Skip to main content
Erschienen in: Molecular Cancer 1/2014

Open Access 01.12.2014 | Review

Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis

verfasst von: Birgit Schittek, Tobias Sinnberg

Erschienen in: Molecular Cancer | Ausgabe 1/2014

Abstract

Isoforms of the casein kinase 1 (CK1) family have been shown to phosphorylate key regulatory molecules involved in cell cycle, transcription and translation, the structure of the cytoskeleton, cell-cell adhesion and receptor-coupled signal transduction. They regulate key signaling pathways known to be critically involved in tumor progression. Recent results point to an altered expression or activity of different CK1 isoforms in tumor cells. This review summarizes the expression and biological function of CK1 family members in normal and malignant cells and the evidence obtained so far about their role in tumorigenesis.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1476-4598-13-231) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BS and TS wrote the manuscript. Database analyses and figure preparation were done by TS. Tables were created by BS and TS. Both authors read and approved the final manuscript.

Introduction

Protein kinases represent an important therapeutic target for drug development since they play a central role in signal transduction. By reversible phosphorylation of their substrate proteins, kinases exert influence on substrate activity, localization and function and thus play an essential role in almost all cellular processes. The casein kinases (CK) belong to the serine/threonine kinases and can be subdivided further into either casein kinase 1 (CK1) or casein kinase 2 (CK2) families due to their high homology in their catalytic domains [1]. This review focuses on the isoforms of the CK1 family, which have non-redundant and essential functions in cell survival and tumorigenesis [2].
In vertebrates, seven CK1 isoforms (α, β, γ1, γ2, γ3, δ and ϵ) and several splice variants for CK1α, δ, ϵ and γ3 have been identified [1, 3]. The CK1β-isoform has only been found in cows. They differ in length and sequence of the N-terminal (9–76 amino acids) and especially the C-terminal (24–200 amino acids) non-catalytic domain (Figure 1). By this, the molecular weight of the various CK1 isoforms ranges from 37 kD (CK1α) up to 51 kD (CK1γ3). The C-terminal domain plays a crucial role in substrate specificity and in the regulation of kinase activity [1, 35]. The isoforms show a high homology, i.e. CK1δ and CK1ϵ are 98% identical in their kinase domain and 53% identical in their C-terminal regulatory domain [6]. Therefore, there is some redundancy with respect to substrate phosphorylation - however, there are also examples of distinct biological roles for the different CK1 isoforms.

Substrates and interaction partners of CK1 isoforms

In recent years an increasing number of substrates have been identified that are phosphorylated by CK1 isoforms in vitro or in vivo[1, 4, 5]. Several known substrates especially of the CK1α and δ isoforms are involved in oncogenic signaling pathways as Wnt/β-catenin (β-catenin; dishevelled (DVL); adenomatous polyposis coli (APC); nuclear factor of activated T cells, cytoplasmic 3 (NFATC3)), p53 (p53; p53/E3 ubiquitin-protein ligase Mdm2 (MDM2)), PI3K/AKT (forkhead box protein O1 (Foxo1)), and death receptor signaling (Fas-associated death domain protein (FADD); BH3-interactive domain death agonist (BID)). In addition, various interaction partners have been identified from which it is not known yet whether they can serve as a CK1 substrate. These include proteins that are involved in cell cycle, apoptosis induction, DNA repair, mitochondrial function and signal transduction. Moreover, several proteins involved in oncogenic signaling pathways are predicted to interact with the different CK1 isoforms (Table 1). These proteins mainly belong to the Hedgehog (GLI), Hippo (MST, YAP), Wnt/β-catenin (Axin, Dvl1-3, FZD1 and 5, GSK3, Wnt3A), NFκB (NFκBIA), TGF-beta/Smad (Smad3) or p53 (MDM2 and 4) -signaling pathways and hence are involved in regulation of the cell cycle, apoptosis induction or cell survival. Many of these interactants are known to be deregulated in tumor cells and interaction with CK1 isoforms might trigger tumor initiation or progression [2].
Table 1
CK1 interaction partners and substrates
Protein
Description
CK1 interaction partners
Known Phospho-rylation sites
Cellular process
Reference
BCL10
B-cell CLL/lymphoma 10
α
 
Apoptosis
[8]
BID
BH3 interacting domain death agonist
α, δ
T59, S64 (α, δ)
Apoptosis
[9]
FADD
Fas (TNFRSF6)-associated via death domain
α
S194 (α)
Apoptosis
[10]
E2F1
E2F transcription factor 1
α
 
Cell cycle
[11]
Chk1
Checkpoint kinase 1
δ
 
Cell cycle
[12]
DDX3
DEAD box RNA helicase
ϵ
 
DNA repair
[13]
SPRY2
Sprouty1
δ, ϵ
 
FGF-signaling
[14]
GLI1-3
GLI family zinc finger 1-3
α, δ, ϵ, γ1, γ2, γ3
 
Hedgehog signaling
[15]
ANT2
Adenine nucleotide translocase 2
ϵ
 
Mitochondrial function
[16]
MST1
Mammalian sterile 20-like kinase 1
ϵ
 
Hippo signaling
[17]
NFKBIA
Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
α
 
NFκB signaling
[18]
P65
NFκB subunit
γ1
S536
NFκB signaling
[19]
MDM2 MDMX (MDM4)
Mouse double minute 2 or 4 homolog
α
 
p53 signaling
[20]
TP53
Tumor protein p53
α, δ, ϵ, γ1, γ2, γ3
S6, S9 (α); T18 (δ)
p53 signaling
[21]
Foxo1
Forkhead box O1
δ, ϵ, γ1, γ2, γ3
S322 (α, γ1), S325 (α)
PI3K/AKT signaling
[22]
RAPGEF2
Rap guanine nucleotide ex-change factor 2
α
S1244, S1248
Ras activation
[23]
SMAD3
SMAD family member 3
γ2, ϵ
 
TGF-beta/Smad signaling
[24]
APC
Adenomatous polyposis coli
α, δ, ϵ
all ϵ: S1279, S1392, S1504, S1505, S1507, S1510
Wnt signaling
[25]
AXIN1 AXIN2
Axin 1 and 2
α, δ, ϵ, γ1
 
Wnt signaling
[4]
CTNNB1
Beta-catenin
α, δ, ϵ
S45 (α, δ)
Wnt signaling
[4]
NFATC3
Nuclear factor of activated T-cells
α
all α: T204, S207, T210, S211, S215
Wnt signaling
[26]
DVL1-3
Dishevelled, dsh homolog 1-3
δ, ϵ, γ1
 
Wnt signaling
[4]
CSNK1D
Casein kinase 1, delta
ϵ
 
Wnt signaling
[4]
FZD1 FZD5
Frizzled homolog 1 or 5
γ1
 
Wnt signaling
[27]
GSK3A GSK3B
Glycogen synthase kinase 3 alpha or beta
γ1
 
Wnt signaling
[28]
WNT3A
Wingless-type MMTV integration site family, member 3A
γ1
 
Wnt signaling
[29]
CK1 substrates are shown with known phosphorylation sites together with the involved cellular processes of the corresponding proteins. The following programs were used for determination of interaction or phosphorylation: http://​string-db.​org, http://​hprd.​org; http://​regphos.​mbc.​nctu.​edu.​tw, http://​www.​phosphosite.​org. Only proteins validated by biochemical assays are shown.
A distinctive feature of CK1 family members is their exclusive need of ATP to phosphorylate their substrates and their independency of other co-factors. They show a strong preference for primed, pre-phosphorylated substrates [30]. Surprisingly, the substrate specificity defined in vitro differs from in vivo for the different CK1 family members [4] suggesting that the in vivo specificity is regulated by interaction partners, autophosphorylation or subcellular localization. Interaction with cellular proteins has been shown to be a major determinant of the localization of CK1 isoforms [3135] and to either enhance or inhibit their activity [12, 13, 36].

Biological functions of CK1-isoforms

The wide range of substrates shows that the CK1 family members are involved in multiple cellular processes. For example they are involved in the regulation of membrane trafficking, cytokinesis, vesicular transport, ribosome biogenesis, DNA repair, signal transduction pathways and in the circadian rhythm [1, 5, 37]. Up to now most evidence points to important regulatory roles of the isoforms CK1α, CK1δ and CK1ϵ, while the role of the gamma-isoforms are still enigmatic and not very well investigated.
CK1α plays a role in the mitotic spindle formation during cell division and in DNA repair mechanisms and participates in RNA metabolism [1]. Antibodies specific for CK1α block cell cycle progression during M phase in mouse oocytes, which indicates that CK1α is required for proper cell cycle progression in these cells [38, 39]. CK1α can be found at the centrosomes, microtubule asters and the kinetochore [40]. In addition, it was shown that mTOR cooperates with CK1α to promote its own full activation via the sustained degradation of the endogenous mTOR inhibitor DEPTOR [41]. Similarly, CK1α regulates apoptotic signaling pathways, however, there seems to be cell type-specific differences. CK1α has been shown to have an anti-apoptotic function in the extrinsic apoptosis pathway. Its inhibition increased Fas-induced apoptosis in Hela cells, whereas the overexpression of CK1α delayed cell death, caused by the phosphorylation of BID, which prevented the caspase 8 dependent cleavage of BID [9]. In addition, CK1α inhibits TRAIL induced apoptosis by modification of the TNF receptor or FADD at the death-inducing signaling complex (DISC) [42]. Therefore downregulation of CK1α leads to an enhancement of TRAIL-induced cell death. Likewise, CK1α promotes cell survival by interacting with the retinoid X receptor (RXR). Downregulation of CK1α enhances the apoptotic effect of RXR agonists [43]. In contrast, overexpression of CK1α in metastatic melanoma cells induces apoptosis [44].
In addition to the regulatory function in apoptosis signaling pathways, CK1α is involved in the phosphorylation of G-protein coupled receptors (GPCRs) such as the M3 and M1 muscarinic receptors and rhodopsin [45]. These become phosphorylated by CK1α upon agonist-induced desensitization [45, 46]. Furthermore, CK1α is involved in the phosphorylation of NFAT4 (nuclear factor for activated T cells 4), so that its nuclear localization signal is masked and thus the activity of the transcription factor is inhibited [47, 48]. Recently, it was shown in epithelial cells that in response to factors promoting cell motility, CK1α in conjunction with IKKβ phosphorylate the Rap guanine exchange factor 2 (RAPGEF2) leading to its degradation by the proteasome which was shown to be essential for the invasion of breast cancer cells [23].
CK1δ and CK1ϵ are known to be important regulators in the circadian rhythm of eukaryotic cells. The central clock genes period circadian protein homolog 1–3 (PER1-3) cycle in a daily rhythm. Cytoplasmic PER is phosphorylated by CK1, which induces its degradation [49]. When PER is in a complex with cryptochrome (CRY), the phosphorylation site is masked and the complex together with CK1 translocates to the nucleus where it represses another clock transcription factor complex (the BMAL1/Clock complex) and inhibits the transcription of most of the clock genes. Additionally, CK1α was identified as a negative PER1 regulator similar to the CK1δ isoform [50], however the binding of CK1δ and ϵ to PER proteins seems to be much stronger than CK1α [50]. Pharmaceutical inhibition of CK1ϵ was less effective compared to pan CK1δ/ϵ inhibitors in prolonging the circadian rhythm [51] proposing a dominant role of CK1δ in the regulation of daily oscillating processes. Taken together CK1s are important regulators of the circadian rhythm [52, 53]. Meanwhile it is known that CK1δ is involved in the regulation of cell cycle progression and it was recently shown that checkpoint kinase 1 (Chk1) is able to interact and specifically phosphorylates CK1δ and by this regulates the kinase activity [12]. Additionally, CK1δ interacts with the spindle apparatus and regulates phosphorylation of α−, β−, and γ − tubulin [35, 54, 55]. It seems to be essential for microtubule nucleation at the golgi [56]. Besides tubulin phosphorylation CK1δ mediates the phosphorylation of microtubule associated proteins (MAPs), stathmin and tau thereby regulating the dynamics of the microtubule and spindle apparatus [34, 35, 5759]. Recently, it was shown that CK1δ mediates the phosphorylation of Sid4 an important cytokinesis regulator [60] strengthening the important function of CK1δ in cell proliferation. As CK1δ and Chk1 are known to inhibit p53 via phosphorylation, pharmacological inhibition of both kinases resulted in activation of p53 similar to the effect of the MDM2 inhibitor nutlin-3 [61]. CK1δ and CK1ϵ are able to interact with Sprouty2 (SPRY2), which is a potent negative regulator of fibroblast growth factor (FGF) receptor tyrosine kinase signaling. CK1 activity and binding are necessary for SPRY2 mediated inhibition of FGF-stimulated neurite outgrowth and FGF-dependent RAS activation via GRB2/SOS [14]. It was further shown that CK1δ and CK1ϵ are required for the biogenesis of small ribosomal subunits and for the functionality of 40S ribosomal subunits in protein translation [37].

The role of CK1 isoforms in Wnt/β-catenin signaling

The CK1 isoforms CK1α, CK1δ and CK1ϵ have a common regulatory function in the Wnt/β-catenin signaling pathway and act in a concerted manner [2]. Dishevelled (Dvl), a key component in the Wnt/β-catenin signaling pathway, becomes phosphorylated by CK1δ/ϵ upon pathway activation by Wnts [62]. Recent evidence indicates that there is a coordinated action of the different CK1 isoforms to activate Wnt/β-catenin signaling in colon adenocarcinoma cells [29]. In these cells CK1ϵ, but not CK1α is required for the early response to Wnt3a stimulation. The two protein kinases function sequentially: CK1ϵ is bound to p120-catenin and E-cadherin and is required for early responses to Wnt3a stimulation, such as recruitment of Dishevelled 2 (Dvl-2), followed by the phosphorylation of the Wnt co-receptors LRP5/6 by CK1γ which leads to the recruitment of axin complexed with CK1α. CK1α then phosphorylates p120-catenin and E-cadherin causing a release of p120-catenin/E-cadherin from the complex, and dissociation of CK1ϵ from p120 which terminates the input signal. For pathway inactivation β-catenin has to become N-terminally phosphorylated. In order to be phosphorylated by GSK3β at the Ser residues 33, 37 and 41, β-catenin must first get primed by phosphorylation on Ser45 by CK1α [63, 64]. Without priming phosphorylation by CK1α, GSK3β does not phosphorylate β-catenin and therefore β-catenin is not degraded. A down-regulation of CK1α thus leads to an accumulation of cytoplasmic β-catenin [44]. In mouse embryonic stem cells DNA damage and its response (DDR) causes an activation of the canonical Wnt signaling by reduced CK1α expression levels. The Wnt signaling was shown to limit the p53 dependent apoptosis induction after DDR indicating a pro-survival effect of Wnt signaling [65]. Recently, the DEAD-box RNA helicase DDX3 was identified as a regulator of the Wnt/β-catenin signaling pathway by acting as a regulatory subunit of CK1ϵ in a Wnt-dependent manner. It binds to CK1ϵ, directly stimulates its kinase activity, and promotes phosphorylation of the scaffold protein dishevelled [13]. Furthermore CK1ϵ is known to phosphorylate adenomatosis polyposis coli (APC) together with GSK3β which leads to an increased affinity of APC to β-catenin causing a transfer of β-catenin from axin to APC. This exposes β-catenin to the β-TrCP ubiquitin ligase marking it for its proteasomal degradation [25, 66]. Additionally CK1δ is capable to regulate the canonical Wnt signaling on the level of lymphoid enhanced binding factor 1 (Lef-1). Lef-1 is phosphorylated by CK1δ resulting in the disassembly of the β-catenin/Lef-1 transcription factor complex thereby inhibiting the pathway [67].

The role of CK1 isoforms in p53 signaling

The tumor suppressor protein p53 as well as the p53 interacting proteins MDM2 and MDMX - both capable to regulate p53 activity by inhibitory interaction - are substrates of CK1 isoforms. The three CK1 isoforms CK1α, CK1δ and CK1ϵ are capable to N-terminally phosphorylate the p53 in vitro and in vivo resulting in activation of p53. Furthermore, CK1δ can phosphorylate MDM2, which leads to a reduced interaction with p53 and thus to stabilization and activation of p53 [6870]. These data suggest that increased expression or activation of CK1α or CK1δ are able to activate p53 and by this increase cell cycle arrest and apoptosis induction. However, there are differences in the ability of the CK1 isoforms to either activate [70] or inactivate p53 [68, 69] activity depending on the cell types used or the experimental conditions. Knockdown or downregulation of CK1α in the intestinal epithelium of mice [71], in human colon cancers [72] or in leukemia cells [73] triggers p53 activation. Similarly, one study showed that CK1α stably associates with MDMX, stimulates MDMX-p53 binding, and cooperates with MDMX to inactivate p53 [20]. These data suggest that inhibition of CK1α activity increases p53 activity. Indeed, knockdown of CK1α induces p53 transcriptional activity by reducing the inhibitory effect of MDMX for p53 [74] since MDMX phosphorylation is necessary for interaction with p53. Furthermore, knockdown of CK1α reduces the interaction of MDM2 with p53 thus increasing p53 activity [11].
Under stress conditions and when CK1 is highly expressed the situation differs: p53 is activated by an autoregulatory loop between p53 and either CK1α or CK1δ. CK1α stimulates p53 probably by direct phosphorylation of Thr18 and Ser20 [5, 75]. Thereby, CK1α could be a cellular fine-tuning tool for the regulation of p53 activity. It was shown that after genotoxic stress it comes to a transcriptional activation of CK1δ by p53 [68]. Furthermore, DNA damage activates p53 in part by disrupting CK1α-MDMX interaction and reducing MDMX-p53 binding affinity [20]. In addition, DNA damage leads to an enhanced interaction between CK1δ/ϵ and MDM2 resulting in multisite phosphorylation of MDM2 by CK1 and enhanced MDM2 degradation and subsequently enhanced p53 activity. Inactivation of CK1 (primarily CK1δ or ϵ and to a lesser extent CK1α) results in accumulation of MDM2, thus decreased p53 activity and resistance to apoptosis induced by DNA damaging agents [76]. In conclusion, depending on the cell system used, CK1α and CK1δ are able to either increase or decrease p53 activity by direct phosphorylation or modulating the activity of the p53 interacting proteins MDM2 and MDMX. Furthermore, the activity of p53 as well as CK1α and CK1δ is increased under stress conditions pointing to an autoregulatory loop between CK1 isoforms and p53.

Regulation of the expression and activity of CK1 isoforms

The expression and activity of CK1 family members seems to be tightly regulated. Protein expression levels can be found at http://​www.​proteinatlas.​org. Surprisingly, not much is known concerning the mechanisms involved in regulating CK1 expression and kinase activity until now. The expression of CK1α can be down-regulated by the miRNA miR-155 [77]. Treatment of cells with insulin, topoisomerase inhibitors, irradiation or viral transformation is able to increase CK1 activity [1]. The subcellular localization of the CK1 isoforms is mainly regulated by binding to intracellular structures or protein complexes and thereby plays a role in substrate-recognition and CK1 activity [3235, 37, 55]. Studies on the circadian rhythm in mice showed that the nuclear localization of CK1δ and CK1ϵ is regulated during the day [78].
Posttranscriptional mechanisms are involved in the regulation of CK1α activity. In Hela cells two CK1α transcripts have been described which result from alternative splicing [79, 80]. The short 2.4kB transcript originates from the larger 4.2kB transcript due to the use of an alternative polyadenylation site. Interestingly, the longer transcript has six adenine uridine rich element (ARE) motifs in the 3'-untranslated region (in the short transcript there is only one ARE-motif), which lead to increased RNA degradation of the 4.2 kB transcript. Moreover, the long transcript harbors the above mentioned insertion of 84 bp or 28 amino acids in the catalytic domain, which also causes a change in substrate affinity [79]. Only the long splice variants of CK1α have a nuclear localization sequence (PVGKRKR), which is responsible for the transport of CK1α into the nucleus [81].
The activity of CK1 isoforms can also be regulated by post-translational modifications, in particular phosphorylations or proteolytic processing. For CK1δ and CK1ϵ it was shown that the C-terminal domain is autophosphorylated, which inhibits the kinase activity [8284]. As mentioned earlier, CK1ϵ is activated after Wnt3a stimulation by the removal of inhibitory C-terminal phosphorylations. The responsible phosphatases are not identified yet. Furthermore, part of the C-terminal domain can be cleaved, which increases kinase activity [1]. In addition, the three dimensional structure of CK1δ plays a role in the regulation of activity. CK1δ forms dimers leading to an inhibition of kinase activity [85].
Allosteric regulatory mechanisms were recently identified by two working groups and seem to be major determinants of CK1 kinase activity. Cruciat et al. showed that ATP-dependent RNA helicase DDX3X (DDX3) binds to CK1ϵ thereby allosterically activating the kinase domain and triggering canonical Wnt signaling. Using biochemical methods this novelty in kinase regulation was extended to the isoforms alpha, delta and gamma2 [13]. It is estimated that different DDX proteins can allosterically activate these CK1 isoforms (up to five fold). In line with these findings was the identification of the CK1α activating drug pyrvinium. This anthelmintic can bind to all CK1 isoforms but activates only CK1α due to conformational changes, thereby strongly inhibiting canonical Wnt signaling [86].

CK1 Isoform expression and tumorigenesis

The evidence obtained in recent years emphasizes the importance of CK1 isoforms in cancer progression in different types of tumors [2]. Microarray database analyses from tumor cell lines (http://​discover.​nci.​nih.​gov/​cellminer/​analysis.​do) and tissues (http://​www.​broadinstitute.​org/​cancer/​software/​genepattern/​datasets/​;RamaswamyMulti-cancer) indicated that the CK1δ and CK1ϵ isoforms are overexpressed on RNA level in many tumor types. This includes cancers of bladder, brain, breast, colorectal, kidney, lung, melanoma, ovarian, pancreatic, prostate and the hematopoetic system. Expression of the CK1γ1-3 isoforms seems to be rather low in different cancers types (Figure 2A, B). In addition, it has been shown that CK1δ is overexpressed in cells of hyperplastic B cell follicles and B cell lymphomas in p53 deficient mice [87]. In renal cell carcinoma increased CK1γ3 expression was found [88]. In choriocarcinoma an increased expression of CK1δ [55] and in ductal adenocarcinomas of the pancreas an increased expression of CK1δ and CK1ϵ was detected [89]. A tabulary overview can be found in the recent review of Knippschild et al. [90].
RNA expression of CK1α is more variable with high expression in cancers of the brain, prostate, lymphoma and especially in leukemia (Figure 2A, B). In bladder cancer, lung cancer and melanoma there is a trend to decreased RNA expression of CK1α (Figure 2A, B). Expression analysis of CK1α in melanoma datasets of the oncomine.org expression database clearly revealed a reduction in mRNA expression during melanoma progression. We confirmed the reduction of CK1α expression on protein level [44]. The downregulation of CK1α expression in progressed melanoma tumors seems to be mainly mediated by promoter methylation of the CK1α gene [44]. In contrast, there is one recent report claiming that CK1α expression is higher in melanoma compared to benign nevi [91].
The expression data suggests that there are tumor-cell specific differences in the functional activities and/or relevance of CK1 isoforms in cancer. However, to gain information about the relevance of the different CK1 isoforms in tumor progression, the CK1 protein expression as well as the kinase activity should be determined since it is known that CK1 activity is regulated by posttranscriptional mechanisms and posttranslational modifications (see above). Several CK1- substrates (see Table 1) are known to play a role in tumorigenesis and are substrates of different CK1-isoforms. Therefore it will be important to clarify the redundancy in the activity of different CK1 isoforms. Furthermore, the mechanisms regulating CK1 expression and activity in tumor cells are still not well understood. Despite promoter methylation [44] mutations could play a regulatory role. In breast carcinoma, mutations were found in the coding region of the CK1ϵ gene [92]. In colonic adenoma, R324H mutations are described in the CK1δ gene, and these were correlated with an increased oncogenic potential of the lesions including a higher transformation potential in vitro[93]. Interestingly, the R324H mutation did not significantly alter the CK1δ kinase activity or the Wnt/β-catenin signaling activity in vitro but had strong impact on the morphological movement like secondary axis formation in Xenopus embryos. Mutations in CK1 isoforms seems to be rare, however, copy number variations seem to be more frequent (see http://​cancer.​sanger.​ac.​uk/​cosmic). Analysis of the actual datasets of the cancer genome atlas (TCGA) available at the cBioPortal for Cancer Genomics [94, 95] revealed the mutation pattern and copy number alterations (CNA) in 24 different tumor types (Figure 3). The total alteration frequency including CNAs and mutations is generally rather low ranging from 4.8% in clear cell renal cell carcinoma (ccRCC) for CSNK1A1 over 9.5% in liver cancer for CSNK1D to 3.8% for CSNK1E in melanoma tumors. Specific point mutation frequencies are even lower and do not exceed 2.4% (as for CSNK1A1 in bladder cancer, for CSNK1D in lung squamous carcinoma and colorectal or pancreatic cancer; point mutations in CSNK1E seem to be very rare). Moreover the distribution of the detected mutations along the primary structure of the CK1 isoforms shows no accumulation in certain domains or regions which excludes the occurrence of hotspot mutations like in BRAF or TP53 (Figure 3A). Therefore genomic alterations of CK1 isoforms which lead to functional hyperactivity or defects may occur, however they seem to be seldom events.

Functional role of CK1 isoforms in tumor progression

What are the functional consequences of deregulated CK1 expression in tumor cells? On a functional level it was reported that CK1ϵ enhances the β-catenin-dependent proliferation in breast cancer [97]. However, it was recently shown that patients with oral cancers who had a loss of CK1ϵ expression had a poorer overall survival rate than patients who expressed CK1ϵ [98]. For CK1δ it was shown that a point mutation in the C-terminal regulatory domain of CK1δ (R342H) promotes the emergence of colorectal adenomas independent of Wnt-/β-catenin [93]. In contrast, a downregulation of CK1δ and ϵ-isoforms induced cell cycle arrest and apoptosis in a variety of tumor cell lines of different origin. These effects were also Wnt/β-catenin-independent, but dependent on activated RAS and inactive p53 [5, 99]. It was also shown that impaired CK1δ activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo[100]. Thus, depending on the experimental setup and the tumor type CK1-isoforms seems to have a specific and non-redundant role in tumorigenesis, however the results are often contradictory. One reason might be that CK1 isoforms have also a regulatory function, which is independent of the kinase activity. It was described that CK1ϵ can interact with mitochondrial proteins in ovarian cancer cells and by this, increase growth and survival of the tumor cells in a Wnt/β-catenin independent manner [16].
Until now most hints pointing to an important role in tumor progression have been described for CK1α. Our own previous work support the observation that CK1α in comparison to the other CK1 isoforms have a dominant and non-redundant function in metastatic melanoma cells [44]. We identified CK1α as a novel tumor suppressor and a key regulator of β-catenin signaling in melanoma cells. Knockdown of CK1α in primary melanoma cell lines significantly enhanced the invasive capacity of melanoma cell lines in vitro. This pro-invasive effect after CK1α knockdown was reversible by inhibition of β-catenin signaling, demonstrating the dependence of the invasive phenotype on β-catenin in melanoma cells. Moreover, knockdown of CK1α in a melanoma xenograft model using melanoma cells with low intrinsic tumorigenic potential strongly increased tumorigenicity and stabilized β-catenin [101]. In line with, one study showed that a pharmacological increase of CK1α protein level and thereby a destabilization of activated β-catenin significantly diminished melanoma cell migration [102]. Interestingly Chien et al. found high β-catenin levels to be rather a good prognostic marker in melanoma as well as to inhibit invasion probably by the promotion of differentiation in conjunction with MITF [103, 104]. In another recent study Chien et al. described a bad overall survival of BRAF inhibitor treated patients with tumors expressing high β-catenin protein levels. This reveals that the different results probably refer to different, so far non-identified melanoma subtypes [105].
Furthermore, the activation of CK1α kinase by the above mentioned allosteric activator pyrvinium induces cell death in colon carcinoma cell lines [86]. However, pyrvinium was recently described to elicit cytotoxicity in a CK1 independent manner by AKT downregulation and GSK3 activation in 293 T cells [28] and it is known to inhibit the unfolded protein response by GRP78 suppression [106] as well as cancer cell protective autophagy [107]. During melanoma progression CK1α expression is lost and is not necessary for survival and cell cycle progression in metastatic melanoma cells. Overexpression of CK1α retarded proliferation of metastatic melanoma cells and induced cell death, whereas the primary melanoma cell lines were mostly unaffected in their cell growth. This is consistent with the data showing that re-expression of CK1α in the lung cancer cell line A549 in which the expression of CK1α is also low causes reduced cell proliferation in vitro and tumor growth in vivo[108]. Our results suggest that the effect of CK1α on proliferation and invasion of melanoma cells in different stages of growth is at least partly due to an effect on the Wnt/β-catenin signaling pathway [44, 101].
The effect of CK1α on tumor progression seems to be also dependent on the activity of the tumor suppressor p53. One study shows that loss of CK1α in the intestinal epithelium of mice leads to hyperproliferation but not to tumor development. An additional inactivation of the p53 tumor suppressor gene or its target p21 is necessary to ensure the emergence of high-invasive colorectal tumors [71]. This suggests a non-redundant and dominant role of CK1α compared to the other CK1 isoforms not only in melanoma, but also in colorectal tumorigenesis. Moreover expression levels of CK1α seem to be a predictive survival marker in colon cancer patients with non-functional p53. Low CK1α expression levels were shown to correlate with poor survival rates and a significant hazard ratio of 4.7 hinting at a pro-oncogenic function of loss-of-CK1α on a p53 deficient background [72]. Furthermore, CK1α knockdown as well as additional inactivation of p53 is necessary for tumors to progress. If p53 is present, tumor cells will be eliminated by cell cycle arrest or apoptosis. This assumption was verified recently in acute myeloid leukemia, where it was shown that inhibition of CK1α has only a therapeutic effect, when p53 is active [73].
In the concept of tumorigenesis oncogenes play a pivotal role. However, excessive proliferative signaling as well as sustained DNA damage response can trigger cell senescence, commonly associated with a senescence-associated secretory phenotype (SASP). The secreted proteins include proinflammatory chemokines and tissue remodeling factors that have on the one hand an autocrine, senescence reinforcing effect and on the other hand a paracrine effect on neighbouring cells, leading to bystander senescence and immune cell recruitment. Interestingly, in cancer, SASP can increase proliferation and invasion of tumor cells or induce angiogenesis. Another recently described pattern of secreted proteins from senescent cancer cells can be subsumed as senescent-inflammatory response (SIR) resulting in a cell-autonomous initiation of inflammation, causing colonic tumor progression in a p21 deficient background. Usually, knockdown of CK1α induces p53/p21 mediated arrest and a senescent phenotype in p53 functional cells [71]. The group of Ben-Neriah found out that in p53 (or p21) deficient murine gut tumor cells the SIR factors that occur after CK1α knockdown induce pro-invasive genes like PROX1 thereby causing highly aggressive and hyperproliferative tumor cells. The described effect was highly dependent on the inflammatory response itself [109]. This shows that CK1α is a negative regulator of the SIR and loss of CK1α causes oncogene-like chronic stress which induces a pro-oncogenic switch to cell-autonomous, tumor promoting inflammation when p53 is inactivated.
In order to show the impact of CK1 isoforms on tumor progression we analyzed the survival of different cancer patients (17 types of cancer) depending on the gene expression levels of the three CK1 isoforms α, δ and ϵ using the PPISURV database [96], This database includes 45 expression studies with approximately 8000 patient survival data sets. Analysis revealed after stratification of the patients into the two classes high and low CK1α expressing tumors a significant correlation between prolonged overall survival (OS) and high expression levels for 12 (B cell lymphoma, breast cancer, leukemia and lung cancer) out of 17 studies, whereas in 5 studies (lung cancer, colon cancer and liposarcoma) patients with high expression levels did worse. For CK1δ there was positive correlation between high expression and longer survival in 6 (breast cancer, leukemia and glioma) out of 9 studies (3 correlated negatively) and for CK1ϵ there was a rather mixed picture with 4 positive (glioma, lung cancer and leukemia) and 4 negative correlating studies (B cell lymphoma, breast cancer and lung cancer) (Table 2 and Figure 3B). The higher number of significant studies showing a positive prognosis for patients with high levels of CK1α expression hints to the postulated function as tumor suppressor in some cancers whereas the mixed pattern for CK1δ and especially CK1ϵ depicts a context dependent function of the isoforms being either pro- or anti-tumorigenic.
Table 2
Survival data from the PPISURV database showing correlations of CK1 gene expression and overall survival (OS) of cancer patients
Survival profile of CSNK1A1 across available datasets with (with p < 0.05)
GEO dataset
Cancer type
GENE (Probe ID)
P-value
Effect sign
GSE10846
Diffuse large b cell lymphoma
206562_S_AT
0.00051
Positive
GSE25065
Breast cancer
208865_AT
0.000669
Positive
GSE25055
Breast cancer
206562_S_AT
0.00141
Positive
GSE11121
Breast cancer
208867_S_AT
0.00174
Positive
GSE39671
Chronic lymphocytic leukemia
226920_AT
0.0021
Positive
GSE7390
Breast cancer
208867_S_AT
0.00576
Positive
GSE13213
Lung cancer
A_24_P251899
0.00715
Negative
GSE24080
Multiple myeloma
208865_AT
0.00736
Positive
GSE22762
Chronic lymphocytic leukemia
208866_AT
0.0119
Positive
GSE2034
Breast cancer
206562_S_AT
0.0167
Positive
GSE31210
Lung cancer
208866_AT
0.0179
Positive
GSE3494
Breast cancer
208866_AT
0.0256
Positive
GSE17536
Colon cancer
1556006_S_AT
0.0271
Negative
GSE11969
Lung cancer
21556
0.0284
Negative
GSE17538
Colon cancer
1556006_S_AT
0.0289
Negative
GSE30682
Breast cancer
ILMN_1775058
0.033
Positive
GSE30929
Liposarcoma
208865_AT
0.0461
Negative
Survival profile of CSNK1D across available datasets (with p < 0.05)
GEO dataset
Cancer type
GENE (Probe ID)
P-value
Effect sign
GSE131213
Lung cancer
A_23_P207896
0.000863
Negative
GSE25025
Breast cancer
208774_AT
0.00101
Positive
GSE39671
Chronic lymphocytic leukemia
207945_S_AT
0.00382
Positive
GSE22226
Breast cancer
41429
0.00432
Positive
GSE22762
Chronic lymphocytic leukemia
208774_AT
0.0122
Positive
GSE31210
Lung cancer
207945_S_AT
0.0162
Negative
GSE25065
Breast cancer
208774_AT
0.023
Positive
GSE18166
Astrocytic gliomas
37202
0.0268
Positive
GSE13041
Glioblastoma
208774_AT
0.0272
Negative
Survival profile of CSNK1E across available datasets (with p < 0.05)
GEO dataset
Cancer type
GENE (Probe ID)
P-value
Effect sign
GSE10846
Diffuse large b cell lymphoma
226858_AT
1.39e-05
Negative
GSE1456
Breast cancer
222015_AT
0.002
Negative
GSE11969
Lung cancer
13708
0.016
Negative
GSE4271
High-grade glioma
202332_AT
0.0281
Positive
GSE24450
Breast cancer
ILMN_1708858
0.0296
Negative
GSE18166
Astrocytic gliomas
28635
0.0303
Positive
GSE31210
Lung cancer
202332_AT
0.032
Positive
GSE39671
Chronic lymphocytic leukemia
234943_AT
0.0478
Positive
However, it remains uncertain whether the CK1δ and ϵ isoforms represent drivers of tumorigenesis or if their disregulation and altered expression is rather the consequence of other cellular oncogenic events. Therefore critical genetic validation models should be developed in order to prove the concept of CK1 isoforms as important regulators in tumorigenesis besides the development of specific pharmacological inhibitors.

Pharmacological inhibition of CK1 isoforms

Due to the above described involvement of CK1 isoforms in tumorigenesis pharmacological inhibition of CK1 familiy members could be of interest for targeted cancer therapy. However, the development of isoform specific inhibitors seems to be a demanding task since the first known inhibitors like the ATP-competitive type I inhibitors CKI-7 or IC261 are not highly specific and show a rather broad effectivity against CK1 isoforms with a predominance for δ and ϵ. IC261 showed activity against pancreatic tumors in a xenograft mouse model [89] as well as in a MYC-driven neuroblastoma model [110]. Meanwhile, it is known that IC261 also efficiently inhibits the polymerization of microtubules in a CK1 independent manner, Therefore it is questionable whether the anti-tumorigenic effects are due to selective inhibition of CK1δ. D4476, another CK1 inhibitor which shows some selectivity towards the δ isoform, was successfully applied in a leukemia mouse model causing the elimination of the tumor cells. However, since the α isoform seems to be dominant for the described mechanism in this model by Jaras et al., the effects measured with D4476 might result due to the inhibition of additional susceptible isoforms and drug targets like CK1δ or the TGF-β type-I receptor ALK5. Huart et. al reported a novel inhibitor belonging to the class of pyrazolo-pyridine analogues that strongly inhibits CK1δ in conjunction with CHK1 thereby activating the p53 pathway and inducing apoptosis in A375 melanoma cells. However, a similar analog described in the same study but lacking the CHK1 inhibitory function showed no apoptosis induction in A375 cells [61]. Further developments were undertaken by Bibian et al. in order to generate highly specific CK1δ/ϵ inhibitors resulting in a series of purine scaffold inhibitors (SR-1277, SR-2890, SR-3029) with IC50 values in the low nanomolar range. These inhibitors were also highly potent in inhibiting A375 melanoma cell growth in a MTT viability assay. Interestingly, the inhibition with less specific inhibitors like D4476 or PF670462 did not show these inhibitory effects, proposing a better cell penetration of the SR inhibitors and better efficacy [111]. In order to exclude any of the remaining very few off-targets to be the main originators of the effects on A375 melanoma cell viability, genetic tests (like knockdowns or knockouts) targeting CK1 isoforms should be performed. Further studies will be needed to determine the cellular efficacy and specificity of these interesting novel CK1 inhibitors. For detailed further information about the development of additional CK1 inhibitors we refer to the excellent review by Knippschild et al. [90].

Conclusions

CK1 isoforms can influence the development and progression of tumor cells, although they seem to have different effects depending on the tumor types. Their ability to regulate several important signaling molecules is modulated in different types of tumors. This suggests that CK1 isoforms might be suitable targets for clinical intervention. Especially their ability to regulate p53 and Wnt-signaling, cell cycle progression and apoptosis induction makes them attractive targets in tumor therapy. Since the CK1 isoforms seems to have sometimes opposing roles in different tumor types it will be essential in future to validate the effect of specific CK1 isoforms in defined tumor types on cell cycle progression and signal transduction. Since several kinase inhibitors are in pre-clinical development there is hope that, among these, some of the most effective inhibitors could delay or inhibit tumor progression.

Acknowledgements

This work was supported by the Deutsche Krebshilfe (110210) and the intramural funding program of the medical faculty of the University of Tübingen (fortüne 2198-0-0).
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BS and TS wrote the manuscript. Database analyses and figure preparation were done by TS. Tables were created by BS and TS. Both authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Knippschild U, Gocht A, Wolff S, Huber N, Löhler J, Stöter M: The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal. 2005, 17: 675-689. 10.1016/j.cellsig.2004.12.011PubMedCrossRef Knippschild U, Gocht A, Wolff S, Huber N, Löhler J, Stöter M: The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal. 2005, 17: 675-689. 10.1016/j.cellsig.2004.12.011PubMedCrossRef
2.
Zurück zum Zitat Knippschild U, Wolff S, Giamas G, Brockschmidt C, Wittau M, Wörl PU, Eismann T, Stöter M, Würl PU, Stöter M: The role of the casein kinase 1 (CK1) family in different signaling pathways linked to cancer development. Onkologie. 2005, 28: 508-514. 10.1159/000087137PubMedCrossRef Knippschild U, Wolff S, Giamas G, Brockschmidt C, Wittau M, Wörl PU, Eismann T, Stöter M, Würl PU, Stöter M: The role of the casein kinase 1 (CK1) family in different signaling pathways linked to cancer development. Onkologie. 2005, 28: 508-514. 10.1159/000087137PubMedCrossRef
3.
Zurück zum Zitat Gross SD, Anderson RA: Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell Signal. 1998, 10: 699-711. 10.1016/S0898-6568(98)00042-4PubMedCrossRef Gross SD, Anderson RA: Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell Signal. 1998, 10: 699-711. 10.1016/S0898-6568(98)00042-4PubMedCrossRef
4.
Zurück zum Zitat Price MA: CKI, there’s more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev. 2006, 20: 399-410. 10.1101/gad.1394306PubMedCrossRef Price MA: CKI, there’s more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev. 2006, 20: 399-410. 10.1101/gad.1394306PubMedCrossRef
5.
Zurück zum Zitat Cheong JK, Virshup DM: Casein kinase 1: Complexity in the family. Int J Biochem Cell Biol. 2011, 43: 465-469. 10.1016/j.biocel.2010.12.004PubMedCrossRef Cheong JK, Virshup DM: Casein kinase 1: Complexity in the family. Int J Biochem Cell Biol. 2011, 43: 465-469. 10.1016/j.biocel.2010.12.004PubMedCrossRef
6.
Zurück zum Zitat Fish KJ, Cegielska A, Getman ME, Landes GM, Virshup DM: Isolation and characterization of human casein kinase I epsilon (CKI), a novel member of the CKI gene family. J Biol Chem. 1995, 270: 14875-14883. 10.1074/jbc.270.25.14875PubMedCrossRef Fish KJ, Cegielska A, Getman ME, Landes GM, Virshup DM: Isolation and characterization of human casein kinase I epsilon (CKI), a novel member of the CKI gene family. J Biol Chem. 1995, 270: 14875-14883. 10.1074/jbc.270.25.14875PubMedCrossRef
7.
Zurück zum Zitat Greer YE, Rubin JS: Casein kinase 1 delta functions at the centrosome to mediate Wnt-3a-dependent neurite outgrowth. J Cell Biol. 2011, 192: 993-1004. 10.1083/jcb.201011111PubMedCentralPubMedCrossRef Greer YE, Rubin JS: Casein kinase 1 delta functions at the centrosome to mediate Wnt-3a-dependent neurite outgrowth. J Cell Biol. 2011, 192: 993-1004. 10.1083/jcb.201011111PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Carvalho G, Le Guelte A, Demian C, Vazquez A, Gavard J, Bidère N: Interplay between BCL10, MALT1 and IkappaBalpha during T-cell-receptor-mediated NFkappaB activation. J Cell Sci. 2010, 123 (Pt 14): 2375-2380.PubMedCrossRef Carvalho G, Le Guelte A, Demian C, Vazquez A, Gavard J, Bidère N: Interplay between BCL10, MALT1 and IkappaBalpha during T-cell-receptor-mediated NFkappaB activation. J Cell Sci. 2010, 123 (Pt 14): 2375-2380.PubMedCrossRef
9.
Zurück zum Zitat Desagher S, Osen-Sand A, Montessuit S, Magnenat E, Vilbois F, Hochmann A, Journot L, Antonsson B, Martinou JC: Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell. 2001, 8: 601-611. 10.1016/S1097-2765(01)00335-5PubMedCrossRef Desagher S, Osen-Sand A, Montessuit S, Magnenat E, Vilbois F, Hochmann A, Journot L, Antonsson B, Martinou JC: Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell. 2001, 8: 601-611. 10.1016/S1097-2765(01)00335-5PubMedCrossRef
10.
Zurück zum Zitat Alappat EC, Feig C, Boyerinas B, Volkland J, Samuels M, Murmann AE, Thorburn A, Kidd VJ, Slaughter CA, Osborn SL, Winoto A, Tang W-J, Peter ME: Phosphorylation of FADD at serine 194 by CKIalpha regulates its nonapoptotic activities. Mol Cell. 2005, 19: 321-332. 10.1016/j.molcel.2005.06.024PubMedCrossRef Alappat EC, Feig C, Boyerinas B, Volkland J, Samuels M, Murmann AE, Thorburn A, Kidd VJ, Slaughter CA, Osborn SL, Winoto A, Tang W-J, Peter ME: Phosphorylation of FADD at serine 194 by CKIalpha regulates its nonapoptotic activities. Mol Cell. 2005, 19: 321-332. 10.1016/j.molcel.2005.06.024PubMedCrossRef
11.
Zurück zum Zitat Huart A-S, MacLaine NJ, Meek DW, Hupp TR: CK1alpha plays a central role in mediating MDM2 control of p53 and E2F-1 protein stability. J Biol Chem. 2009, 284: 32384-32394. 10.1074/jbc.M109.052647PubMedCentralPubMedCrossRef Huart A-S, MacLaine NJ, Meek DW, Hupp TR: CK1alpha plays a central role in mediating MDM2 control of p53 and E2F-1 protein stability. J Biol Chem. 2009, 284: 32384-32394. 10.1074/jbc.M109.052647PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Bischof J, Randoll S-J, Süßner N, Henne-Bruns D, Pinna LA, Knippschild U: CK1δ kinase activity is modulated by Chk1-mediated phosphorylation. PLoS One. 2013, 8: e68803- 10.1371/journal.pone.0068803PubMedCentralPubMedCrossRef Bischof J, Randoll S-J, Süßner N, Henne-Bruns D, Pinna LA, Knippschild U: CK1δ kinase activity is modulated by Chk1-mediated phosphorylation. PLoS One. 2013, 8: e68803- 10.1371/journal.pone.0068803PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Cruciat C-M, Dolde C, de Groot REA, Ohkawara B, Reinhard C, Korswagen HC, Niehrs C: RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-β-catenin signaling. Science. 2013, 339: 1436-1441. doi:10.1038/onc.2013.564,PubMedCrossRef Cruciat C-M, Dolde C, de Groot REA, Ohkawara B, Reinhard C, Korswagen HC, Niehrs C: RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-β-catenin signaling. Science. 2013, 339: 1436-1441. doi:10.1038/onc.2013.564,PubMedCrossRef
14.
Zurück zum Zitat Yim DGR, Ghosh S, Guy GR, Virshup DM: Casein kinase 1 regulates Sprouty2 in FGF-ERK signaling. Oncogene. 2014, Yim DGR, Ghosh S, Guy GR, Virshup DM: Casein kinase 1 regulates Sprouty2 in FGF-ERK signaling. Oncogene. 2014,
15.
Zurück zum Zitat Price MA, Kalderon D: Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell. 2002, 108: 823-835. 10.1016/S0092-8674(02)00664-5PubMedCrossRef Price MA, Kalderon D: Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell. 2002, 108: 823-835. 10.1016/S0092-8674(02)00664-5PubMedCrossRef
16.
Zurück zum Zitat Rodriguez N, Yang J, Hasselblatt K, Liu S, Zhou Y, Rauh-Hain JA, Ng S-K, Choi P-W, Fong W-P, Agar NYR, Welch WR, Berkowitz RS, Ng S-W: Casein kinase I epsilon interacts with mitochondrial proteins for the growth and survival of human ovarian cancer cells. EMBO Mol Med. 2012, 4: 952-963. 10.1002/emmm.201101094PubMedCentralPubMedCrossRef Rodriguez N, Yang J, Hasselblatt K, Liu S, Zhou Y, Rauh-Hain JA, Ng S-K, Choi P-W, Fong W-P, Agar NYR, Welch WR, Berkowitz RS, Ng S-W: Casein kinase I epsilon interacts with mitochondrial proteins for the growth and survival of human ovarian cancer cells. EMBO Mol Med. 2012, 4: 952-963. 10.1002/emmm.201101094PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Xu F, Wang Y-L, Chang J-J, Du S-C, Diao L, Jiang N, Wang H-J, Ma D, Zhang J: Mammalian sterile 20-like kinase 1/2 inhibits the Wnt/β-catenin signalling pathway by directly binding casein kinase 1ϵ. Biochem J. 2014, 458: 159-169. 10.1042/BJ20130986PubMedCrossRef Xu F, Wang Y-L, Chang J-J, Du S-C, Diao L, Jiang N, Wang H-J, Ma D, Zhang J: Mammalian sterile 20-like kinase 1/2 inhibits the Wnt/β-catenin signalling pathway by directly binding casein kinase 1ϵ. Biochem J. 2014, 458: 159-169. 10.1042/BJ20130986PubMedCrossRef
18.
Zurück zum Zitat Bidère N, Ngo VN, Lee J, Collins C, Zheng L, Wan F, Davis RE, Lenz G, Anderson DE, Arnoult D, Vazquez A, Sakai K, Zhang J, Meng Z, Veenstra TD, Staudt LM, Lenardo MJ: Casein kinase 1alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival. Nature. 2009, 458: 92-96. 10.1038/nature07613PubMedCentralPubMedCrossRef Bidère N, Ngo VN, Lee J, Collins C, Zheng L, Wan F, Davis RE, Lenz G, Anderson DE, Arnoult D, Vazquez A, Sakai K, Zhang J, Meng Z, Veenstra TD, Staudt LM, Lenardo MJ: Casein kinase 1alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival. Nature. 2009, 458: 92-96. 10.1038/nature07613PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Wang Y, Hu L, Tong X, Ye X: Casein kinase 1γ1 inhibits the RIG-I/TLR signaling pathway through phosphorylating p65 and promoting its degradation. J Immunol. 2014, 192: 1855-1861. 10.4049/jimmunol.1302552PubMedCrossRef Wang Y, Hu L, Tong X, Ye X: Casein kinase 1γ1 inhibits the RIG-I/TLR signaling pathway through phosphorylating p65 and promoting its degradation. J Immunol. 2014, 192: 1855-1861. 10.4049/jimmunol.1302552PubMedCrossRef
20.
Zurück zum Zitat Wu S, Chen L, Becker A, Schonbrunn E, Chen J: Casein kinase 1α regulates an MDMX intramolecular interaction to stimulate p53 binding. Mol Cell Biol. 2012, 32: 4821-4832. 10.1128/MCB.00851-12PubMedCentralPubMedCrossRef Wu S, Chen L, Becker A, Schonbrunn E, Chen J: Casein kinase 1α regulates an MDMX intramolecular interaction to stimulate p53 binding. Mol Cell Biol. 2012, 32: 4821-4832. 10.1128/MCB.00851-12PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Milne DM, Palmer RH, Campbell DG, Meek DW: Phosphorylation of the p53 tumour-suppressor protein at three N-terminal sites by a novel casein kinase I-like enzyme. Oncogene. 1992, 7: 1361-1369.PubMed Milne DM, Palmer RH, Campbell DG, Meek DW: Phosphorylation of the p53 tumour-suppressor protein at three N-terminal sites by a novel casein kinase I-like enzyme. Oncogene. 1992, 7: 1361-1369.PubMed
22.
Zurück zum Zitat Rena G, Bain J, Elliott M, Cohen P: D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep. 2004, 5: 60-65. 10.1038/sj.embor.7400048PubMedCentralPubMedCrossRef Rena G, Bain J, Elliott M, Cohen P: D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep. 2004, 5: 60-65. 10.1038/sj.embor.7400048PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Magliozzi R, Low TY, Weijts BGMW, Cheng T, Spanjaard E, Mohammed S, van Veen A, Ovaa H, de Rooij J, Zwartkruis FJT, Bos JL, de Bruin A, Heck AJR, Guardavaccaro D: Control of epithelial cell migration and invasion by the IKKβ- and CK1α-mediated degradation of RAPGEF2. Dev Cell. 2013, 27: 574-585. 10.1016/j.devcel.2013.10.023PubMedCrossRef Magliozzi R, Low TY, Weijts BGMW, Cheng T, Spanjaard E, Mohammed S, van Veen A, Ovaa H, de Rooij J, Zwartkruis FJT, Bos JL, de Bruin A, Heck AJR, Guardavaccaro D: Control of epithelial cell migration and invasion by the IKKβ- and CK1α-mediated degradation of RAPGEF2. Dev Cell. 2013, 27: 574-585. 10.1016/j.devcel.2013.10.023PubMedCrossRef
24.
Zurück zum Zitat Waddell DS, Liberati NT, Guo X, Frederick JP, Wang X-F: Casein kinase Iepsilon plays a functional role in the transforming growth factor-beta signaling pathway. J Biol Chem. 2004, 279: 29236-29246. 10.1074/jbc.M400880200PubMedCrossRef Waddell DS, Liberati NT, Guo X, Frederick JP, Wang X-F: Casein kinase Iepsilon plays a functional role in the transforming growth factor-beta signaling pathway. J Biol Chem. 2004, 279: 29236-29246. 10.1074/jbc.M400880200PubMedCrossRef
25.
Zurück zum Zitat Rubinfeld B, Tice DA, Polakis P: Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1epsilon. J Biol Chem. 2001, 276: 39037-39045. 10.1074/jbc.M105148200PubMedCrossRef Rubinfeld B, Tice DA, Polakis P: Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1epsilon. J Biol Chem. 2001, 276: 39037-39045. 10.1074/jbc.M105148200PubMedCrossRef
26.
Zurück zum Zitat Shen T, Liu Y, Cseresnyés Z, Hawkins A, Randall WR, Schneider MF: Activity- and calcineurin-independent nuclear shuttling of NFATc1, but not NFATc3, in adult skeletal muscle fibers. Mol Biol Cell. 2006, 17: 1570-1582. 10.1091/mbc.E05-08-0780PubMedCentralPubMedCrossRef Shen T, Liu Y, Cseresnyés Z, Hawkins A, Randall WR, Schneider MF: Activity- and calcineurin-independent nuclear shuttling of NFATc1, but not NFATc3, in adult skeletal muscle fibers. Mol Biol Cell. 2006, 17: 1570-1582. 10.1091/mbc.E05-08-0780PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Klein TJ, Jenny A, Djiane A, Mlodzik M: CKIepsilon/discs overgrown promotes both Wnt-Fz/beta-catenin and Fz/PCP signaling in Drosophila. Curr Biol. 2006, 16: 1337-1343. 10.1016/j.cub.2006.06.030PubMedCrossRef Klein TJ, Jenny A, Djiane A, Mlodzik M: CKIepsilon/discs overgrown promotes both Wnt-Fz/beta-catenin and Fz/PCP signaling in Drosophila. Curr Biol. 2006, 16: 1337-1343. 10.1016/j.cub.2006.06.030PubMedCrossRef
28.
Zurück zum Zitat Venerando A, Girardi C, Ruzzene M, Pinna LA: Pyrvinium pamoate does not activate protein kinase CK1, but promotes Akt/PKB down-regulation and GSK3 activation. Biochem J. 2013, 452: 131-137.PubMedCrossRef Venerando A, Girardi C, Ruzzene M, Pinna LA: Pyrvinium pamoate does not activate protein kinase CK1, but promotes Akt/PKB down-regulation and GSK3 activation. Biochem J. 2013, 452: 131-137.PubMedCrossRef
29.
Zurück zum Zitat Del Valle-Pérez B, Arqués O, Vinyoles M, de Herreros AG, Duñach M: Coordinated action of CK1 isoforms in canonical Wnt signaling. Mol Cell Biol. 2011, 31: 2877-2888. 10.1128/MCB.01466-10PubMedCentralPubMedCrossRef Del Valle-Pérez B, Arqués O, Vinyoles M, de Herreros AG, Duñach M: Coordinated action of CK1 isoforms in canonical Wnt signaling. Mol Cell Biol. 2011, 31: 2877-2888. 10.1128/MCB.01466-10PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Flotow H, Graves PR, Wang AQ, Fiol CJ, Roeske RW, Roach PJ: Phosphate groups as substrate determinants for casein kinase I action. J Biol Chem. 1990, 265: 14264-14269.PubMed Flotow H, Graves PR, Wang AQ, Fiol CJ, Roeske RW, Roach PJ: Phosphate groups as substrate determinants for casein kinase I action. J Biol Chem. 1990, 265: 14264-14269.PubMed
31.
Zurück zum Zitat McKenzie JAG, Riento K, Ridley AJ: Casein kinase I epsilon associates with and phosphorylates the tight junction protein occludin. FEBS Lett. 2006, 580: 2388-2394. 10.1016/j.febslet.2006.03.048PubMedCrossRef McKenzie JAG, Riento K, Ridley AJ: Casein kinase I epsilon associates with and phosphorylates the tight junction protein occludin. FEBS Lett. 2006, 580: 2388-2394. 10.1016/j.febslet.2006.03.048PubMedCrossRef
32.
Zurück zum Zitat Sillibourne JE, Milne DM, Takahashi M, Ono Y, Meek DW: Centrosomal anchoring of the protein kinase CK1delta mediated by attachment to the large, coiled-coil scaffolding protein CG-NAP/AKAP450. J Mol Biol. 2002, 322: 785-797. 10.1016/S0022-2836(02)00857-4PubMedCrossRef Sillibourne JE, Milne DM, Takahashi M, Ono Y, Meek DW: Centrosomal anchoring of the protein kinase CK1delta mediated by attachment to the large, coiled-coil scaffolding protein CG-NAP/AKAP450. J Mol Biol. 2002, 322: 785-797. 10.1016/S0022-2836(02)00857-4PubMedCrossRef
33.
Zurück zum Zitat Wolff S, Stöter M, Giamas G, Piesche M, Henne-Bruns D, Banting G, Knippschild U: Casein kinase 1 delta (CK1delta) interacts with the SNARE associated protein snapin. FEBS Lett. 2006, 580: 6477-6484. 10.1016/j.febslet.2006.10.068PubMedCrossRef Wolff S, Stöter M, Giamas G, Piesche M, Henne-Bruns D, Banting G, Knippschild U: Casein kinase 1 delta (CK1delta) interacts with the SNARE associated protein snapin. FEBS Lett. 2006, 580: 6477-6484. 10.1016/j.febslet.2006.10.068PubMedCrossRef
34.
Zurück zum Zitat Wolff S, Xiao Z, Wittau M, Süssner N, Stöter M, Knippschild U: Interaction of casein kinase 1 delta (CK1 delta) with the light chain LC2 of microtubule associated protein 1A (MAP1A). Biochim Biophys Acta. 2005, 1745: 196-206. 10.1016/j.bbamcr.2005.05.004PubMedCrossRef Wolff S, Xiao Z, Wittau M, Süssner N, Stöter M, Knippschild U: Interaction of casein kinase 1 delta (CK1 delta) with the light chain LC2 of microtubule associated protein 1A (MAP1A). Biochim Biophys Acta. 2005, 1745: 196-206. 10.1016/j.bbamcr.2005.05.004PubMedCrossRef
35.
Zurück zum Zitat Behrend L, Stöter M, Kurth M, Rutter G, Heukeshoven J, Deppert W, Knippschild U: Interaction of casein kinase 1 delta (CK1delta) with post-Golgi structures, microtubules and the spindle apparatus. Eur J Cell Biol. 2000, 79: 240-251. 10.1078/S0171-9335(04)70027-8PubMedCrossRef Behrend L, Stöter M, Kurth M, Rutter G, Heukeshoven J, Deppert W, Knippschild U: Interaction of casein kinase 1 delta (CK1delta) with post-Golgi structures, microtubules and the spindle apparatus. Eur J Cell Biol. 2000, 79: 240-251. 10.1078/S0171-9335(04)70027-8PubMedCrossRef
36.
Zurück zum Zitat Yin H, Laguna KA, Li G, Kuret J: Dysbindin structural homologue CK1BP is an isoform-selective binding partner of human casein kinase-1. Biochemistry. 2006, 45: 5297-5308. 10.1021/bi052354ePubMedCrossRef Yin H, Laguna KA, Li G, Kuret J: Dysbindin structural homologue CK1BP is an isoform-selective binding partner of human casein kinase-1. Biochemistry. 2006, 45: 5297-5308. 10.1021/bi052354ePubMedCrossRef
37.
Zurück zum Zitat Zemp I, Wandrey F, Rao S, Ashiono C, Wyler E, Montellese C, Kutay U: CK1δ and CK1ϵ are components of human 40S subunit precursors required for cytoplasmic 40S maturation. J Cell Sci. 2014, 127 (Pt 6): 1242-1253.PubMedCrossRef Zemp I, Wandrey F, Rao S, Ashiono C, Wyler E, Montellese C, Kutay U: CK1δ and CK1ϵ are components of human 40S subunit precursors required for cytoplasmic 40S maturation. J Cell Sci. 2014, 127 (Pt 6): 1242-1253.PubMedCrossRef
38.
Zurück zum Zitat Brockman JL, Gross SD, Sussman MR, Anderson RA: Cell cycle-dependent localization of casein kinase I to mitotic spindles. Proc Natl Acad Sci U S A. 1992, 89: 9454-9458. 10.1073/pnas.89.20.9454PubMedCentralPubMedCrossRef Brockman JL, Gross SD, Sussman MR, Anderson RA: Cell cycle-dependent localization of casein kinase I to mitotic spindles. Proc Natl Acad Sci U S A. 1992, 89: 9454-9458. 10.1073/pnas.89.20.9454PubMedCentralPubMedCrossRef
39.
Zurück zum Zitat Gross SD, Simerly C, Schatten G, Anderson RA: A casein kinase I isoform is required for proper cell cycle progression in the fertilized mouse oocyte. J Cell Sci. 1997, 110 (Pt 2): 3083-3090.PubMed Gross SD, Simerly C, Schatten G, Anderson RA: A casein kinase I isoform is required for proper cell cycle progression in the fertilized mouse oocyte. J Cell Sci. 1997, 110 (Pt 2): 3083-3090.PubMed
40.
Zurück zum Zitat Wang L, Lu A, Zhou H-X, Sun R, Zhao J, Zhou C-J, Shen J-P, Wu S-N, Liang C-G: Casein kinase 1 alpha regulates chromosome congression and separation during mouse oocyte meiotic maturation and early embryo development. PLoS One. 2013, 8: e63173- 10.1371/journal.pone.0063173PubMedCentralPubMedCrossRef Wang L, Lu A, Zhou H-X, Sun R, Zhao J, Zhou C-J, Shen J-P, Wu S-N, Liang C-G: Casein kinase 1 alpha regulates chromosome congression and separation during mouse oocyte meiotic maturation and early embryo development. PLoS One. 2013, 8: e63173- 10.1371/journal.pone.0063173PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat Duan S, Skaar JR, Kuchay S, Toschi A, Kanarek N, Ben-Neriah Y, Pagano M: mTOR generates an auto-amplification loop by triggering the βTrCP- and CK1α-dependent degradation of DEPTOR. Mol Cell. 2011, 44: 317-324. 10.1016/j.molcel.2011.09.005PubMedCentralPubMedCrossRef Duan S, Skaar JR, Kuchay S, Toschi A, Kanarek N, Ben-Neriah Y, Pagano M: mTOR generates an auto-amplification loop by triggering the βTrCP- and CK1α-dependent degradation of DEPTOR. Mol Cell. 2011, 44: 317-324. 10.1016/j.molcel.2011.09.005PubMedCentralPubMedCrossRef
42.
Zurück zum Zitat Izeradjene K, Douglas L, Delaney AB, Houghton JA: Casein kinase I attenuates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by regulating the recruitment of fas-associated death domain and procaspase-8 to the death-inducing signaling complex. Cancer Res. 2004, 64: 8036-8044. 10.1158/0008-5472.CAN-04-0762PubMedCrossRef Izeradjene K, Douglas L, Delaney AB, Houghton JA: Casein kinase I attenuates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by regulating the recruitment of fas-associated death domain and procaspase-8 to the death-inducing signaling complex. Cancer Res. 2004, 64: 8036-8044. 10.1158/0008-5472.CAN-04-0762PubMedCrossRef
43.
Zurück zum Zitat Zhao Y, Qin S, Atangan LI, Molina Y, Okawa Y, Arpawong HT, Ghosn C, Xiao J-H, Vuligonda V, Brown G, Chandraratna RAS: Casein kinase 1alpha interacts with retinoid X receptor and interferes with agonist-induced apoptosis. J Biol Chem. 2004, 279: 30844-30849. 10.1074/jbc.M404651200PubMedCrossRef Zhao Y, Qin S, Atangan LI, Molina Y, Okawa Y, Arpawong HT, Ghosn C, Xiao J-H, Vuligonda V, Brown G, Chandraratna RAS: Casein kinase 1alpha interacts with retinoid X receptor and interferes with agonist-induced apoptosis. J Biol Chem. 2004, 279: 30844-30849. 10.1074/jbc.M404651200PubMedCrossRef
44.
Zurück zum Zitat Sinnberg T, Menzel M, Kaesler S, Biedermann T, Sauer B, Nahnsen S, Schwarz M, Garbe C, Schittek B: Suppression of casein kinase 1alpha in melanoma cells induces a switch in beta-catenin signaling to promote metastasis. Cancer Res. 2010, 70: 6999-7009. 10.1158/0008-5472.CAN-10-0645PubMedCrossRef Sinnberg T, Menzel M, Kaesler S, Biedermann T, Sauer B, Nahnsen S, Schwarz M, Garbe C, Schittek B: Suppression of casein kinase 1alpha in melanoma cells induces a switch in beta-catenin signaling to promote metastasis. Cancer Res. 2010, 70: 6999-7009. 10.1158/0008-5472.CAN-10-0645PubMedCrossRef
45.
Zurück zum Zitat Tobin AB: Are we beta-ARKing up the wrong tree? Casein kinase 1 alpha provides an additional pathway for GPCR phosphorylation. Trends Pharmacol Sci. 2002, 23: 337-343. 10.1016/S0165-6147(02)02043-6PubMedCrossRef Tobin AB: Are we beta-ARKing up the wrong tree? Casein kinase 1 alpha provides an additional pathway for GPCR phosphorylation. Trends Pharmacol Sci. 2002, 23: 337-343. 10.1016/S0165-6147(02)02043-6PubMedCrossRef
46.
Zurück zum Zitat Waugh MG, Challiss RA, Berstein G, Nahorski SR, Tobin AB: Agonist-induced desensitization and phosphorylation of m1-muscarinic receptors. Biochem J. 1999, 338 (Pt 1): 175-183.PubMedCentralPubMedCrossRef Waugh MG, Challiss RA, Berstein G, Nahorski SR, Tobin AB: Agonist-induced desensitization and phosphorylation of m1-muscarinic receptors. Biochem J. 1999, 338 (Pt 1): 175-183.PubMedCentralPubMedCrossRef
47.
Zurück zum Zitat Okamura H, Garcia-Rodriguez C, Martinson H, Qin J, Virshup DM, Rao A: A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1. Mol Cell Biol. 2004, 24: 4184-4195. 10.1128/MCB.24.10.4184-4195.2004PubMedCentralPubMedCrossRef Okamura H, Garcia-Rodriguez C, Martinson H, Qin J, Virshup DM, Rao A: A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1. Mol Cell Biol. 2004, 24: 4184-4195. 10.1128/MCB.24.10.4184-4195.2004PubMedCentralPubMedCrossRef
48.
Zurück zum Zitat Dejmek J, Säfholm A, Kamp Nielsen C, Andersson T, Leandersson K: Wnt-5a/Ca2 + −induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase 1alpha signaling in human mammary epithelial cells. Mol Cell Biol. 2006, 26: 6024-6036. 10.1128/MCB.02354-05PubMedCentralPubMedCrossRef Dejmek J, Säfholm A, Kamp Nielsen C, Andersson T, Leandersson K: Wnt-5a/Ca2 + −induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase 1alpha signaling in human mammary epithelial cells. Mol Cell Biol. 2006, 26: 6024-6036. 10.1128/MCB.02354-05PubMedCentralPubMedCrossRef
49.
Zurück zum Zitat Vielhaber E, Eide E, Rivers A, Gao ZH, Virshup DM: Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol Cell Biol. 2000, 20: 4888-4899. 10.1128/MCB.20.13.4888-4899.2000PubMedCentralPubMedCrossRef Vielhaber E, Eide E, Rivers A, Gao ZH, Virshup DM: Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol Cell Biol. 2000, 20: 4888-4899. 10.1128/MCB.20.13.4888-4899.2000PubMedCentralPubMedCrossRef
50.
Zurück zum Zitat Hirota T, Lee JW, Lewis WG, Zhang EE, Breton G, Liu X, Garcia M, Peters EC, Etchegaray J-P, Traver D, Schultz PG, Kay SA: High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase. PLoS Biol. 2010, 8: e1000559- 10.1371/journal.pbio.1000559PubMedCentralPubMedCrossRef Hirota T, Lee JW, Lewis WG, Zhang EE, Breton G, Liu X, Garcia M, Peters EC, Etchegaray J-P, Traver D, Schultz PG, Kay SA: High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase. PLoS Biol. 2010, 8: e1000559- 10.1371/journal.pbio.1000559PubMedCentralPubMedCrossRef
51.
Zurück zum Zitat Walton KM, Fisher K, Rubitski D, Marconi M, Meng Q-J, Sládek M, Adams J, Bass M, Chandrasekaran R, Butler T, Griffor M, Rajamohan F, Serpa M, Chen Y, Claffey M, Hastings M, Loudon A, Maywood E, Ohren J, Doran A, Wager TT: Selective inhibition of casein kinase 1 epsilon minimally alters circadian clock period. J Pharmacol Exp Ther. 2009, 330: 430-439. 10.1124/jpet.109.151415PubMedCrossRef Walton KM, Fisher K, Rubitski D, Marconi M, Meng Q-J, Sládek M, Adams J, Bass M, Chandrasekaran R, Butler T, Griffor M, Rajamohan F, Serpa M, Chen Y, Claffey M, Hastings M, Loudon A, Maywood E, Ohren J, Doran A, Wager TT: Selective inhibition of casein kinase 1 epsilon minimally alters circadian clock period. J Pharmacol Exp Ther. 2009, 330: 430-439. 10.1124/jpet.109.151415PubMedCrossRef
52.
Zurück zum Zitat Harms E, Young MW, Saez L: CK1 and GSK3 in the Drosophila and mammalian circadian clock. Novartis Found Symp. 2003, 253 (102–9): 277-284. discussion, Harms E, Young MW, Saez L: CK1 and GSK3 in the Drosophila and mammalian circadian clock. Novartis Found Symp. 2003, 253 (102–9): 277-284. discussion,
53.
Zurück zum Zitat Meng Q-J, Maywood ES, Bechtold DA, Lu W-Q, Li J, Gibbs JE, Dupré SM, Chesham JE, Rajamohan F, Knafels J, Sneed B, Zawadzke LE, Ohren JF, Walton KM, Wager TT, Hastings MH, Loudon ASI: Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc Natl Acad Sci U S A. 2010, 107: 15240-15245. 10.1073/pnas.1005101107PubMedCentralPubMedCrossRef Meng Q-J, Maywood ES, Bechtold DA, Lu W-Q, Li J, Gibbs JE, Dupré SM, Chesham JE, Rajamohan F, Knafels J, Sneed B, Zawadzke LE, Ohren JF, Walton KM, Wager TT, Hastings MH, Loudon ASI: Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc Natl Acad Sci U S A. 2010, 107: 15240-15245. 10.1073/pnas.1005101107PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Behrend L, Milne DM, Stöter M, Deppert W, Campbell LE, Meek DW, Knippschild U: IC261, a specific inhibitor of the protein kinases casein kinase 1-delta and -epsilon, triggers the mitotic checkpoint and induces p53-dependent postmitotic effects. Oncogene. 2000, 19: 5303-5313. 10.1038/sj.onc.1203939PubMedCrossRef Behrend L, Milne DM, Stöter M, Deppert W, Campbell LE, Meek DW, Knippschild U: IC261, a specific inhibitor of the protein kinases casein kinase 1-delta and -epsilon, triggers the mitotic checkpoint and induces p53-dependent postmitotic effects. Oncogene. 2000, 19: 5303-5313. 10.1038/sj.onc.1203939PubMedCrossRef
55.
Zurück zum Zitat Stöter M, Bamberger AM, Aslan B, Kurth M, Speidel D, Löning T, Frank HG, Kaufmann P, Löhler J, HenneBruns D, Deppert W, Knippschild U:Inhibition of casein kinase I delta alters mitotic spindle formation and induces apoptosis in trophoblast cells. Oncogene. 2005, 24: 7964-7975. 10.1038/sj.onc.1208941PubMedCrossRef Stöter M, Bamberger AM, Aslan B, Kurth M, Speidel D, Löning T, Frank HG, Kaufmann P, Löhler J, HenneBruns D, Deppert W, Knippschild U:Inhibition of casein kinase I delta alters mitotic spindle formation and induces apoptosis in trophoblast cells. Oncogene. 2005, 24: 7964-7975. 10.1038/sj.onc.1208941PubMedCrossRef
56.
Zurück zum Zitat Greer YE, Westlake CJ, Gao B, Bharti K, Shiba Y, Xavier CP, Pazour GJ, Yang Y, Rubin JS: Casein kinase 1δ functions at the centrosome and Golgi to promote ciliogenesis. Mol Biol Cell. 2014, 25: 1629-1640. 10.1091/mbc.E13-10-0598PubMedCentralPubMedCrossRef Greer YE, Westlake CJ, Gao B, Bharti K, Shiba Y, Xavier CP, Pazour GJ, Yang Y, Rubin JS: Casein kinase 1δ functions at the centrosome and Golgi to promote ciliogenesis. Mol Biol Cell. 2014, 25: 1629-1640. 10.1091/mbc.E13-10-0598PubMedCentralPubMedCrossRef
57.
Zurück zum Zitat Hanger DP, Byers HL, Wray S, Leung K-Y, Saxton MJ, Seereeram A, Reynolds CH, Ward MA, Anderton BH: Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem. 2007, 282: 23645-23654. 10.1074/jbc.M703269200PubMedCrossRef Hanger DP, Byers HL, Wray S, Leung K-Y, Saxton MJ, Seereeram A, Reynolds CH, Ward MA, Anderton BH: Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem. 2007, 282: 23645-23654. 10.1074/jbc.M703269200PubMedCrossRef
58.
Zurück zum Zitat León-Espinosa G, García E, García-Escudero V, Hernández F, Defelipe J, Avila J: Changes in tau phosphorylation in hibernating rodents. J Neurosci Res. 2013, 91: 954-962. 10.1002/jnr.23220PubMedCrossRef León-Espinosa G, García E, García-Escudero V, Hernández F, Defelipe J, Avila J: Changes in tau phosphorylation in hibernating rodents. J Neurosci Res. 2013, 91: 954-962. 10.1002/jnr.23220PubMedCrossRef
59.
Zurück zum Zitat Li G, Yin H, Kuret J: Casein kinase 1 delta phosphorylates tau and disrupts its binding to microtubules. J Biol Chem. 2004, 279: 15938-15945. 10.1074/jbc.M314116200PubMedCrossRef Li G, Yin H, Kuret J: Casein kinase 1 delta phosphorylates tau and disrupts its binding to microtubules. J Biol Chem. 2004, 279: 15938-15945. 10.1074/jbc.M314116200PubMedCrossRef
60.
Zurück zum Zitat Johnson AE, Chen J-S, Gould KL: CK1 is required for a mitotic checkpoint that delays cytokinesis. Curr Biol. 2013, 23: 1920-1926. 10.1016/j.cub.2013.07.077PubMedCentralPubMedCrossRef Johnson AE, Chen J-S, Gould KL: CK1 is required for a mitotic checkpoint that delays cytokinesis. Curr Biol. 2013, 23: 1920-1926. 10.1016/j.cub.2013.07.077PubMedCentralPubMedCrossRef
61.
Zurück zum Zitat Huart A-S, Saxty B, Merritt A, Nekulova M, Lewis S, Huang Y, Vojtesek B, Kettleborough C, Hupp TR: A Casein kinase 1/Checkpoint kinase 1 pyrazolo-pyridine protein kinase inhibitor as novel activator of the p53 pathway. Bioorg Med Chem Lett. 2013, 23: 5578-5585. 10.1016/j.bmcl.2013.08.046PubMedCrossRef Huart A-S, Saxty B, Merritt A, Nekulova M, Lewis S, Huang Y, Vojtesek B, Kettleborough C, Hupp TR: A Casein kinase 1/Checkpoint kinase 1 pyrazolo-pyridine protein kinase inhibitor as novel activator of the p53 pathway. Bioorg Med Chem Lett. 2013, 23: 5578-5585. 10.1016/j.bmcl.2013.08.046PubMedCrossRef
62.
Zurück zum Zitat Bernatik O, Ganji RS, Dijksterhuis JP, Konik P, Cervenka I, Polonio T, Krejci P, Schulte G, Bryja V: Sequential activation and inactivation of Dishevelled in the Wnt/beta-catenin pathway by casein kinases. J Biol Chem. 2011, 286: 10396-10410. 10.1074/jbc.M110.169870PubMedCentralPubMedCrossRef Bernatik O, Ganji RS, Dijksterhuis JP, Konik P, Cervenka I, Polonio T, Krejci P, Schulte G, Bryja V: Sequential activation and inactivation of Dishevelled in the Wnt/beta-catenin pathway by casein kinases. J Biol Chem. 2011, 286: 10396-10410. 10.1074/jbc.M110.169870PubMedCentralPubMedCrossRef
63.
Zurück zum Zitat Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X: Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002, 108: 837-847. 10.1016/S0092-8674(02)00685-2PubMedCrossRef Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X: Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002, 108: 837-847. 10.1016/S0092-8674(02)00685-2PubMedCrossRef
64.
Zurück zum Zitat Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, Ben-Neriah Y, Alkalay I: Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev. 2002, 16: 1066-1076. 10.1101/gad.230302PubMedCentralPubMedCrossRef Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, Ben-Neriah Y, Alkalay I: Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev. 2002, 16: 1066-1076. 10.1101/gad.230302PubMedCentralPubMedCrossRef
65.
Zurück zum Zitat Carreras Puigvert J, Von Stechow L, Siddappa R, Pines A, Bahjat M, Haazen LCJM, Olsen JV, Vrieling H, Meerman JHN, Mullenders LHF, Van De Water B, Danen EHJ: Systems biology approach identifies the kinase Csnk1a1 as a regulator of the DNA damage response in embryonic stem cells. Sci Signal. 2013, 6: ra5-PubMedCrossRef Carreras Puigvert J, Von Stechow L, Siddappa R, Pines A, Bahjat M, Haazen LCJM, Olsen JV, Vrieling H, Meerman JHN, Mullenders LHF, Van De Water B, Danen EHJ: Systems biology approach identifies the kinase Csnk1a1 as a regulator of the DNA damage response in embryonic stem cells. Sci Signal. 2013, 6: ra5-PubMedCrossRef
66.
Zurück zum Zitat Ha N-C, Tonozuka T, Stamos JL, Choi H-J, Weis WI: Mechanism of phosphorylation-dependent binding of APC to beta-catenin and its role in beta-catenin degradation. Mol Cell. 2004, 15: 511-521. 10.1016/j.molcel.2004.08.010PubMedCrossRef Ha N-C, Tonozuka T, Stamos JL, Choi H-J, Weis WI: Mechanism of phosphorylation-dependent binding of APC to beta-catenin and its role in beta-catenin degradation. Mol Cell. 2004, 15: 511-521. 10.1016/j.molcel.2004.08.010PubMedCrossRef
67.
Zurück zum Zitat Hämmerlein A, Weiske J, Huber O: A second protein kinase CK1-mediated step negatively regulates Wnt signalling by disrupting the lymphocyte enhancer factor-1/beta-catenin complex. Cell Mol Life Sci. 2005, 62: 606-618. 10.1007/s00018-005-4507-7PubMedCrossRef Hämmerlein A, Weiske J, Huber O: A second protein kinase CK1-mediated step negatively regulates Wnt signalling by disrupting the lymphocyte enhancer factor-1/beta-catenin complex. Cell Mol Life Sci. 2005, 62: 606-618. 10.1007/s00018-005-4507-7PubMedCrossRef
68.
Zurück zum Zitat Knippschild U, Milne DM, Campbell LE, DeMaggio AJ, Christenson E, Hoekstra MF, Meek DW: p53 is phosphorylated in vitro and in vivo by the delta and epsilon isoforms of casein kinase 1 and enhances the level of casein kinase 1 delta in response to topoisomerase-directed drugs. Oncogene. 1997, 15: 1727-1736. 10.1038/sj.onc.1201541PubMedCrossRef Knippschild U, Milne DM, Campbell LE, DeMaggio AJ, Christenson E, Hoekstra MF, Meek DW: p53 is phosphorylated in vitro and in vivo by the delta and epsilon isoforms of casein kinase 1 and enhances the level of casein kinase 1 delta in response to topoisomerase-directed drugs. Oncogene. 1997, 15: 1727-1736. 10.1038/sj.onc.1201541PubMedCrossRef
69.
Zurück zum Zitat Dumaz N, Milne DM, Meek DW: Protein kinase CK1 is a p53-threonine 18 kinase which requires prior phosphorylation of serine 15. FEBS Lett. 1999, 463: 312-316. 10.1016/S0014-5793(99)01647-6PubMedCrossRef Dumaz N, Milne DM, Meek DW: Protein kinase CK1 is a p53-threonine 18 kinase which requires prior phosphorylation of serine 15. FEBS Lett. 1999, 463: 312-316. 10.1016/S0014-5793(99)01647-6PubMedCrossRef
70.
Zurück zum Zitat Winter M, Milne D, Dias S, Kulikov R, Knippschild U, Blattner C, Meek D: Protein kinase CK1delta phosphorylates key sites in the acidic domain of murine double-minute clone 2 protein (MDM2) that regulate p53 turnover. Biochemistry. 2004, 43: 16356-16364. 10.1021/bi0489255PubMedCrossRef Winter M, Milne D, Dias S, Kulikov R, Knippschild U, Blattner C, Meek D: Protein kinase CK1delta phosphorylates key sites in the acidic domain of murine double-minute clone 2 protein (MDM2) that regulate p53 turnover. Biochemistry. 2004, 43: 16356-16364. 10.1021/bi0489255PubMedCrossRef
71.
Zurück zum Zitat Elyada E, Pribluda A, Goldstein RE, Morgenstern Y, Brachya G, Cojocaru G, Snir-Alkalay I, Burstain I, Haffner-Krausz R, Jung S, Wiener Z, Alitalo K, Oren M, Pikarsky E, Ben-Neriah Y: CKIα ablation highlights a critical role for p53 in invasiveness control. Nature. 2011, 470: 409-413. 10.1038/nature09673PubMedCrossRef Elyada E, Pribluda A, Goldstein RE, Morgenstern Y, Brachya G, Cojocaru G, Snir-Alkalay I, Burstain I, Haffner-Krausz R, Jung S, Wiener Z, Alitalo K, Oren M, Pikarsky E, Ben-Neriah Y: CKIα ablation highlights a critical role for p53 in invasiveness control. Nature. 2011, 470: 409-413. 10.1038/nature09673PubMedCrossRef
72.
Zurück zum Zitat Sarasqueta AF, Forte G, Corver WE, de Miranda NF, Ruano D, van Eijk R, Oosting J, Tollenaar RAEM, van Wezel T, Morreau H: Integral analysis of p53 and its value as prognostic factor in sporadic colon cancer. BMC Cancer. 2013, 13: 277- 10.1186/1471-2407-13-277PubMedCrossRef Sarasqueta AF, Forte G, Corver WE, de Miranda NF, Ruano D, van Eijk R, Oosting J, Tollenaar RAEM, van Wezel T, Morreau H: Integral analysis of p53 and its value as prognostic factor in sporadic colon cancer. BMC Cancer. 2013, 13: 277- 10.1186/1471-2407-13-277PubMedCrossRef
73.
Zurück zum Zitat Järås M, Miller PG, Chu LP, Puram RV, Fink EC, Schneider RK, Al-Shahrour F, Peña P, Breyfogle LJ, Hartwell KA, McConkey ME, Cowley GS, Root DE, Kharas MG, Mullally A, Ebert BL: Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia. J Exp Med. 2014, 211: 605-612. 10.1084/jem.20131033PubMedCentralPubMedCrossRef Järås M, Miller PG, Chu LP, Puram RV, Fink EC, Schneider RK, Al-Shahrour F, Peña P, Breyfogle LJ, Hartwell KA, McConkey ME, Cowley GS, Root DE, Kharas MG, Mullally A, Ebert BL: Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia. J Exp Med. 2014, 211: 605-612. 10.1084/jem.20131033PubMedCentralPubMedCrossRef
74.
Zurück zum Zitat Chen L, Li C, Pan Y, Chen J: Regulation of p53-MDMX interaction by casein kinase 1 alpha. Mol Cell Biol. 2005, 25: 6509-6520. 10.1128/MCB.25.15.6509-6520.2005PubMedCentralPubMedCrossRef Chen L, Li C, Pan Y, Chen J: Regulation of p53-MDMX interaction by casein kinase 1 alpha. Mol Cell Biol. 2005, 25: 6509-6520. 10.1128/MCB.25.15.6509-6520.2005PubMedCentralPubMedCrossRef
75.
Zurück zum Zitat Venerando A, Marin O, Cozza G, Bustos VH, Sarno S, Pinna LA: Isoform specific phosphorylation of p53 by protein kinase CK1. Cell Mol Life Sci. 2010, 67: 1105-1118. 10.1007/s00018-009-0236-7PubMedCrossRef Venerando A, Marin O, Cozza G, Bustos VH, Sarno S, Pinna LA: Isoform specific phosphorylation of p53 by protein kinase CK1. Cell Mol Life Sci. 2010, 67: 1105-1118. 10.1007/s00018-009-0236-7PubMedCrossRef
76.
Zurück zum Zitat Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S, Wan L, Ang XL, Mock C, Yin H, Stommel JM, Gygi S, Lahav G, Asara J, Xiao Z-XJ, Kaelin WG, Harper JW, Wei W: Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell. 2010, 18: 147-159. 10.1016/j.ccr.2010.06.015PubMedCentralPubMedCrossRef Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S, Wan L, Ang XL, Mock C, Yin H, Stommel JM, Gygi S, Lahav G, Asara J, Xiao Z-XJ, Kaelin WG, Harper JW, Wei W: Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell. 2010, 18: 147-159. 10.1016/j.ccr.2010.06.015PubMedCentralPubMedCrossRef
77.
Zurück zum Zitat Zhang P, Bill K, Liu J, Young E, Peng T, Bolshakov S, Hoffman A, Song Y, Demicco EG, Terrada DL, Creighton CJ, Anderson ML, Lazar AJ, Calin GG, Pollock RE, Lev D: MiR-155 is a liposarcoma oncogene that targets casein kinase-1α and enhances β-catenin signaling. Cancer Res. 2012, 72: 1751-1762. 10.1158/0008-5472.CAN-11-3027PubMedCentralPubMedCrossRef Zhang P, Bill K, Liu J, Young E, Peng T, Bolshakov S, Hoffman A, Song Y, Demicco EG, Terrada DL, Creighton CJ, Anderson ML, Lazar AJ, Calin GG, Pollock RE, Lev D: MiR-155 is a liposarcoma oncogene that targets casein kinase-1α and enhances β-catenin signaling. Cancer Res. 2012, 72: 1751-1762. 10.1158/0008-5472.CAN-11-3027PubMedCentralPubMedCrossRef
78.
Zurück zum Zitat Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM: Posttranslational mechanisms regulate the mammalian circadian clock. Cell. 2001, 107: 855-867. 10.1016/S0092-8674(01)00610-9PubMedCrossRef Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM: Posttranslational mechanisms regulate the mammalian circadian clock. Cell. 2001, 107: 855-867. 10.1016/S0092-8674(01)00610-9PubMedCrossRef
79.
Zurück zum Zitat Yong TJ, Gan YY, Toh BH, Sentry JW: Human CKIalpha(L) and CKIalpha(S) are encoded by both 2.4- and 4. 2-kb transcripts, the longer containing multiple RNA-destablising elements. Biochim Biophys Acta. 2000, 1492: 425-433. 10.1016/S0167-4781(00)00146-9PubMedCrossRef Yong TJ, Gan YY, Toh BH, Sentry JW: Human CKIalpha(L) and CKIalpha(S) are encoded by both 2.4- and 4. 2-kb transcripts, the longer containing multiple RNA-destablising elements. Biochim Biophys Acta. 2000, 1492: 425-433. 10.1016/S0167-4781(00)00146-9PubMedCrossRef
80.
Zurück zum Zitat Green CL, Bennett GS: Identification of four alternatively spliced isoforms of chicken casein kinase I alpha that are all expressed in diverse cell types. Gene. 1998, 216: 189-195. 10.1016/S0378-1119(98)00291-1PubMedCrossRef Green CL, Bennett GS: Identification of four alternatively spliced isoforms of chicken casein kinase I alpha that are all expressed in diverse cell types. Gene. 1998, 216: 189-195. 10.1016/S0378-1119(98)00291-1PubMedCrossRef
81.
Zurück zum Zitat Fu Z, Green CL, Bennett GS: Relationship between casein kinase I isoforms and a neurofilament-associated kinase. J Neurochem. 1999, 73: 830-838.PubMedCrossRef Fu Z, Green CL, Bennett GS: Relationship between casein kinase I isoforms and a neurofilament-associated kinase. J Neurochem. 1999, 73: 830-838.PubMedCrossRef
82.
Zurück zum Zitat Budini M, Jacob G, Jedlicki A, Pérez C, Allende CC, Allende JE: Autophosphorylation of carboxy-terminal residues inhibits the activity of protein kinase CK1alpha. J Cell Biochem. 2009, 106: 399-408. 10.1002/jcb.22019PubMedCrossRef Budini M, Jacob G, Jedlicki A, Pérez C, Allende CC, Allende JE: Autophosphorylation of carboxy-terminal residues inhibits the activity of protein kinase CK1alpha. J Cell Biochem. 2009, 106: 399-408. 10.1002/jcb.22019PubMedCrossRef
83.
Zurück zum Zitat Cegielska A, Gietzen KF, Rivers A, Virshup DM: Autoinhibition of casein kinase I epsilon (CKI epsilon) is relieved by protein phosphatases and limited proteolysis. J Biol Chem. 1998, 273: 1357-1364. 10.1074/jbc.273.3.1357PubMedCrossRef Cegielska A, Gietzen KF, Rivers A, Virshup DM: Autoinhibition of casein kinase I epsilon (CKI epsilon) is relieved by protein phosphatases and limited proteolysis. J Biol Chem. 1998, 273: 1357-1364. 10.1074/jbc.273.3.1357PubMedCrossRef
84.
Zurück zum Zitat Graves PR, Roach PJ: Role of COOH-terminal phosphorylation in the regulation of casein kinase I delta. J Biol Chem. 1995, 270: 21689-21694. 10.1074/jbc.270.37.21689PubMedCrossRef Graves PR, Roach PJ: Role of COOH-terminal phosphorylation in the regulation of casein kinase I delta. J Biol Chem. 1995, 270: 21689-21694. 10.1074/jbc.270.37.21689PubMedCrossRef
85.
Zurück zum Zitat Longenecker KL, Roach PJ, Hurley TD: Crystallographic studies of casein kinase I delta toward a structural understanding of auto-inhibition. Acta Crystallogr D Biol Crystallogr. 1998, 54 (Pt 3): 473-475.PubMedCrossRef Longenecker KL, Roach PJ, Hurley TD: Crystallographic studies of casein kinase I delta toward a structural understanding of auto-inhibition. Acta Crystallogr D Biol Crystallogr. 1998, 54 (Pt 3): 473-475.PubMedCrossRef
86.
Zurück zum Zitat Thorne CA, Hanson AJ, Schneider J, Tahinci E, Orton D, Cselenyi CS, Jernigan KK, Meyers KC, Hang BI, Waterson AG, Kim K, Melancon B, Ghidu VP, Sulikowski GA, LaFleur B, Salic A, Lee LA, Miller DM, Lee E, Miller DM: Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. Nat Chem Biol. 2010, 6: 829-836. 10.1038/nchembio.453PubMedCentralPubMedCrossRef Thorne CA, Hanson AJ, Schneider J, Tahinci E, Orton D, Cselenyi CS, Jernigan KK, Meyers KC, Hang BI, Waterson AG, Kim K, Melancon B, Ghidu VP, Sulikowski GA, LaFleur B, Salic A, Lee LA, Miller DM, Lee E, Miller DM: Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. Nat Chem Biol. 2010, 6: 829-836. 10.1038/nchembio.453PubMedCentralPubMedCrossRef
87.
Zurück zum Zitat Maritzen T, Lohler J, Deppert W, Knippschild U: Casein kinase I delta (CKIdelta) is involved in lymphocyte physiology. Eur J Cell Biol. 2003, 82: 369-378. 10.1078/0171-9335-00323PubMedCrossRef Maritzen T, Lohler J, Deppert W, Knippschild U: Casein kinase I delta (CKIdelta) is involved in lymphocyte physiology. Eur J Cell Biol. 2003, 82: 369-378. 10.1078/0171-9335-00323PubMedCrossRef
88.
Zurück zum Zitat Masuda K, Ono M, Okamoto M, Morikawa W, Otsubo M, Migita T, Tsuneyoshi M, Okuda H, Shuin T, Naito S, Kuwano M: Downregulation of Cap43 gene by von Hippel-Lindau tumor suppressor protein in human renal cancer cells. Int J Cancer. 2003, 105: 803-810. 10.1002/ijc.11152PubMedCrossRef Masuda K, Ono M, Okamoto M, Morikawa W, Otsubo M, Migita T, Tsuneyoshi M, Okuda H, Shuin T, Naito S, Kuwano M: Downregulation of Cap43 gene by von Hippel-Lindau tumor suppressor protein in human renal cancer cells. Int J Cancer. 2003, 105: 803-810. 10.1002/ijc.11152PubMedCrossRef
89.
Zurück zum Zitat Brockschmidt C, Hirner H, Huber N, Eismann T, Hillenbrand A, Giamas G, Radunsky B, Ammerpohl O, Bohm B, Henne-Bruns D, Kalthoff H, Leithäuser F, Trauzold A, Knippschild U, Leithäuser F: Anti-apoptotic and growth-stimulatory functions of CK1 delta and epsilon in ductal adenocarcinoma of the pancreas are inhibited by IC261 in vitro and in vivo. Gut. 2008, 57: 799-806. 10.1136/gut.2007.123695PubMedCrossRef Brockschmidt C, Hirner H, Huber N, Eismann T, Hillenbrand A, Giamas G, Radunsky B, Ammerpohl O, Bohm B, Henne-Bruns D, Kalthoff H, Leithäuser F, Trauzold A, Knippschild U, Leithäuser F: Anti-apoptotic and growth-stimulatory functions of CK1 delta and epsilon in ductal adenocarcinoma of the pancreas are inhibited by IC261 in vitro and in vivo. Gut. 2008, 57: 799-806. 10.1136/gut.2007.123695PubMedCrossRef
90.
Zurück zum Zitat Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J: The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front Oncol. 2014, 4: 96-PubMedCentralPubMedCrossRef Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J: The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front Oncol. 2014, 4: 96-PubMedCentralPubMedCrossRef
91.
Zurück zum Zitat Sun D, Zhou M, Kowolik CM, Trisal V, Huang Q, Kernstine KH, Lian F, Shen B: Differential expression patterns of capping protein, protein phosphatase 1, and casein kinase 1 may serve as diagnostic markers for malignant melanoma. Melanoma Res. 2011, 21: 335-343. 10.1097/CMR.0b013e328346b715PubMedCentralPubMedCrossRef Sun D, Zhou M, Kowolik CM, Trisal V, Huang Q, Kernstine KH, Lian F, Shen B: Differential expression patterns of capping protein, protein phosphatase 1, and casein kinase 1 may serve as diagnostic markers for malignant melanoma. Melanoma Res. 2011, 21: 335-343. 10.1097/CMR.0b013e328346b715PubMedCentralPubMedCrossRef
92.
Zurück zum Zitat Fuja TJ, Lin F, Osann KE, Bryant PJ: Somatic mutations and altered expression of the candidate tumor suppressors CSNK1 epsilon, DLG1, and EDD/hHYD in mammary ductal carcinoma. Cancer Res. 2004, 64: 942-951. 10.1158/0008-5472.CAN-03-2100PubMedCrossRef Fuja TJ, Lin F, Osann KE, Bryant PJ: Somatic mutations and altered expression of the candidate tumor suppressors CSNK1 epsilon, DLG1, and EDD/hHYD in mammary ductal carcinoma. Cancer Res. 2004, 64: 942-951. 10.1158/0008-5472.CAN-03-2100PubMedCrossRef
93.
Zurück zum Zitat Tsai I-C, Woolf M, Neklason DW, Branford WW, Yost HJ, Burt RW, Virshup DM: Disease-associated casein kinase I delta mutation may promote adenomatous polyps formation via a Wnt/beta-catenin independent mechanism. Int J Cancer. 2007, 120: 1005-1012.PubMedCrossRef Tsai I-C, Woolf M, Neklason DW, Branford WW, Yost HJ, Burt RW, Virshup DM: Disease-associated casein kinase I delta mutation may promote adenomatous polyps formation via a Wnt/beta-catenin independent mechanism. Int J Cancer. 2007, 120: 1005-1012.PubMedCrossRef
94.
Zurück zum Zitat Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N: ntegrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013, 6: pl1-PubMedCentralPubMedCrossRef Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N: ntegrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013, 6: pl1-PubMedCentralPubMedCrossRef
95.
Zurück zum Zitat Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2: 401-404. 10.1158/2159-8290.CD-12-0095PubMedCrossRef Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2: 401-404. 10.1158/2159-8290.CD-12-0095PubMedCrossRef
96.
Zurück zum Zitat Antonov AV, Krestyaninova M, Knight RA, Rodchenkov I, Melino G, Barlev NA: PPISURV: a novel bioinformatics tool for uncovering the hidden role of specific genes in cancer survival outcome. Oncogene. 2014, 33: 1621-1628. 10.1038/onc.2013.119PubMedCrossRef Antonov AV, Krestyaninova M, Knight RA, Rodchenkov I, Melino G, Barlev NA: PPISURV: a novel bioinformatics tool for uncovering the hidden role of specific genes in cancer survival outcome. Oncogene. 2014, 33: 1621-1628. 10.1038/onc.2013.119PubMedCrossRef
97.
Zurück zum Zitat Kim SY, Dunn IF, Firestein R, Gupta P, Wardwell L, Repich K, Schinzel AC, Wittner B, Silver SJ, Root DE, Boehm JS, Ramaswamy S, Lander ES, Hahn WC: CK1epsilon is required for breast cancers dependent on beta-catenin activity. PLoS One. 2010, 5: e8979- 10.1371/journal.pone.0008979PubMedCentralPubMedCrossRef Kim SY, Dunn IF, Firestein R, Gupta P, Wardwell L, Repich K, Schinzel AC, Wittner B, Silver SJ, Root DE, Boehm JS, Ramaswamy S, Lander ES, Hahn WC: CK1epsilon is required for breast cancers dependent on beta-catenin activity. PLoS One. 2010, 5: e8979- 10.1371/journal.pone.0008979PubMedCentralPubMedCrossRef
98.
Zurück zum Zitat Lin S-H, Lin Y-M, Yeh C-M, Chen C-J, Chen M-W, Hung H-F, Yeh K-T, Yang S-F: Casein kinase 1 epsilon expression predicts poorer prognosis in low T-stage oral cancer patients. Int J Mol Sci. 2014, 15: 2876-2891. 10.3390/ijms15022876PubMedCentralPubMedCrossRef Lin S-H, Lin Y-M, Yeh C-M, Chen C-J, Chen M-W, Hung H-F, Yeh K-T, Yang S-F: Casein kinase 1 epsilon expression predicts poorer prognosis in low T-stage oral cancer patients. Int J Mol Sci. 2014, 15: 2876-2891. 10.3390/ijms15022876PubMedCentralPubMedCrossRef
99.
Zurück zum Zitat Cheong JK, Nguyen TH, Wang H, Tan P, Voorhoeve PM, Lee SH, Virshup DM: IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1δ/ε and Wnt/β-catenin independent inhibition of mitotic spindle formation. Oncogene. 2011, 30: 2558-2569. 10.1038/onc.2010.627PubMedCentralPubMedCrossRef Cheong JK, Nguyen TH, Wang H, Tan P, Voorhoeve PM, Lee SH, Virshup DM: IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1δ/ε and Wnt/β-catenin independent inhibition of mitotic spindle formation. Oncogene. 2011, 30: 2558-2569. 10.1038/onc.2010.627PubMedCentralPubMedCrossRef
100.
Zurück zum Zitat Hirner H, Günes C, Bischof J, Wolff S, Grothey A, Kühl M, Oswald F, Wegwitz F, Bösl MR, Trauzold A, Henne-Bruns D, Peifer C, Leithäuser F, Deppert W, Knippschild U: Impaired CK1 delta activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo. PLoS One. 2012, 7: e29709- 10.1371/journal.pone.0029709PubMedCentralPubMedCrossRef Hirner H, Günes C, Bischof J, Wolff S, Grothey A, Kühl M, Oswald F, Wegwitz F, Bösl MR, Trauzold A, Henne-Bruns D, Peifer C, Leithäuser F, Deppert W, Knippschild U: Impaired CK1 delta activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo. PLoS One. 2012, 7: e29709- 10.1371/journal.pone.0029709PubMedCentralPubMedCrossRef
101.
Zurück zum Zitat Sinnberg T, Menzel M, Ewerth D, Sauer B, Schwarz M, Schaller M, Garbe C, Schittek B: β-Catenin signaling increases during melanoma progression and promotes tumor cell survival and chemoresistance. PLoS One. 2011, 6: e23429- 10.1371/journal.pone.0023429PubMedCentralPubMedCrossRef Sinnberg T, Menzel M, Ewerth D, Sauer B, Schwarz M, Schaller M, Garbe C, Schittek B: β-Catenin signaling increases during melanoma progression and promotes tumor cell survival and chemoresistance. PLoS One. 2011, 6: e23429- 10.1371/journal.pone.0023429PubMedCentralPubMedCrossRef
102.
Zurück zum Zitat Vaid M, Prasad R, Sun Q, Katiyar SK: Silymarin Targets ?-Catenin Signaling in Blocking Migration/Invasion of Human Melanoma Cells. PLoS One. 2011, 6: e23000- 10.1371/journal.pone.0023000PubMedCentralPubMedCrossRef Vaid M, Prasad R, Sun Q, Katiyar SK: Silymarin Targets ?-Catenin Signaling in Blocking Migration/Invasion of Human Melanoma Cells. PLoS One. 2011, 6: e23000- 10.1371/journal.pone.0023000PubMedCentralPubMedCrossRef
103.
Zurück zum Zitat Chien AJ, Moore EC, Lonsdorf AS, Kulikauskas RM, Rothberg BG, Berger AJ, Major MB, Hwang ST, Rimm DL, Moon RT: Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci U S A. 2009, 106: 1193-1198. 10.1073/pnas.0811902106PubMedCentralPubMedCrossRef Chien AJ, Moore EC, Lonsdorf AS, Kulikauskas RM, Rothberg BG, Berger AJ, Major MB, Hwang ST, Rimm DL, Moon RT: Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci U S A. 2009, 106: 1193-1198. 10.1073/pnas.0811902106PubMedCentralPubMedCrossRef
104.
Zurück zum Zitat Lucero OM, Dawson DW, Moon RT, Chien AJ: A re-evaluation of the “oncogenic” nature of Wnt/beta-catenin signaling in melanoma and other cancers. Curr Oncol Rep. 2010, 12: 314-318. 10.1007/s11912-010-0114-3PubMedCentralPubMedCrossRef Lucero OM, Dawson DW, Moon RT, Chien AJ: A re-evaluation of the “oncogenic” nature of Wnt/beta-catenin signaling in melanoma and other cancers. Curr Oncol Rep. 2010, 12: 314-318. 10.1007/s11912-010-0114-3PubMedCentralPubMedCrossRef
105.
Zurück zum Zitat Chien AJ, Haydu LE, Biechele TL, Kulikauskas RM, Rizos H, Kefford RF, Scolyer RA, Moon RT, Long GV: Targeted BRAF inhibition impacts survival in melanoma patients with high levels of Wnt/β-catenin signaling. PLoS One. 2014, 9: e94748- 10.1371/journal.pone.0094748PubMedCentralPubMedCrossRef Chien AJ, Haydu LE, Biechele TL, Kulikauskas RM, Rizos H, Kefford RF, Scolyer RA, Moon RT, Long GV: Targeted BRAF inhibition impacts survival in melanoma patients with high levels of Wnt/β-catenin signaling. PLoS One. 2014, 9: e94748- 10.1371/journal.pone.0094748PubMedCentralPubMedCrossRef
106.
Zurück zum Zitat Yu DH, Macdonald J, Liu G, Lee AS, Ly M, Davis T, Ke N, Zhou D, Wong Staal F, Li QX: Pyrvinium targets the unfolded protein response to hypoglycemia and its anti-tumor activity is enhanced by combination therapy. PLoS One. 2008, 3: e3951- 10.1371/journal.pone.0003951PubMedCentralPubMedCrossRef Yu DH, Macdonald J, Liu G, Lee AS, Ly M, Davis T, Ke N, Zhou D, Wong Staal F, Li QX: Pyrvinium targets the unfolded protein response to hypoglycemia and its anti-tumor activity is enhanced by combination therapy. PLoS One. 2008, 3: e3951- 10.1371/journal.pone.0003951PubMedCentralPubMedCrossRef
107.
Zurück zum Zitat Deng L, Lei Y, Liu R, Li J, Yuan K, Li Y, Chen Y, Liu Y, Lu Y, Edwards CK, Huang C, Wei Y: Pyrvinium targets autophagy addiction to promote cancer cell death. Cell Death Dis. 2013, 4: e614- 10.1038/cddis.2013.142PubMedCentralPubMedCrossRef Deng L, Lei Y, Liu R, Li J, Yuan K, Li Y, Chen Y, Liu Y, Lu Y, Edwards CK, Huang C, Wei Y: Pyrvinium targets autophagy addiction to promote cancer cell death. Cell Death Dis. 2013, 4: e614- 10.1038/cddis.2013.142PubMedCentralPubMedCrossRef
108.
Zurück zum Zitat Zou F-Y, Xie H-L, Chen Z-C, He C-M, Guan Y-J, Li YJ: [Effect of HLCDG1 gene transfection on growth of lung carcinoma cells]. Ai Zheng. 2003, 22: 1121-1126.PubMed Zou F-Y, Xie H-L, Chen Z-C, He C-M, Guan Y-J, Li YJ: [Effect of HLCDG1 gene transfection on growth of lung carcinoma cells]. Ai Zheng. 2003, 22: 1121-1126.PubMed
109.
Zurück zum Zitat Pribluda A, Elyada E, Wiener Z, Hamza H, Goldstein RE, Biton M, Burstain I, Morgenstern Y, Brachya G, Billauer H, Biton S, Snir-Alkalay I, Vucic D, Schlereth K, Mernberger M, Stiewe T, Oren M, Alitalo K, Pikarsky E, Ben-Neriah Y: A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism. Cancer Cell. 2013, 24: 242-256. 10.1016/j.ccr.2013.06.005PubMedCrossRef Pribluda A, Elyada E, Wiener Z, Hamza H, Goldstein RE, Biton M, Burstain I, Morgenstern Y, Brachya G, Billauer H, Biton S, Snir-Alkalay I, Vucic D, Schlereth K, Mernberger M, Stiewe T, Oren M, Alitalo K, Pikarsky E, Ben-Neriah Y: A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism. Cancer Cell. 2013, 24: 242-256. 10.1016/j.ccr.2013.06.005PubMedCrossRef
110.
Zurück zum Zitat Toyoshima M, Howie HL, Imakura M, Walsh RM, Annis JE, Chang AN, Frazier J, Chau BN, Loboda A, Linsley PS, Cleary MA, Park JR, Grandori C: Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci U S A. 2012, 109: 9545-9550. 10.1073/pnas.1121119109PubMedCentralPubMedCrossRef Toyoshima M, Howie HL, Imakura M, Walsh RM, Annis JE, Chang AN, Frazier J, Chau BN, Loboda A, Linsley PS, Cleary MA, Park JR, Grandori C: Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci U S A. 2012, 109: 9545-9550. 10.1073/pnas.1121119109PubMedCentralPubMedCrossRef
111.
Zurück zum Zitat Bibian M, Rahaim RJ, Choi JY, Noguchi Y, Schürer S, Chen W, Nakanishi S, Licht K, Rosenberg LH, Li L, Feng Y, Cameron MD, Duckett DR, Cleveland JL, Roush WR: Development of highly selective casein kinase 1δ/1ϵ (CK1δ/ϵ) inhibitors with potent antiproliferative properties. Bioorg Med Chem Lett. 2013, 23: 4374-4380. 10.1016/j.bmcl.2013.05.075PubMedCentralPubMedCrossRef Bibian M, Rahaim RJ, Choi JY, Noguchi Y, Schürer S, Chen W, Nakanishi S, Licht K, Rosenberg LH, Li L, Feng Y, Cameron MD, Duckett DR, Cleveland JL, Roush WR: Development of highly selective casein kinase 1δ/1ϵ (CK1δ/ϵ) inhibitors with potent antiproliferative properties. Bioorg Med Chem Lett. 2013, 23: 4374-4380. 10.1016/j.bmcl.2013.05.075PubMedCentralPubMedCrossRef
Metadaten
Titel
Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis
verfasst von
Birgit Schittek
Tobias Sinnberg
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2014
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-13-231

Weitere Artikel der Ausgabe 1/2014

Molecular Cancer 1/2014 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.