: Inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells. Cancer Research, 66, 8804–8813.CrossRefPubMed
Metadaten
Titel
Beneficial Role of Some Natural Products to Attenuate the Diabetic Cardiomyopathy Through Nrf2 Pathway in Cell Culture and Animal Models
verfasst von
V. V. Sathibabu Uddandrao
Parim Brahmanaidu
P. R. Nivedha
S. Vadivukkarasi
Ganapathy Saravanan
Publikationsdatum
27.10.2017
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2018
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-017-9430-2

Weitere Artikel der Ausgabe 3/2018

Cardiovascular Toxicology 3/2018 Zur Ausgabe