Skip to main content
Erschienen in: International Journal of Clinical Oncology 4/2016

06.07.2016 | Invited Review Article

Biological imaging in clinical oncology: radiation therapy based on functional imaging

verfasst von: Yo-Liang Lai, Chun-Yi Wu, K. S. Clifford Chao

Erschienen in: International Journal of Clinical Oncology | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Radiation therapy is one of the most effective tools for cancer treatment. In recent years, intensity-modulated radiation therapy has become increasingly popular in that target dose-escalation can be done while sparing adjacent normal tissues. For this reason, the development of measures to pave the way for accurate target delineation is of great interest. With the integration of functional information obtained by biological imaging with radiotherapy, strategies using advanced biological imaging to visualize metabolic pathways and to improve therapeutic index and predict treatment response are discussed in this article.
Literatur
1.
Zurück zum Zitat Apisarnthanarax S, Chao KS (2005) Current imaging paradigms in radiation oncology. Radiat Res 163(1):1–25CrossRefPubMed Apisarnthanarax S, Chao KS (2005) Current imaging paradigms in radiation oncology. Radiat Res 163(1):1–25CrossRefPubMed
2.
Zurück zum Zitat Chao KS, Low DA, Perez CA et al (2000) Intensity-modulated radiation therapy in head and neck cancers: the Mallinckrodt experience. Int J Cancer 90(2):92–103CrossRefPubMed Chao KS, Low DA, Perez CA et al (2000) Intensity-modulated radiation therapy in head and neck cancers: the Mallinckrodt experience. Int J Cancer 90(2):92–103CrossRefPubMed
3.
Zurück zum Zitat Verhey LJ (1999) Comparison of three-dimensional conformal radiation therapy and intensity-modulated radiation therapy systems. Semin Radiat Oncol 9(1):78–98CrossRefPubMed Verhey LJ (1999) Comparison of three-dimensional conformal radiation therapy and intensity-modulated radiation therapy systems. Semin Radiat Oncol 9(1):78–98CrossRefPubMed
5.
Zurück zum Zitat van Elmpt W, Landry G, Das M et al (2016) Dual-energy CT in radiotherapy: current applications and future outlook. Radiother Oncol 119:137–144CrossRefPubMed van Elmpt W, Landry G, Das M et al (2016) Dual-energy CT in radiotherapy: current applications and future outlook. Radiother Oncol 119:137–144CrossRefPubMed
6.
Zurück zum Zitat Simons D, Kachelriess M, Schlemmer HP (2014) Recent developments of dual-energy CT in oncology. Eur Radiol 24(4):930–939CrossRefPubMed Simons D, Kachelriess M, Schlemmer HP (2014) Recent developments of dual-energy CT in oncology. Eur Radiol 24(4):930–939CrossRefPubMed
7.
Zurück zum Zitat Bamberg F, Dierks A, Nikolaou K et al (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21(7):1424–1429CrossRefPubMed Bamberg F, Dierks A, Nikolaou K et al (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21(7):1424–1429CrossRefPubMed
8.
Zurück zum Zitat Guggenberger R, Winklhofer S, Osterhoff G et al (2012) Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol 22(11):2357–2364CrossRefPubMed Guggenberger R, Winklhofer S, Osterhoff G et al (2012) Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol 22(11):2357–2364CrossRefPubMed
9.
11.
Zurück zum Zitat van Elmpt W, Zegers CM, Das M et al (2014) Imaging techniques for tumour delineation and heterogeneity quantification of lung cancer: overview of current possibilities. J Thorac Dis 6(4):319–327PubMedPubMedCentral van Elmpt W, Zegers CM, Das M et al (2014) Imaging techniques for tumour delineation and heterogeneity quantification of lung cancer: overview of current possibilities. J Thorac Dis 6(4):319–327PubMedPubMedCentral
12.
Zurück zum Zitat Jensen NK, Mulder D, Lock M et al (2014) Dynamic contrast enhanced CT aiding gross tumor volume delineation of liver tumors: an interobserver variability study. Radiother Oncol 111(1):153–157CrossRefPubMed Jensen NK, Mulder D, Lock M et al (2014) Dynamic contrast enhanced CT aiding gross tumor volume delineation of liver tumors: an interobserver variability study. Radiother Oncol 111(1):153–157CrossRefPubMed
13.
Zurück zum Zitat Gallagher FA (2010) An introduction to functional and molecular imaging with MRI. Clin Radiol 65(7):557–566CrossRefPubMed Gallagher FA (2010) An introduction to functional and molecular imaging with MRI. Clin Radiol 65(7):557–566CrossRefPubMed
14.
Zurück zum Zitat Whitfield GA, Kennedy SR, Djoukhadar IK et al (2014) Imaging and target volume delineation in glioma. Clin Oncol 26(7):364–376CrossRef Whitfield GA, Kennedy SR, Djoukhadar IK et al (2014) Imaging and target volume delineation in glioma. Clin Oncol 26(7):364–376CrossRef
15.
Zurück zum Zitat Hou DL, Shi GF, Gao XS et al (2013) Improved longitudinal length accuracy of gross tumor volume delineation with diffusion weighted magnetic resonance imaging for esophageal squamous cell carcinoma. Radiat Oncol 8:169CrossRefPubMedPubMedCentral Hou DL, Shi GF, Gao XS et al (2013) Improved longitudinal length accuracy of gross tumor volume delineation with diffusion weighted magnetic resonance imaging for esophageal squamous cell carcinoma. Radiat Oncol 8:169CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Burbach JP, Kleijnen JP, Reerink O et al (2016) Inter-observer agreement of MRI-based tumor delineation for preoperative radiotherapy boost in locally advanced rectal cancer. Radiother Oncol 118(2):399–407CrossRefPubMed Burbach JP, Kleijnen JP, Reerink O et al (2016) Inter-observer agreement of MRI-based tumor delineation for preoperative radiotherapy boost in locally advanced rectal cancer. Radiother Oncol 118(2):399–407CrossRefPubMed
17.
Zurück zum Zitat Lammering G, De Ruysscher D, van Baardwijk A et al (2010) The use of FDG-PET to target tumors by radiotherapy. Strahlenther Onkol 186(9):471–481CrossRefPubMed Lammering G, De Ruysscher D, van Baardwijk A et al (2010) The use of FDG-PET to target tumors by radiotherapy. Strahlenther Onkol 186(9):471–481CrossRefPubMed
18.
Zurück zum Zitat Konert T, Vogel W, MacManus MP et al (2015) PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014. Radiother Oncol 116(1):27–34CrossRefPubMed Konert T, Vogel W, MacManus MP et al (2015) PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014. Radiother Oncol 116(1):27–34CrossRefPubMed
19.
Zurück zum Zitat Abramyuk A, Hietschold V, Appold S et al (2015) Radiochemotherapy-induced changes of tumour vascularity and blood supply estimated by dynamic contrast-enhanced CT and fractal analysis in malignant head and neck tumours. Br J Radiol 88(1045):20140412CrossRefPubMed Abramyuk A, Hietschold V, Appold S et al (2015) Radiochemotherapy-induced changes of tumour vascularity and blood supply estimated by dynamic contrast-enhanced CT and fractal analysis in malignant head and neck tumours. Br J Radiol 88(1045):20140412CrossRefPubMed
20.
Zurück zum Zitat Hwang SH, Yoo MR, Park CH et al (2013) Dynamic contrast-enhanced CT to assess metabolic response in patients with advanced non-small cell lung cancer and stable disease after chemotherapy or chemoradiotherapy. Eur Radiol 23(6):1573–1581CrossRefPubMed Hwang SH, Yoo MR, Park CH et al (2013) Dynamic contrast-enhanced CT to assess metabolic response in patients with advanced non-small cell lung cancer and stable disease after chemotherapy or chemoradiotherapy. Eur Radiol 23(6):1573–1581CrossRefPubMed
21.
Zurück zum Zitat Zahra MA, Hollingsworth KG, Sala E et al (2007) Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol 8(1):63–74CrossRefPubMed Zahra MA, Hollingsworth KG, Sala E et al (2007) Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol 8(1):63–74CrossRefPubMed
22.
Zurück zum Zitat Ng SH, Lin CY, Chan SC et al (2013) Dynamic contrast-enhanced MR imaging predicts local control in oropharyngeal or hypopharyngeal squamous cell carcinoma treated with chemoradiotherapy. PLoS One 8(8):e72230CrossRefPubMedPubMedCentral Ng SH, Lin CY, Chan SC et al (2013) Dynamic contrast-enhanced MR imaging predicts local control in oropharyngeal or hypopharyngeal squamous cell carcinoma treated with chemoradiotherapy. PLoS One 8(8):e72230CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Shukla-Dave A, Lee NY, Jansen JF et al (2012) Dynamic contrast-enhanced magnetic resonance imaging as a predictor of outcome in head-and-neck squamous cell carcinoma patients with nodal metastases. Int J Radiat Oncol Biol Phys 82(5):1837–1844CrossRefPubMed Shukla-Dave A, Lee NY, Jansen JF et al (2012) Dynamic contrast-enhanced magnetic resonance imaging as a predictor of outcome in head-and-neck squamous cell carcinoma patients with nodal metastases. Int J Radiat Oncol Biol Phys 82(5):1837–1844CrossRefPubMed
24.
Zurück zum Zitat Donaldson SB, Buckley DL, O’Connor JP et al (2010) Enhancing fraction measured using dynamic contrast-enhanced MRI predicts disease-free survival in patients with carcinoma of the cervix. Br J Cancer 102(1):23–26CrossRefPubMed Donaldson SB, Buckley DL, O’Connor JP et al (2010) Enhancing fraction measured using dynamic contrast-enhanced MRI predicts disease-free survival in patients with carcinoma of the cervix. Br J Cancer 102(1):23–26CrossRefPubMed
25.
Zurück zum Zitat Mayr NA, Huang Z, Wang JZ et al (2012) Characterizing tumor heterogeneity with functional imaging and quantifying high-risk tumor volume for early prediction of treatment outcome: cervical cancer as a model. Int J Radiat Oncol Biol Phys 83(3):972–979CrossRefPubMed Mayr NA, Huang Z, Wang JZ et al (2012) Characterizing tumor heterogeneity with functional imaging and quantifying high-risk tumor volume for early prediction of treatment outcome: cervical cancer as a model. Int J Radiat Oncol Biol Phys 83(3):972–979CrossRefPubMed
26.
Zurück zum Zitat Zahra MA, Tan LT, Priest AN et al (2009) Semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix cancer. Int J Radiat Oncol Biol Phys 74(3):766–773CrossRefPubMed Zahra MA, Tan LT, Priest AN et al (2009) Semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix cancer. Int J Radiat Oncol Biol Phys 74(3):766–773CrossRefPubMed
27.
Zurück zum Zitat Tsien C, Cao Y, Chenevert T (2014) Clinical applications for diffusion magnetic resonance imaging in radiotherapy. Semin Radiat Oncol 24(3):218–226CrossRefPubMedPubMedCentral Tsien C, Cao Y, Chenevert T (2014) Clinical applications for diffusion magnetic resonance imaging in radiotherapy. Semin Radiat Oncol 24(3):218–226CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Liu L, Wu N, Ouyang H et al (2014) Diffusion-weighted MRI in early assessment of tumour response to radiotherapy in high-risk prostate cancer. Br J Radiol 87(1043):20140359CrossRefPubMedPubMedCentral Liu L, Wu N, Ouyang H et al (2014) Diffusion-weighted MRI in early assessment of tumour response to radiotherapy in high-risk prostate cancer. Br J Radiol 87(1043):20140359CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Harry VN, Semple SI, Gilbert FJ et al (2008) Diffusion-weighted magnetic resonance imaging in the early detection of response to chemoradiation in cervical cancer. Gynecol Oncol 111(2):213–220CrossRefPubMed Harry VN, Semple SI, Gilbert FJ et al (2008) Diffusion-weighted magnetic resonance imaging in the early detection of response to chemoradiation in cervical cancer. Gynecol Oncol 111(2):213–220CrossRefPubMed
30.
Zurück zum Zitat Galban S, Lemasson B, Williams TM et al (2012) DW-MRI as a biomarker to compare therapeutic outcomes in radiotherapy regimens incorporating temozolomide or gemcitabine in glioblastoma. PLoS One 7(4):e35857CrossRefPubMedPubMedCentral Galban S, Lemasson B, Williams TM et al (2012) DW-MRI as a biomarker to compare therapeutic outcomes in radiotherapy regimens incorporating temozolomide or gemcitabine in glioblastoma. PLoS One 7(4):e35857CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Farjam R, Tsien CI, Feng FY et al (2014) Investigation of the diffusion abnormality index as a new imaging biomarker for early assessment of brain tumor response to radiation therapy. Neuro-oncology 16(1):131–139CrossRefPubMed Farjam R, Tsien CI, Feng FY et al (2014) Investigation of the diffusion abnormality index as a new imaging biomarker for early assessment of brain tumor response to radiation therapy. Neuro-oncology 16(1):131–139CrossRefPubMed
32.
Zurück zum Zitat Vandecaveye V, De Keyzer F, Nuyts S et al (2007) Detection of head and neck squamous cell carcinoma with diffusion weighted MRI after (chemo)radiotherapy: correlation between radiologic and histopathologic findings. Int J Radiat Oncol Biol Phys 67(4):960–971CrossRefPubMed Vandecaveye V, De Keyzer F, Nuyts S et al (2007) Detection of head and neck squamous cell carcinoma with diffusion weighted MRI after (chemo)radiotherapy: correlation between radiologic and histopathologic findings. Int J Radiat Oncol Biol Phys 67(4):960–971CrossRefPubMed
33.
Zurück zum Zitat Noij DP, Pouwels PJ, Ljumanovic R et al (2015) Predictive value of diffusion-weighted imaging without and with including contrast-enhanced magnetic resonance imaging in image analysis of head and neck squamous cell carcinoma. Eur J Radiol 84(1):108–116CrossRefPubMed Noij DP, Pouwels PJ, Ljumanovic R et al (2015) Predictive value of diffusion-weighted imaging without and with including contrast-enhanced magnetic resonance imaging in image analysis of head and neck squamous cell carcinoma. Eur J Radiol 84(1):108–116CrossRefPubMed
34.
Zurück zum Zitat Tyagi N, Riaz N, Hunt M et al (2016) Weekly response assessment of involved lymph nodes to radiotherapy using diffusion-weighted MRI in oropharynx squamous cell carcinoma. Med Phys 43(1):137CrossRefPubMed Tyagi N, Riaz N, Hunt M et al (2016) Weekly response assessment of involved lymph nodes to radiotherapy using diffusion-weighted MRI in oropharynx squamous cell carcinoma. Med Phys 43(1):137CrossRefPubMed
35.
Zurück zum Zitat Lambrecht M, Vandecaveye V, De Keyzer F et al (2012) Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal cancer: preliminary results. Int J Radiat Oncol Biol Phys 82(2):863–870CrossRefPubMed Lambrecht M, Vandecaveye V, De Keyzer F et al (2012) Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal cancer: preliminary results. Int J Radiat Oncol Biol Phys 82(2):863–870CrossRefPubMed
36.
Zurück zum Zitat Curvo-Semedo L, Lambregts DM, Maas M et al (2011) Rectal cancer: assessment of complete response to preoperative combined radiation therapy with chemotherapy: conventional MR volumetry versus diffusion-weighted MR imaging. Radiology 260(3):734–743CrossRefPubMed Curvo-Semedo L, Lambregts DM, Maas M et al (2011) Rectal cancer: assessment of complete response to preoperative combined radiation therapy with chemotherapy: conventional MR volumetry versus diffusion-weighted MR imaging. Radiology 260(3):734–743CrossRefPubMed
37.
Zurück zum Zitat Lambregts DM, Vandecaveye V, Barbaro B et al (2011) Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study. Ann Surg Oncol 18(8):2224–2231CrossRefPubMedPubMedCentral Lambregts DM, Vandecaveye V, Barbaro B et al (2011) Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study. Ann Surg Oncol 18(8):2224–2231CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Payne GS, Leach MO (2006) Applications of magnetic resonance spectroscopy in radiotherapy treatment planning. Br J Radiol 79(Spec No 1):S16–S26CrossRefPubMed Payne GS, Leach MO (2006) Applications of magnetic resonance spectroscopy in radiotherapy treatment planning. Br J Radiol 79(Spec No 1):S16–S26CrossRefPubMed
39.
Zurück zum Zitat Muruganandham M, Clerkin PP, Smith BJ et al (2014) 3-Dimensional magnetic resonance spectroscopic imaging at 3 Tesla for early response assessment of glioblastoma patients during external beam radiation therapy. Int J Radiat Oncol Biol Phys 90(1):181–189CrossRefPubMedPubMedCentral Muruganandham M, Clerkin PP, Smith BJ et al (2014) 3-Dimensional magnetic resonance spectroscopic imaging at 3 Tesla for early response assessment of glioblastoma patients during external beam radiation therapy. Int J Radiat Oncol Biol Phys 90(1):181–189CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Deviers A, Ken S, Filleron T et al (2014) Evaluation of the lactate-to-N-acetyl-aspartate ratio defined with magnetic resonance spectroscopic imaging before radiation therapy as a new predictive marker of the site of relapse in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 90(2):385–393CrossRefPubMed Deviers A, Ken S, Filleron T et al (2014) Evaluation of the lactate-to-N-acetyl-aspartate ratio defined with magnetic resonance spectroscopic imaging before radiation therapy as a new predictive marker of the site of relapse in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 90(2):385–393CrossRefPubMed
41.
Zurück zum Zitat Zapotoczna A, Sasso G, Simpson J et al (2007) Current role and future perspectives of magnetic resonance spectroscopy in radiation oncology for prostate cancer. Neoplasia 9(6):455–463CrossRefPubMedPubMedCentral Zapotoczna A, Sasso G, Simpson J et al (2007) Current role and future perspectives of magnetic resonance spectroscopy in radiation oncology for prostate cancer. Neoplasia 9(6):455–463CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Crehange G, Maingon P, Gauthier M et al (2011) Early choline levels from 3-tesla MR spectroscopy after exclusive radiation therapy in patients with clinically localized prostate cancer are predictive of plasmatic levels of PSA at 1 year. Int J Radiat Oncol Biol Phys 81(4):e407–e413CrossRefPubMed Crehange G, Maingon P, Gauthier M et al (2011) Early choline levels from 3-tesla MR spectroscopy after exclusive radiation therapy in patients with clinically localized prostate cancer are predictive of plasmatic levels of PSA at 1 year. Int J Radiat Oncol Biol Phys 81(4):e407–e413CrossRefPubMed
43.
Zurück zum Zitat Radford J, Illidge T, Counsell N et al (2015) Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med 372(17):1598–1607CrossRefPubMed Radford J, Illidge T, Counsell N et al (2015) Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med 372(17):1598–1607CrossRefPubMed
44.
Zurück zum Zitat Joye I, Deroose CM, Vandecaveye V et al (2014) The role of diffusion-weighted MRI and (18)F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review. Radiother Oncol 113(2):158–165CrossRefPubMed Joye I, Deroose CM, Vandecaveye V et al (2014) The role of diffusion-weighted MRI and (18)F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review. Radiother Oncol 113(2):158–165CrossRefPubMed
45.
Zurück zum Zitat Wu CY, Wang HE, Lin MH et al (2012) Radiolabeled nucleosides for predicting and monitoring the cancer therapeutic efficacy of chemodrugs. Curr Med Chem 19(20):3315–3324CrossRefPubMed Wu CY, Wang HE, Lin MH et al (2012) Radiolabeled nucleosides for predicting and monitoring the cancer therapeutic efficacy of chemodrugs. Curr Med Chem 19(20):3315–3324CrossRefPubMed
46.
Zurück zum Zitat Soloviev D, Lewis D, Honess D et al (2012) [(18)F]FLT: an imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur J Cancer 48(4):416–424CrossRefPubMed Soloviev D, Lewis D, Honess D et al (2012) [(18)F]FLT: an imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur J Cancer 48(4):416–424CrossRefPubMed
47.
Zurück zum Zitat Apisarnthanarax S, Alauddin MM, Mourtada F et al (2006) Early detection of chemoradioresponse in esophageal carcinoma by 3′-deoxy-3′-3H-fluorothymidine using preclinical tumor models. Clin Cancer Res 12(15):4590–4597CrossRefPubMed Apisarnthanarax S, Alauddin MM, Mourtada F et al (2006) Early detection of chemoradioresponse in esophageal carcinoma by 3′-deoxy-3′-3H-fluorothymidine using preclinical tumor models. Clin Cancer Res 12(15):4590–4597CrossRefPubMed
48.
Zurück zum Zitat Chao KS, Bosch WR, Mutic S et al (2001) A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 49(4):1171–1182CrossRefPubMed Chao KS, Bosch WR, Mutic S et al (2001) A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 49(4):1171–1182CrossRefPubMed
49.
Zurück zum Zitat Bradshaw TJ, Bowen SR, Deveau MA et al (2015) Molecular imaging biomarkers of resistance to radiation therapy for spontaneous nasal tumors in canines. Int J Radiat Oncol Biol Phys 91(4):787–795CrossRefPubMedPubMedCentral Bradshaw TJ, Bowen SR, Deveau MA et al (2015) Molecular imaging biomarkers of resistance to radiation therapy for spontaneous nasal tumors in canines. Int J Radiat Oncol Biol Phys 91(4):787–795CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Nyflot MJ, Kruser TJ, Traynor AM et al (2015) Phase 1 trial of bevacizumab with concurrent chemoradiation therapy for squamous cell carcinoma of the head and neck with exploratory functional imaging of tumor hypoxia, proliferation, and perfusion. Int J Radiat Oncol Biol Phys 91(5):942–951CrossRefPubMedPubMedCentral Nyflot MJ, Kruser TJ, Traynor AM et al (2015) Phase 1 trial of bevacizumab with concurrent chemoradiation therapy for squamous cell carcinoma of the head and neck with exploratory functional imaging of tumor hypoxia, proliferation, and perfusion. Int J Radiat Oncol Biol Phys 91(5):942–951CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Arens AI, Troost EG, Hoeben BA et al (2014) Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome. Eur J Nucl Med Mol Imaging 41(5):915–924CrossRefPubMed Arens AI, Troost EG, Hoeben BA et al (2014) Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome. Eur J Nucl Med Mol Imaging 41(5):915–924CrossRefPubMed
52.
Zurück zum Zitat Trigonis I, Koh PK, Taylor B et al (2014) Early reduction in tumour [18F]fluorothymidine (FLT) uptake in patients with non-small cell lung cancer (NSCLC) treated with radiotherapy alone. Eur J Nucl Med Mol Imaging 41(4):682–693CrossRefPubMedPubMedCentral Trigonis I, Koh PK, Taylor B et al (2014) Early reduction in tumour [18F]fluorothymidine (FLT) uptake in patients with non-small cell lung cancer (NSCLC) treated with radiotherapy alone. Eur J Nucl Med Mol Imaging 41(4):682–693CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Everitt SJ, Ball DL, Hicks RJ et al (2014) Differential (18)F-FDG and (18)F-FLT uptake on serial PET/CT imaging before and during definitive chemoradiation for non-small cell lung cancer. J Nucl Med 55(7):1069–1074CrossRefPubMed Everitt SJ, Ball DL, Hicks RJ et al (2014) Differential (18)F-FDG and (18)F-FLT uptake on serial PET/CT imaging before and during definitive chemoradiation for non-small cell lung cancer. J Nucl Med 55(7):1069–1074CrossRefPubMed
54.
Zurück zum Zitat Zhao F, Li M, Wang Z et al (2015) (18)F-Fluorothymidine PET-CT for resected malignant gliomas before radiotherapy: tumor extent according to proliferative activity compared with MRI. PLoS One 10(3):e0118769CrossRefPubMedPubMedCentral Zhao F, Li M, Wang Z et al (2015) (18)F-Fluorothymidine PET-CT for resected malignant gliomas before radiotherapy: tumor extent according to proliferative activity compared with MRI. PLoS One 10(3):e0118769CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Sovik A, Malinen E, Olsen DR (2009) Strategies for biologic image-guided dose escalation: a review. Int J Radiat Oncol Biol Phys 73(3):650–658CrossRefPubMed Sovik A, Malinen E, Olsen DR (2009) Strategies for biologic image-guided dose escalation: a review. Int J Radiat Oncol Biol Phys 73(3):650–658CrossRefPubMed
56.
Zurück zum Zitat Mason J, Al-Qaisieh B, Bownes P et al (2014) Multi-parametric MRI-guided focal tumor boost using HDR prostate brachytherapy: a feasibility study. Brachytherapy 13(2):137–145CrossRefPubMed Mason J, Al-Qaisieh B, Bownes P et al (2014) Multi-parametric MRI-guided focal tumor boost using HDR prostate brachytherapy: a feasibility study. Brachytherapy 13(2):137–145CrossRefPubMed
57.
Zurück zum Zitat Dyk P, Jiang N, Sun B et al (2014) Cervical gross tumor volume dose predicts local control using magnetic resonance imaging/diffusion-weighted imaging-guided high-dose-rate and positron emission tomography/computed tomography-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 90(4):794–801CrossRefPubMed Dyk P, Jiang N, Sun B et al (2014) Cervical gross tumor volume dose predicts local control using magnetic resonance imaging/diffusion-weighted imaging-guided high-dose-rate and positron emission tomography/computed tomography-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 90(4):794–801CrossRefPubMed
58.
Zurück zum Zitat Einstein DB, Wessels B, Bangert B et al (2012) Phase II trial of radiosurgery to magnetic resonance spectroscopy-defined high-risk tumor volumes in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 84(3):668–674CrossRefPubMedPubMedCentral Einstein DB, Wessels B, Bangert B et al (2012) Phase II trial of radiosurgery to magnetic resonance spectroscopy-defined high-risk tumor volumes in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 84(3):668–674CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Trinkaus ME, Blum R, Rischin D et al (2013) Imaging of hypoxia with 18F-FAZA PET in patients with locally advanced non-small cell lung cancer treated with definitive chemoradiotherapy. J Med Imaging Radiat Oncol 57(4):475–481CrossRefPubMed Trinkaus ME, Blum R, Rischin D et al (2013) Imaging of hypoxia with 18F-FAZA PET in patients with locally advanced non-small cell lung cancer treated with definitive chemoradiotherapy. J Med Imaging Radiat Oncol 57(4):475–481CrossRefPubMed
60.
Zurück zum Zitat Bollineni VR, Kerner GS, Pruim J et al (2013) PET imaging of tumor hypoxia using 18F-fluoroazomycin arabinoside in stage III–IV non-small cell lung cancer patients. J Nucl Med 54(8):1175–1180CrossRefPubMed Bollineni VR, Kerner GS, Pruim J et al (2013) PET imaging of tumor hypoxia using 18F-fluoroazomycin arabinoside in stage III–IV non-small cell lung cancer patients. J Nucl Med 54(8):1175–1180CrossRefPubMed
61.
Zurück zum Zitat Servagi-Vernat S, Differding S, Hanin FX et al (2014) A prospective clinical study of 18F-FAZA PET-CT hypoxia imaging in head and neck squamous cell carcinoma before and during radiation therapy. Eur J Nucl Med Mol Imaging 41(8):1544–1552CrossRefPubMed Servagi-Vernat S, Differding S, Hanin FX et al (2014) A prospective clinical study of 18F-FAZA PET-CT hypoxia imaging in head and neck squamous cell carcinoma before and during radiation therapy. Eur J Nucl Med Mol Imaging 41(8):1544–1552CrossRefPubMed
62.
Zurück zum Zitat Dehdashti F, Grigsby PW, Lewis JS et al (2008) Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med 49(2):201–205CrossRefPubMed Dehdashti F, Grigsby PW, Lewis JS et al (2008) Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med 49(2):201–205CrossRefPubMed
63.
Zurück zum Zitat Fleming IN, Manavaki R, Blower PJ et al (2015) Imaging tumour hypoxia with positron emission tomography. Br J Cancer 112(2):238–250CrossRefPubMed Fleming IN, Manavaki R, Blower PJ et al (2015) Imaging tumour hypoxia with positron emission tomography. Br J Cancer 112(2):238–250CrossRefPubMed
64.
Zurück zum Zitat Mortensen LS, Johansen J, Kallehauge J et al (2012) FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother Oncol 105(1):14–20CrossRefPubMed Mortensen LS, Johansen J, Kallehauge J et al (2012) FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother Oncol 105(1):14–20CrossRefPubMed
65.
Zurück zum Zitat Obata A, Kasamatsu S, Lewis JS et al (2005) Basic characterization of 64Cu-ATSM as a radiotherapy agent. Nucl Med Biol 32(1):21–28CrossRefPubMed Obata A, Kasamatsu S, Lewis JS et al (2005) Basic characterization of 64Cu-ATSM as a radiotherapy agent. Nucl Med Biol 32(1):21–28CrossRefPubMed
66.
Zurück zum Zitat Lewis J, Laforest R, Buettner T et al (2001) Copper-64-diacetyl-bis(N4-methylthiosemicarbazone): an agent for radiotherapy. Proc Natl Acad Sci USA 98(3):1206–1211CrossRefPubMedPubMedCentral Lewis J, Laforest R, Buettner T et al (2001) Copper-64-diacetyl-bis(N4-methylthiosemicarbazone): an agent for radiotherapy. Proc Natl Acad Sci USA 98(3):1206–1211CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Yoshii Y, Furukawa T, Kiyono Y et al (2010) Copper-64-diacetyl-bis (N4-methylthiosemicarbazone) accumulates in rich regions of CD133+ highly tumorigenic cells in mouse colon carcinoma. Nucl Med Biol 37(4):395–404CrossRefPubMed Yoshii Y, Furukawa T, Kiyono Y et al (2010) Copper-64-diacetyl-bis (N4-methylthiosemicarbazone) accumulates in rich regions of CD133+ highly tumorigenic cells in mouse colon carcinoma. Nucl Med Biol 37(4):395–404CrossRefPubMed
68.
Zurück zum Zitat Yoshii Y, Furukawa T, Kiyono Y et al (2011) Internal radiotherapy with copper-64-diacetyl-bis (N4-methylthiosemicarbazone) reduces CD133+ highly tumorigenic cells and metastatic ability of mouse colon carcinoma. Nucl Med Biol 38(2):151–157CrossRefPubMed Yoshii Y, Furukawa T, Kiyono Y et al (2011) Internal radiotherapy with copper-64-diacetyl-bis (N4-methylthiosemicarbazone) reduces CD133+ highly tumorigenic cells and metastatic ability of mouse colon carcinoma. Nucl Med Biol 38(2):151–157CrossRefPubMed
69.
Zurück zum Zitat Laforest R, Dehdashti F, Lewis JS et al (2005) Dosimetry of 60/61/62/64Cu-ATSM: a hypoxia imaging agent for PET. Eur J Nucl Med Mol Imaging 32(7):764–770CrossRefPubMed Laforest R, Dehdashti F, Lewis JS et al (2005) Dosimetry of 60/61/62/64Cu-ATSM: a hypoxia imaging agent for PET. Eur J Nucl Med Mol Imaging 32(7):764–770CrossRefPubMed
70.
Zurück zum Zitat Yoshii Y, Matsumoto H, Yoshimoto M et al (2014) Controlled administration of penicillamine reduces radiation exposure in critical organs during 64Cu-ATSM internal radiotherapy: a novel strategy for liver protection. PLoS One 9(1):e86996CrossRefPubMedPubMedCentral Yoshii Y, Matsumoto H, Yoshimoto M et al (2014) Controlled administration of penicillamine reduces radiation exposure in critical organs during 64Cu-ATSM internal radiotherapy: a novel strategy for liver protection. PLoS One 9(1):e86996CrossRefPubMedPubMedCentral
71.
72.
Zurück zum Zitat Groenendaal G, van den Berg CA, Korporaal JG et al (2010) Simultaneous MRI diffusion and perfusion imaging for tumor delineation in prostate cancer patients. Radiother Oncol 95(2):185–190CrossRefPubMed Groenendaal G, van den Berg CA, Korporaal JG et al (2010) Simultaneous MRI diffusion and perfusion imaging for tumor delineation in prostate cancer patients. Radiother Oncol 95(2):185–190CrossRefPubMed
Metadaten
Titel
Biological imaging in clinical oncology: radiation therapy based on functional imaging
verfasst von
Yo-Liang Lai
Chun-Yi Wu
K. S. Clifford Chao
Publikationsdatum
06.07.2016
Verlag
Springer Japan
Erschienen in
International Journal of Clinical Oncology / Ausgabe 4/2016
Print ISSN: 1341-9625
Elektronische ISSN: 1437-7772
DOI
https://doi.org/10.1007/s10147-016-1000-2

Weitere Artikel der Ausgabe 4/2016

International Journal of Clinical Oncology 4/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.