Skip to main content
Erschienen in: Diabetologia 8/2017

08.06.2017 | Review

Beta cell heterogeneity: an evolving concept

verfasst von: Dana Avrahami, Agnes Klochendler, Yuval Dor, Benjamin Glaser

Erschienen in: Diabetologia | Ausgabe 8/2017

Einloggen, um Zugang zu erhalten

Abstract

Beta cells are primarily defined by their ability to produce insulin and secrete it in response to appropriate stimuli. It has been known for some time, however, that beta cells are not functionally identical to each other and that the rates of insulin synthesis and release differ from cell to cell, although the functional significance of this variability remains unclear. Recent studies have used heterogeneous gene expression to isolate and evaluate different subpopulations of beta cells and to demonstrate alterations in these subpopulations in diabetes. In the last few years, novel technologies have emerged that permit the detailed evaluation of the proteome (e.g. time-of-flight mass spectroscopy, [CyTOF]) and transcriptome (e.g. massively parallel RNA sequencing) at the single-cell level, and tools for single beta cell metabolomics and epigenomics are quickly maturing. The first wave of single beta cell proteome and transcriptome studies were published in 2016, giving a glimpse into the power, but also the limitations, of these approaches. Despite this progress, it remains unclear if the observed heterogeneity of beta cells represents stable, distinct beta cell types or, alternatively, highly dynamic beta cell states. Here we provide a concise overview of recent developments in the emerging field of beta cell heterogeneity and the implications for our understanding of beta cell biology and pathology.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Roscioni SS, Migliorini A, Gegg M, Lickert H (2016) Impact of islet architecture on β-cell heterogeneity, plasticity and function. Nat Rev Endocrinol 12:695–709CrossRefPubMed Roscioni SS, Migliorini A, Gegg M, Lickert H (2016) Impact of islet architecture on β-cell heterogeneity, plasticity and function. Nat Rev Endocrinol 12:695–709CrossRefPubMed
2.
Zurück zum Zitat Hellerstrom C, Petersson B, Hellman B (1960) Some properties of the B cells in the islet of Langerhans studied with regard to the position of the cells. Acta Endocrinol 34:449–456PubMed Hellerstrom C, Petersson B, Hellman B (1960) Some properties of the B cells in the islet of Langerhans studied with regard to the position of the cells. Acta Endocrinol 34:449–456PubMed
3.
Zurück zum Zitat Salomon D, Meda P (1986) Heterogeneity and contact-dependent regulation of hormone secretion by individual B cells. Exp Cell Res 162:507–520CrossRefPubMed Salomon D, Meda P (1986) Heterogeneity and contact-dependent regulation of hormone secretion by individual B cells. Exp Cell Res 162:507–520CrossRefPubMed
4.
Zurück zum Zitat Bosco D, Meda P (1991) Actively synthesizing beta-cells secrete preferentially after glucose stimulation. Endocrinology 129:3157–3166CrossRefPubMed Bosco D, Meda P (1991) Actively synthesizing beta-cells secrete preferentially after glucose stimulation. Endocrinology 129:3157–3166CrossRefPubMed
5.
Zurück zum Zitat Pipeleers D, Kiekens R, Ling Z, Wilikens A, Schuit F (1994) Physiologic relevance of heterogeneity in the pancreatic beta-cell population. Diabetologia 37:S57–S64CrossRefPubMed Pipeleers D, Kiekens R, Ling Z, Wilikens A, Schuit F (1994) Physiologic relevance of heterogeneity in the pancreatic beta-cell population. Diabetologia 37:S57–S64CrossRefPubMed
6.
Zurück zum Zitat Van Schravendijk CF, Kiekens R, Pipeleers DG (1992) Pancreatic beta cell heterogeneity in glucose-induced insulin secretion. J Biol Chem 267:21344–21348PubMed Van Schravendijk CF, Kiekens R, Pipeleers DG (1992) Pancreatic beta cell heterogeneity in glucose-induced insulin secretion. J Biol Chem 267:21344–21348PubMed
7.
8.
Zurück zum Zitat Elayat AA, el-Naggar MM, Tahir M (1995) An immunocytochemical and morphometric study of the rat pancreatic islets. J Anat 186:629–637PubMedPubMedCentral Elayat AA, el-Naggar MM, Tahir M (1995) An immunocytochemical and morphometric study of the rat pancreatic islets. J Anat 186:629–637PubMedPubMedCentral
9.
Zurück zum Zitat Wang X, Misawa R, Zielinski MC et al (2013) Regional differences in islet distribution in the human pancreas—preferential beta-cell loss in the head region in patients with type 2 diabetes. PLoS One 8:e67454CrossRefPubMedPubMedCentral Wang X, Misawa R, Zielinski MC et al (2013) Regional differences in islet distribution in the human pancreas—preferential beta-cell loss in the head region in patients with type 2 diabetes. PLoS One 8:e67454CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Poudel A, Savari O, Striegel DA et al (2015) Beta-cell destruction and preservation in childhood and adult onset type 1 diabetes. Endocrine 49:693–702CrossRefPubMedPubMedCentral Poudel A, Savari O, Striegel DA et al (2015) Beta-cell destruction and preservation in childhood and adult onset type 1 diabetes. Endocrine 49:693–702CrossRefPubMedPubMedCentral
12.
13.
Zurück zum Zitat Olsson R, Carlsson P-O (2011) A low-oxygenated subpopulation of pancreatic islets constitutes a functional reserve of endocrine cells. Diabetes 60:2068–2075CrossRefPubMedPubMedCentral Olsson R, Carlsson P-O (2011) A low-oxygenated subpopulation of pancreatic islets constitutes a functional reserve of endocrine cells. Diabetes 60:2068–2075CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Hodson DJ, Mitchell RK, Bellomo EA et al (2013) Lipotoxicity disrupts incretin-regulated human β cell connectivity. J Clin Invest 123:4182–4194CrossRefPubMedPubMedCentral Hodson DJ, Mitchell RK, Bellomo EA et al (2013) Lipotoxicity disrupts incretin-regulated human β cell connectivity. J Clin Invest 123:4182–4194CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Benninger RKP, Piston DW (2014) Cellular communication and heterogeneity in pancreatic islet insulin secretion dynamics. Trends Endocrinol Metab 25:399–406CrossRefPubMedPubMedCentral Benninger RKP, Piston DW (2014) Cellular communication and heterogeneity in pancreatic islet insulin secretion dynamics. Trends Endocrinol Metab 25:399–406CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Bader E, Migliorini A, Gegg M et al (2016) Identification of proliferative and mature β-cells in the islets of Langerhans. Nature 535:430–434CrossRefPubMed Bader E, Migliorini A, Gegg M et al (2016) Identification of proliferative and mature β-cells in the islets of Langerhans. Nature 535:430–434CrossRefPubMed
17.
Zurück zum Zitat Klochendler A, Caspi I, Corem N et al (2016) The genetic program of pancreatic beta-cell replication in vivo. Diabetes 65:2081–2093CrossRefPubMed Klochendler A, Caspi I, Corem N et al (2016) The genetic program of pancreatic beta-cell replication in vivo. Diabetes 65:2081–2093CrossRefPubMed
18.
Zurück zum Zitat Wang YJ, Golson ML, Schug J et al (2016) Single-cell mass cytometry analysis of the human endocrine pancreas. Cell Metab 24:616–626CrossRefPubMed Wang YJ, Golson ML, Schug J et al (2016) Single-cell mass cytometry analysis of the human endocrine pancreas. Cell Metab 24:616–626CrossRefPubMed
19.
Zurück zum Zitat Li J, Klughammer J, Farlik M et al (2016) Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Rep 17:178–187CrossRefPubMed Li J, Klughammer J, Farlik M et al (2016) Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Rep 17:178–187CrossRefPubMed
20.
Zurück zum Zitat Baron M, Veres A, Wolock SL, et al. (2016) A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst 3:346–360 Baron M, Veres A, Wolock SL, et al. (2016) A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst 3:346–360
22.
Zurück zum Zitat Segerstolpe Å, Palasantza A, Eliasson P (2016) Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab 24:593–607CrossRefPubMedPubMedCentral Segerstolpe Å, Palasantza A, Eliasson P (2016) Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab 24:593–607CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Xin Y, Kim J, Okamoto H, Ni M, Wei Y, Adler C (2016) RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab 26:608–615CrossRef Xin Y, Kim J, Okamoto H, Ni M, Wei Y, Adler C (2016) RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab 26:608–615CrossRef
24.
25.
Zurück zum Zitat Zhou Y, Duan S, Zhou Y et al (2015) Sulfiredoxin-1 attenuates oxidative stress via Nrf2/ARE pathway and 2-Cys Prdxs after oxygen-glucose deprivation in astrocytes. J Mol Neurosci 55:941–950CrossRefPubMed Zhou Y, Duan S, Zhou Y et al (2015) Sulfiredoxin-1 attenuates oxidative stress via Nrf2/ARE pathway and 2-Cys Prdxs after oxygen-glucose deprivation in astrocytes. J Mol Neurosci 55:941–950CrossRefPubMed
26.
Zurück zum Zitat Sharma RB, O'Donnell AC, Stamateris RE et al (2015) Insulin demand regulates β cell number via the unfolded protein response. J Clin Invest 125:3831–3846CrossRefPubMedPubMedCentral Sharma RB, O'Donnell AC, Stamateris RE et al (2015) Insulin demand regulates β cell number via the unfolded protein response. J Clin Invest 125:3831–3846CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Yang Q, Graham TE, Mody N et al (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:356–362CrossRefPubMed Yang Q, Graham TE, Mody N et al (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:356–362CrossRefPubMed
28.
Zurück zum Zitat Moran BM, Abdel-Wahab YHA, Flatt PR, McKillop AM (2014) Evaluation of the insulin-releasing and glucose-lowering effects of GPR120 activation in pancreatic β-cells. Diabetes Obes Metab 16:1128–1139CrossRefPubMed Moran BM, Abdel-Wahab YHA, Flatt PR, McKillop AM (2014) Evaluation of the insulin-releasing and glucose-lowering effects of GPR120 activation in pancreatic β-cells. Diabetes Obes Metab 16:1128–1139CrossRefPubMed
29.
Zurück zum Zitat Ling F, Kang B, Sun X-H (2014) Chapter five - Id proteins: small molecules, mighty regulators. In: Reshma T (ed) Current topics in developmental biology. Academic Press, Waltham, MA, pp 189–216 Ling F, Kang B, Sun X-H (2014) Chapter five - Id proteins: small molecules, mighty regulators. In: Reshma T (ed) Current topics in developmental biology. Academic Press, Waltham, MA, pp 189–216
30.
Zurück zum Zitat Wang YJ, Schug J, Won K-J et al (2016) Single-cell transcriptomics of the human endocrine pancreas. Diabetes 65:3028–3038CrossRefPubMed Wang YJ, Schug J, Won K-J et al (2016) Single-cell transcriptomics of the human endocrine pancreas. Diabetes 65:3028–3038CrossRefPubMed
31.
Zurück zum Zitat Herrera PL (2000) Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 127:2317–2322PubMed Herrera PL (2000) Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 127:2317–2322PubMed
32.
Zurück zum Zitat Talchai C, Xuan S, Lin HV, Sussel L, Accili D (2012) Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150:1223–1234CrossRefPubMedPubMedCentral Talchai C, Xuan S, Lin HV, Sussel L, Accili D (2012) Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150:1223–1234CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Dahan T, Ziv O, Horwitz E et al (2017) Pancreatic beta-cells express the fetal islet hormone gastrin in rodent and human diabetes. Diabetes 66:426–436CrossRefPubMed Dahan T, Ziv O, Horwitz E et al (2017) Pancreatic beta-cells express the fetal islet hormone gastrin in rodent and human diabetes. Diabetes 66:426–436CrossRefPubMed
34.
Zurück zum Zitat Ediger BN, Lim H-W, Juliana C et al (2016) LIM domain–binding 1 maintains the terminally differentiated state of pancreatic β cells. J Clin Invest 127:215–229CrossRefPubMedPubMedCentral Ediger BN, Lim H-W, Juliana C et al (2016) LIM domain–binding 1 maintains the terminally differentiated state of pancreatic β cells. J Clin Invest 127:215–229CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Gutiérrez GD, Bender AS, Cirulli V et al (2016) Pancreatic β cell identity requires continual repression of non–β cell programs. J Clin Invest 127:244–259CrossRefPubMedPubMedCentral Gutiérrez GD, Bender AS, Cirulli V et al (2016) Pancreatic β cell identity requires continual repression of non–β cell programs. J Clin Invest 127:244–259CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Swisa A, Avrahami D, Eden N et al (2016) PAX6 maintains β cell identity by repressing genes of alternative islet cell types. J Clin Invest 127:230–243CrossRefPubMedPubMedCentral Swisa A, Avrahami D, Eden N et al (2016) PAX6 maintains β cell identity by repressing genes of alternative islet cell types. J Clin Invest 127:230–243CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Chera S, Baronnier D, Ghila L et al (2014) Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature 514:503–507CrossRefPubMedPubMedCentral Chera S, Baronnier D, Ghila L et al (2014) Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature 514:503–507CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Thorel F, Népote V, Avril I et al (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464:1149–1154CrossRefPubMedPubMedCentral Thorel F, Népote V, Avril I et al (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464:1149–1154CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Stahl PL, Salmen F, Vickovic S et al (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82CrossRefPubMed Stahl PL, Salmen F, Vickovic S et al (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82CrossRefPubMed
40.
Zurück zum Zitat Rizzo DG, Prentice BM, Moore JL, Norris JL, Caprioli RM (2017) Enhanced spatially resolved proteomics using on-tissue hydrogel-mediated protein digestion. Anal Chem 89:2948–2955CrossRefPubMed Rizzo DG, Prentice BM, Moore JL, Norris JL, Caprioli RM (2017) Enhanced spatially resolved proteomics using on-tissue hydrogel-mediated protein digestion. Anal Chem 89:2948–2955CrossRefPubMed
41.
Zurück zum Zitat Spraggins JM, Rizzo DG, Moore JL, Noto MJ, Skaar EP, Caprioli RM (2016) Next-generation technologies for spatial proteomics: integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis. Proteomics 16:1678–1689CrossRefPubMedPubMedCentral Spraggins JM, Rizzo DG, Moore JL, Noto MJ, Skaar EP, Caprioli RM (2016) Next-generation technologies for spatial proteomics: integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis. Proteomics 16:1678–1689CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Szabat M, Pourghaderi P, Soukhatcheva G et al (2014) Kinetics and genomic profiling of adult human and mouse β-cell maturation. Islets 3:175–187CrossRef Szabat M, Pourghaderi P, Soukhatcheva G et al (2014) Kinetics and genomic profiling of adult human and mouse β-cell maturation. Islets 3:175–187CrossRef
Metadaten
Titel
Beta cell heterogeneity: an evolving concept
verfasst von
Dana Avrahami
Agnes Klochendler
Yuval Dor
Benjamin Glaser
Publikationsdatum
08.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 8/2017
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4326-z

Weitere Artikel der Ausgabe 8/2017

Diabetologia 8/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.