Skip to main content
Erschienen in: European Spine Journal 3/2012

01.03.2012 | Original Article

Biomechanical analysis of a new expandable vertebral body replacement combined with a new polyaxial antero-lateral plate and/or pedicle screws and rods

verfasst von: Benjamin Ulmar, Stefanie Erhart, Stefan Unger, Kuno Weise, Werner Schmoelz

Erschienen in: European Spine Journal | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Restoration of the anterior spinal profile and regular load-bearing is the main goal treating anterior spinal defects in case of fracture. Over the past years, development and clinical usage of cages for vertebral body replacement have increased rapidly. For an enhanced stabilization of rotationally unstable fractures, additional antero-lateral implants are common. The purpose of this study was the evaluation of the biomechanical behaviour of a recently modified, in situ distractible vertebral body replacement (VBR) combined with a newly developed antero-lateral polyaxial plate and/or pedicle screws and rods using a full corpectomy model as fracture simulation.

Methods

Twelve human spinal specimens (Th12–L4) were tested in a six-degree-of-freedom spine tester applying pure moments of 7.5 Nm to evaluate the stiffness of three different test instrumentations using a total corpectomy L2 model: (1) VBR + antero-lateral plate; (2) VBR, antero-lateral plate + pedicle screws and rods and (3) VBR + pedicle screws and rods.

Results

In the presented total corpectomy defect model, only the combined antero-posterior instrumentation (VBR, antero-lateral plate + pedicle screws and rods) could achieve higher stiffness in all three-movement planes than the intact specimen. In axial rotation, neither isolated anterior instrumentation (VBR + antero-lateral plate) nor isolated posterior instrumentation (VBR + pedicle screws and rods) could stabilize the total corpectomy compared to the intact state.

Conclusions

For rotationally unstable vertebral body fractures, only combined antero-posterior instrumentation could significantly decrease the range of motion (ROM) in all motion planes compared to the intact state.
Literatur
1.
Zurück zum Zitat Alici E, Alku OZ, Dost S (1990) Prosthesis designed for vertebral body replacement. J Biomech 23(8):799–809PubMedCrossRef Alici E, Alku OZ, Dost S (1990) Prosthesis designed for vertebral body replacement. J Biomech 23(8):799–809PubMedCrossRef
2.
Zurück zum Zitat Banwart JC, Knop C, Lange U, Blauth M (1999) Effect of a crosslink or cerclage on the mechanical stability of an internal fixator. Orthopäde 28:714–722 Banwart JC, Knop C, Lange U, Blauth M (1999) Effect of a crosslink or cerclage on the mechanical stability of an internal fixator. Orthopäde 28:714–722
3.
Zurück zum Zitat Been HD (1991) Anterior decompression and stabilization of thoracolumbar burst fractures by the use of the Slot-Zielke device. Spine 16:70–77PubMedCrossRef Been HD (1991) Anterior decompression and stabilization of thoracolumbar burst fractures by the use of the Slot-Zielke device. Spine 16:70–77PubMedCrossRef
4.
Zurück zum Zitat Blauth M, Knop C, Bastian L, Lobenhoffer P (1997) New developments in surgery of the injured spine. Orthopäde 26:437–449PubMed Blauth M, Knop C, Bastian L, Lobenhoffer P (1997) New developments in surgery of the injured spine. Orthopäde 26:437–449PubMed
5.
Zurück zum Zitat Bouchard JA, Koka A, Bensusan JS, Stevenson S, Emery SE (1994) Effects of irradiation on posterior spinal fusions. A rabbit model. Spine 19(16):1836–1841PubMedCrossRef Bouchard JA, Koka A, Bensusan JS, Stevenson S, Emery SE (1994) Effects of irradiation on posterior spinal fusions. A rabbit model. Spine 19(16):1836–1841PubMedCrossRef
6.
Zurück zum Zitat Brodke DS, Gollogly S, Bachus KN, Mohr RA, Nguyen BK (2003) Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Spine 28:1794–1801PubMedCrossRef Brodke DS, Gollogly S, Bachus KN, Mohr RA, Nguyen BK (2003) Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Spine 28:1794–1801PubMedCrossRef
7.
Zurück zum Zitat Claes L, Schultheiss M, Wolf S, Wilke HJ, Arand M, Kinzl L (1999) New radiolucent system for vertebral body replacement its stability in comparison to other systems. J Biomed Mater Res 48:82–89PubMedCrossRef Claes L, Schultheiss M, Wolf S, Wilke HJ, Arand M, Kinzl L (1999) New radiolucent system for vertebral body replacement its stability in comparison to other systems. J Biomed Mater Res 48:82–89PubMedCrossRef
8.
Zurück zum Zitat Cybulski GR, Douglas RA, Meyer PR, Rovin AR (1992) Complications in three-column cervical spine injuries requiring anterior–posterior stabilisation. Spine 17:253–256PubMedCrossRef Cybulski GR, Douglas RA, Meyer PR, Rovin AR (1992) Complications in three-column cervical spine injuries requiring anterior–posterior stabilisation. Spine 17:253–256PubMedCrossRef
9.
Zurück zum Zitat Disch AC, Knop C, Schaser KD, Blauth M, Schmoelz W (2008) Angular stable anterior plating following thoracolumbar corpectomy reveals superior segmental stability compared to conventional polyaxial plate fixation. Spine 33(13):1429–1437PubMedCrossRef Disch AC, Knop C, Schaser KD, Blauth M, Schmoelz W (2008) Angular stable anterior plating following thoracolumbar corpectomy reveals superior segmental stability compared to conventional polyaxial plate fixation. Spine 33(13):1429–1437PubMedCrossRef
10.
Zurück zum Zitat Eysel P, Hopf C, Füderer S (2001) Kyphotic deformities in fractures of the thoracolumbar spine. Orthopäde 30:955–964PubMedCrossRef Eysel P, Hopf C, Füderer S (2001) Kyphotic deformities in fractures of the thoracolumbar spine. Orthopäde 30:955–964PubMedCrossRef
11.
Zurück zum Zitat Gebhard F, Schultheiss M (2008) Surgical treatment of fractures of the lumbar spine. In: Käfer W, Cakir B, Mattes T, Reichel H (eds) Orthopaedic spine surgery. An instructional course book. Heidelberg, Steinkopff, pp 129–136 Gebhard F, Schultheiss M (2008) Surgical treatment of fractures of the lumbar spine. In: Käfer W, Cakir B, Mattes T, Reichel H (eds) Orthopaedic spine surgery. An instructional course book. Heidelberg, Steinkopff, pp 129–136
12.
Zurück zum Zitat Gertzbein SD, Court-Brown CM, Jacobs RR, Marks P, Martin C, Stoll J, Fazl M, Schwartz M, Rowed D (1988) Decompression and circumferential stabilization of unstable spinal fractures. Spine 13(8):892–895PubMedCrossRef Gertzbein SD, Court-Brown CM, Jacobs RR, Marks P, Martin C, Stoll J, Fazl M, Schwartz M, Rowed D (1988) Decompression and circumferential stabilization of unstable spinal fractures. Spine 13(8):892–895PubMedCrossRef
13.
Zurück zum Zitat Goulet JA, Senunas LE, De Silva GL, Greefield ML (1997) Autogenous iliac crest bone graft. Clin Orthop 339:76–81PubMedCrossRef Goulet JA, Senunas LE, De Silva GL, Greefield ML (1997) Autogenous iliac crest bone graft. Clin Orthop 339:76–81PubMedCrossRef
14.
Zurück zum Zitat Kaneda K, Taneichi H, Abumi K, Hashimoto T, Satoh S, Fujiya M (1997) Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg Am 79(1):69–83PubMed Kaneda K, Taneichi H, Abumi K, Hashimoto T, Satoh S, Fujiya M (1997) Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg Am 79(1):69–83PubMed
15.
Zurück zum Zitat Khodadadyan-Klostermann C, Schaefer J, Schleicher P, Pflugmacher R, Eindorf T, Haas NP, Kandziora F (2004) Expandable cages: biomechanical comparison of different cages for ventral spondylodesis in the thoracolumbar spine. Chirurg 75:694–701PubMedCrossRef Khodadadyan-Klostermann C, Schaefer J, Schleicher P, Pflugmacher R, Eindorf T, Haas NP, Kandziora F (2004) Expandable cages: biomechanical comparison of different cages for ventral spondylodesis in the thoracolumbar spine. Chirurg 75:694–701PubMedCrossRef
16.
Zurück zum Zitat Knop C, Blauth M, Bühren V, Hax PM, Kinzl L, Mutschler W, Pommer A, Ulrich C, Wagner S, Weckbach A, Wentzensen A, Wörsdörfer O (1999) Surgical treatment of injuries of the thoracolumbar transition. 1: Epidemiology. Unfallchirurg 102(12):924–935PubMedCrossRef Knop C, Blauth M, Bühren V, Hax PM, Kinzl L, Mutschler W, Pommer A, Ulrich C, Wagner S, Weckbach A, Wentzensen A, Wörsdörfer O (1999) Surgical treatment of injuries of the thoracolumbar transition. 1: Epidemiology. Unfallchirurg 102(12):924–935PubMedCrossRef
17.
Zurück zum Zitat Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex. Comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 9:472–485PubMedCrossRef Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex. Comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 9:472–485PubMedCrossRef
18.
Zurück zum Zitat Kossmann T, Ertel W, Platz A, Trentz O (1999) Combined surgery for fractures of the thoraco-lumbar junction using the inlay-span method. Orthopäde 28(5):432–440PubMed Kossmann T, Ertel W, Platz A, Trentz O (1999) Combined surgery for fractures of the thoraco-lumbar junction using the inlay-span method. Orthopäde 28(5):432–440PubMed
19.
Zurück zum Zitat Kostuik JP (1988) Anterior fixation for burst fractures of the thoracic and lumbar spine with or without neurological involvement. Spine 13(3):286–293PubMedCrossRef Kostuik JP (1988) Anterior fixation for burst fractures of the thoracic and lumbar spine with or without neurological involvement. Spine 13(3):286–293PubMedCrossRef
20.
Zurück zum Zitat Kurz LT, Garfin SR, Booth RE Jr (1989) Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine 14(12):1324–1331PubMedCrossRef Kurz LT, Garfin SR, Booth RE Jr (1989) Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine 14(12):1324–1331PubMedCrossRef
21.
Zurück zum Zitat Lowery GL, Harms J (1996) Titanium surgical mesh for vertebral defect replacement and intervertebral spacers. In: Thalgott JS, Aebi M (eds) Manual of internal fixation of the spine. Lippincott-Raven, Philadelphia, pp 127–146 Lowery GL, Harms J (1996) Titanium surgical mesh for vertebral defect replacement and intervertebral spacers. In: Thalgott JS, Aebi M (eds) Manual of internal fixation of the spine. Lippincott-Raven, Philadelphia, pp 127–146
22.
Zurück zum Zitat Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201PubMedCrossRef Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201PubMedCrossRef
23.
Zurück zum Zitat Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3(3):292–300PubMedCrossRef Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3(3):292–300PubMedCrossRef
24.
Zurück zum Zitat Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13(10):1129–1134PubMedCrossRef Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13(10):1129–1134PubMedCrossRef
25.
Zurück zum Zitat Pflugmacher R, Schleicher P, Schaefer J, Scholz M, Ludwig K, Khodadadyan-Klostermann C, Haas NP, Kandziora F (2004) Biomechanical comparison of expandable cages for the vertebral body replacement in the thoracolumbar spine. Spine 29(13):1413–1419PubMedCrossRef Pflugmacher R, Schleicher P, Schaefer J, Scholz M, Ludwig K, Khodadadyan-Klostermann C, Haas NP, Kandziora F (2004) Biomechanical comparison of expandable cages for the vertebral body replacement in the thoracolumbar spine. Spine 29(13):1413–1419PubMedCrossRef
26.
Zurück zum Zitat Reinhold M, Schmoelz W, Canto F, Krappinger D, Blauth M, Knop C (2009) A new distractible implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine. Arch Orthop Trauma Surg 29(10):1375–1382CrossRef Reinhold M, Schmoelz W, Canto F, Krappinger D, Blauth M, Knop C (2009) A new distractible implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine. Arch Orthop Trauma Surg 29(10):1375–1382CrossRef
27.
Zurück zum Zitat Rohlmann A, Zander T, Fehrmann M, Klöckner C, Bergmann G (2000) Influence of implants for vertebral body replacement on the mechanical behaviour of the lumbar spine. Orthopäde 3:503–507 Rohlmann A, Zander T, Fehrmann M, Klöckner C, Bergmann G (2000) Influence of implants for vertebral body replacement on the mechanical behaviour of the lumbar spine. Orthopäde 3:503–507
28.
Zurück zum Zitat Sawin PD, Traynelis VC, Menezes AH (1998) A comparative analysis of fusion rates and donor-site morbidity for autogeneic rib and iliac crest bone grafts in posterior cervical fusions. J Neurosurg 88(2):255–265PubMedCrossRef Sawin PD, Traynelis VC, Menezes AH (1998) A comparative analysis of fusion rates and donor-site morbidity for autogeneic rib and iliac crest bone grafts in posterior cervical fusions. J Neurosurg 88(2):255–265PubMedCrossRef
29.
Zurück zum Zitat Schulte M, Schultheiss M, Hartwig E, Wilke HJ, Wolf S, Sokiranski R, Fleitner T, Kinzl L, Claes L (2000) Vertebral body replacement with bioglas-polyurethane composite in spine metastases–clinical, radiological and biomechanical results. Eur Spine J 9(5):437–444PubMedCrossRef Schulte M, Schultheiss M, Hartwig E, Wilke HJ, Wolf S, Sokiranski R, Fleitner T, Kinzl L, Claes L (2000) Vertebral body replacement with bioglas-polyurethane composite in spine metastases–clinical, radiological and biomechanical results. Eur Spine J 9(5):437–444PubMedCrossRef
30.
Zurück zum Zitat Schultheiss M, Hartwig E, Kinzl L, Claes L, Wilke HJ (2004) Thoracolumbar fracture stabilization: comparative biomechanical evaluation of a new video-assisted implantable system. Eur Spine J 13:93–100PubMedCrossRef Schultheiss M, Hartwig E, Kinzl L, Claes L, Wilke HJ (2004) Thoracolumbar fracture stabilization: comparative biomechanical evaluation of a new video-assisted implantable system. Eur Spine J 13:93–100PubMedCrossRef
31.
Zurück zum Zitat Thalgott JS, Kabins MB, Timlin M, Fritts K, Giuffre JM (1997) Four year experience with the AO anterior thoracolumbar locking plate. Spinal Cord 35(5):286–291PubMedCrossRef Thalgott JS, Kabins MB, Timlin M, Fritts K, Giuffre JM (1997) Four year experience with the AO anterior thoracolumbar locking plate. Spinal Cord 35(5):286–291PubMedCrossRef
32.
Zurück zum Zitat Ulmar B, Cakir B, Huch K, Puhl W, Richter M (2004) Expandable titanium cages in vertebral body replacement. Z Orthop 142(6):449–455PubMedCrossRef Ulmar B, Cakir B, Huch K, Puhl W, Richter M (2004) Expandable titanium cages in vertebral body replacement. Z Orthop 142(6):449–455PubMedCrossRef
33.
Zurück zum Zitat Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154PubMedCrossRef Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154PubMedCrossRef
34.
Zurück zum Zitat Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular deformation rate, and moisture condition. Anat Rec 251(1):15–19PubMedCrossRef Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular deformation rate, and moisture condition. Anat Rec 251(1):15–19PubMedCrossRef
35.
Zurück zum Zitat Wippermann BW, Schratt HE, Steeg S, Tscherne H (1997) Complications of spongiosa harvesting of the ilial crest. A retrospective analysis of 1191 cases. Chirurg 68:1286–1291PubMedCrossRef Wippermann BW, Schratt HE, Steeg S, Tscherne H (1997) Complications of spongiosa harvesting of the ilial crest. A retrospective analysis of 1191 cases. Chirurg 68:1286–1291PubMedCrossRef
36.
Zurück zum Zitat Vahldiek MJ, Panjabi MM (1998) Stability potential of spinal instrumentations in tumor vertebral body replacement surgery. Spine 23:543–550PubMedCrossRef Vahldiek MJ, Panjabi MM (1998) Stability potential of spinal instrumentations in tumor vertebral body replacement surgery. Spine 23:543–550PubMedCrossRef
Metadaten
Titel
Biomechanical analysis of a new expandable vertebral body replacement combined with a new polyaxial antero-lateral plate and/or pedicle screws and rods
verfasst von
Benjamin Ulmar
Stefanie Erhart
Stefan Unger
Kuno Weise
Werner Schmoelz
Publikationsdatum
01.03.2012
Verlag
Springer-Verlag
Erschienen in
European Spine Journal / Ausgabe 3/2012
Print ISSN: 0940-6719
Elektronische ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-011-2042-9

Weitere Artikel der Ausgabe 3/2012

European Spine Journal 3/2012 Zur Ausgabe

Announcements

Announcements

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.