Skip to main content
Erschienen in: Inflammation 6/2017

24.08.2017 | ORIGINAL ARTICLE

Biomechanical Stretch Induces Inflammation, Proliferation, and Migration by Activating NFAT5 in Arterial Smooth Muscle Cells

verfasst von: Wei Cao, Donghui Zhang, Qiannan Li, Yue Liu, Shenhong Jing, Jinjin Cui, Wei Xu, Shufeng Li, Jingjin Liu, Bo Yu

Erschienen in: Inflammation | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

The increasing wall stress as is elicited by arterial hypertension promotes their reorganization in the vessel wall which may lead to arterial stiffening and contractile dysfunction. The nuclear factor of activated T cells 5 (NFAT5) pathway plays a role in regulating growth and differentiation in various cell types. We investigated whether the NFAT5 pathway was involved in the regulation of biomechanical stretch-induced human arterial smooth muscle cell (HUASMC) proliferation, inflammation, and migration. Herein, we showed that stretch promoted the expression of NFAT5 in human arterial smooth muscle cells and regulated through activation of c-Jun N-terminal kinase under these conditions. This may contribute to an improved activity of HUASMCs and thus promote reorganization in vascular remodeling processes such as hypertension-induced arterial stiffening and contractile dysfunction.
Literatur
1.
Zurück zum Zitat Olivetti, G., M. Melissari, G. Marchetti, and P. Anversa. 1982. Quantitative structural changes of the rat thoracic aorta in early spontaneous hypertension. Tissue composition, and hypertrophy and hyperplasia of smooth muscle cells. Circulation Research 51 (1): 19–26.CrossRefPubMed Olivetti, G., M. Melissari, G. Marchetti, and P. Anversa. 1982. Quantitative structural changes of the rat thoracic aorta in early spontaneous hypertension. Tissue composition, and hypertrophy and hyperplasia of smooth muscle cells. Circulation Research 51 (1): 19–26.CrossRefPubMed
2.
Zurück zum Zitat Feldner, A., H. Otto, S. Rewerk, M. Hecker, and T. Korff. 2011. Experimental hypertension triggers varicosis-like maladaptive venous remodeling through activator protein-1. The FASEB Journal 25 (10): 3613–3621.CrossRefPubMed Feldner, A., H. Otto, S. Rewerk, M. Hecker, and T. Korff. 2011. Experimental hypertension triggers varicosis-like maladaptive venous remodeling through activator protein-1. The FASEB Journal 25 (10): 3613–3621.CrossRefPubMed
3.
Zurück zum Zitat Pfisterer, L., A. Feldner, M. Hecker, and T. Korff. 2012. Hypertension impairs myocardin function: a novel mechanism facilitating arterial remodelling. Cardiovascular Research 96 (1): 120–129.CrossRefPubMed Pfisterer, L., A. Feldner, M. Hecker, and T. Korff. 2012. Hypertension impairs myocardin function: a novel mechanism facilitating arterial remodelling. Cardiovascular Research 96 (1): 120–129.CrossRefPubMed
4.
Zurück zum Zitat Nordström, I., K. Dreja, U. Malmqvist, and P. Hellstrand. 2000. Stretch-dependent modulation of contractility and growth in smooth muscle of rat portal vein. Circulation Research 87 (3): 228–234.CrossRefPubMed Nordström, I., K. Dreja, U. Malmqvist, and P. Hellstrand. 2000. Stretch-dependent modulation of contractility and growth in smooth muscle of rat portal vein. Circulation Research 87 (3): 228–234.CrossRefPubMed
5.
Zurück zum Zitat Lee, Samuel, and Richard T. Lee. 2010. Mechanical stretch and intimal hyperplasia: the missing link?[J]. Arteriosclerosis Thrombosis & Vascular Biology 30 (3): 459–460. Lee, Samuel, and Richard T. Lee. 2010. Mechanical stretch and intimal hyperplasia: the missing link?[J]. Arteriosclerosis Thrombosis & Vascular Biology 30 (3): 459–460.
6.
Zurück zum Zitat Li, S., D.Z. Wang, Z. Wang, J.A. Richardson, and E.N. Olson. 2003. The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proceedings of the National Academy of Sciences 100 (16): 9366–9370.CrossRef Li, S., D.Z. Wang, Z. Wang, J.A. Richardson, and E.N. Olson. 2003. The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proceedings of the National Academy of Sciences 100 (16): 9366–9370.CrossRef
7.
Zurück zum Zitat Halterman, J.A., H.M. Kwon, and B.R. Wamhoff. 2012. Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5). American Journal of Physiology-Cell Physiology 302 (1): C1–C8.CrossRefPubMed Halterman, J.A., H.M. Kwon, and B.R. Wamhoff. 2012. Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5). American Journal of Physiology-Cell Physiology 302 (1): C1–C8.CrossRefPubMed
8.
Zurück zum Zitat Ho, S.N. 2003. The role of NFAT5/TonEBP in establishing an optimal intracellular environment. Archives of Biochemistry and Biophysics 413 (2): 151–157.CrossRefPubMed Ho, S.N. 2003. The role of NFAT5/TonEBP in establishing an optimal intracellular environment. Archives of Biochemistry and Biophysics 413 (2): 151–157.CrossRefPubMed
9.
Zurück zum Zitat Woo, S., S. Lee, and M.H. Kwon. 2002. TonEBP transcriptional activator in the cellular response to increased osmolality. Pflügers Archiv European Journal of Physiology 444 (5): 579–585.CrossRefPubMed Woo, S., S. Lee, and M.H. Kwon. 2002. TonEBP transcriptional activator in the cellular response to increased osmolality. Pflügers Archiv European Journal of Physiology 444 (5): 579–585.CrossRefPubMed
10.
Zurück zum Zitat Jauliac, S., C. López-Rodriguez, L.M. Shaw, L.F. Brown, A. Rao, and A. Toker. 2002. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology 4 (7): 540–544.CrossRefPubMed Jauliac, S., C. López-Rodriguez, L.M. Shaw, L.F. Brown, A. Rao, and A. Toker. 2002. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology 4 (7): 540–544.CrossRefPubMed
11.
Zurück zum Zitat O'Connor, R.S., S.T. Mills, K.A. Jones, S.N. Ho, and G.K. Pavlath. 2007. A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. Journal of Cell Science 120 (1): 149–159.CrossRefPubMed O'Connor, R.S., S.T. Mills, K.A. Jones, S.N. Ho, and G.K. Pavlath. 2007. A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. Journal of Cell Science 120 (1): 149–159.CrossRefPubMed
12.
Zurück zum Zitat Go, W.Y., X. Liu, M.A. Roti, F. Liu, and S.N. Ho. 2004. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proceedings of the National Academy of Sciences of the United States of America 101 (29): 10673–10678.CrossRefPubMedPubMedCentral Go, W.Y., X. Liu, M.A. Roti, F. Liu, and S.N. Ho. 2004. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proceedings of the National Academy of Sciences of the United States of America 101 (29): 10673–10678.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Halterman, J.A., H.M. Kwon, R. Zargham, P.D. Bortz, and B.R. Wamhoff. 2011. Nuclear factor of activated T cells 5 regulates vascular smooth muscle cell phenotypic modulation. Arteriosclerosis, Thrombosis, and Vascular Biology 31 (10): 2287–2296.CrossRefPubMedPubMedCentral Halterman, J.A., H.M. Kwon, R. Zargham, P.D. Bortz, and B.R. Wamhoff. 2011. Nuclear factor of activated T cells 5 regulates vascular smooth muscle cell phenotypic modulation. Arteriosclerosis, Thrombosis, and Vascular Biology 31 (10): 2287–2296.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Yoon, H.J., S. You, S.A. Yoo, N.H. Kim, H.M. Kwon, C.H. Yoon, C.S. Cho, D. Hwang, and W.U. Kim. 2011. NF-AT5 is a critical regulator of inflammatory arthritis. Arthritis & Rheumatology 63 (7): 1843–1852.CrossRef Yoon, H.J., S. You, S.A. Yoo, N.H. Kim, H.M. Kwon, C.H. Yoon, C.S. Cho, D. Hwang, and W.U. Kim. 2011. NF-AT5 is a critical regulator of inflammatory arthritis. Arthritis & Rheumatology 63 (7): 1843–1852.CrossRef
15.
Zurück zum Zitat Machnik, A., W. Neuhofer, J. Jantsch, A. Dahlmann, T. Tammela, K. Machura, J.K. Park, F.X. Beck, D.N. Müller, W. Derer, and J. Goss. 2009. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nature Medicine 15 (5): 545–552.CrossRefPubMed Machnik, A., W. Neuhofer, J. Jantsch, A. Dahlmann, T. Tammela, K. Machura, J.K. Park, F.X. Beck, D.N. Müller, W. Derer, and J. Goss. 2009. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nature Medicine 15 (5): 545–552.CrossRefPubMed
16.
Zurück zum Zitat Roth, I., V. Leroy, H.M. Kwon, P.Y. Martin, E. Féraille, and U. Hasler. 2010. Osmoprotective transcription factor NFAT5/TonEBP modulates nuclear factor-κB activity. Molecular Biology of the Cell 21 (19): 3459–3474.CrossRefPubMedPubMedCentral Roth, I., V. Leroy, H.M. Kwon, P.Y. Martin, E. Féraille, and U. Hasler. 2010. Osmoprotective transcription factor NFAT5/TonEBP modulates nuclear factor-κB activity. Molecular Biology of the Cell 21 (19): 3459–3474.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Buxadé, M., G. Lunazzi, J. Minguillón, S. Iborra, R. Berga-Bolaños, M. del Val, J. Aramburu, and C. López-Rodríguez. 2012. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. Journal of Experimental Medicine 209 (2): 379–393. Buxadé, M., G. Lunazzi, J. Minguillón, S. Iborra, R. Berga-Bolaños, M. del Val, J. Aramburu, and C. López-Rodríguez. 2012. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. Journal of Experimental Medicine 209 (2): 379–393.
18.
Zurück zum Zitat Haudenschild, C.C., J.O. Grunwald, and A.V. Chobanian. 1985. Effects of hypertension on migration and proliferation of smooth muscle in culture. Hypertension 7 (3 Pt 2): I101.CrossRefPubMed Haudenschild, C.C., J.O. Grunwald, and A.V. Chobanian. 1985. Effects of hypertension on migration and proliferation of smooth muscle in culture. Hypertension 7 (3 Pt 2): I101.CrossRefPubMed
19.
Zurück zum Zitat Intengan, H.D., and E.L. Schiffrin. 2000. Structure and mechanical properties of resistance arteries in hypertension. Hypertension 36 (3): 312–318.CrossRefPubMed Intengan, H.D., and E.L. Schiffrin. 2000. Structure and mechanical properties of resistance arteries in hypertension. Hypertension 36 (3): 312–318.CrossRefPubMed
20.
Zurück zum Zitat Brady, P.S., E.A. Park, J.S. Liu, R.W. Hanson, and L.J. Brady. 1992. Isolation and characterization of the promoter for the gene coding for the 68 kDa carnitine palmitoyltransferase from the rat. Biochemical Journal 286 (3): 779–783.CrossRefPubMedPubMedCentral Brady, P.S., E.A. Park, J.S. Liu, R.W. Hanson, and L.J. Brady. 1992. Isolation and characterization of the promoter for the gene coding for the 68 kDa carnitine palmitoyltransferase from the rat. Biochemical Journal 286 (3): 779–783.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Wang, Z., D.Z. Wang, D. Hockemeyer, J. McAnally, A. Nordheim, and E.N. Olson. 2004. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428 (6979): 185–189.CrossRefPubMed Wang, Z., D.Z. Wang, D. Hockemeyer, J. McAnally, A. Nordheim, and E.N. Olson. 2004. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428 (6979): 185–189.CrossRefPubMed
22.
Zurück zum Zitat Chen, J., C.M. Kitchen, J.W. Streb, and J.M. Miano. 2002. Myocardin: a component of a molecular switch for smooth muscle differentiation. Journal of Molecular and Cellular Cardiology 34 (10): 1345–1356.CrossRefPubMed Chen, J., C.M. Kitchen, J.W. Streb, and J.M. Miano. 2002. Myocardin: a component of a molecular switch for smooth muscle differentiation. Journal of Molecular and Cellular Cardiology 34 (10): 1345–1356.CrossRefPubMed
Metadaten
Titel
Biomechanical Stretch Induces Inflammation, Proliferation, and Migration by Activating NFAT5 in Arterial Smooth Muscle Cells
verfasst von
Wei Cao
Donghui Zhang
Qiannan Li
Yue Liu
Shenhong Jing
Jinjin Cui
Wei Xu
Shufeng Li
Jingjin Liu
Bo Yu
Publikationsdatum
24.08.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0653-y

Weitere Artikel der Ausgabe 6/2017

Inflammation 6/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.