Skip to main content
Erschienen in: Osteoporosis International 6/2011

01.06.2011 | Bone Quality Seminars: Bone Fracture Healing and Strengthening

Biomechanics and tissue engineering

verfasst von: D. P. Pioletti

Erschienen in: Osteoporosis International | Ausgabe 6/2011

Einloggen, um Zugang zu erhalten

Abstract

Development of artificial scaffold for musculo-skeletal applications, especially in load-bearing situations, requires the consideration of biomechanical aspects for its integrity and its function. However, the biomechanical loading could also be used to favour tissue formation through mechano-transduction phenomena. Design of scaffold could take advantages of this intrinsic mechanical loading.
Literatur
1.
Zurück zum Zitat Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787):704–706PubMedCrossRef Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787):704–706PubMedCrossRef
2.
Zurück zum Zitat Ramaniraka NA, Leyvraz PF, Rakotomanana LR, Rubin PJ, Zysset PK (1996) Micromotion at the bone-stem interface during the gait cycle after cementless total hip replacement: influence of stem design and loading level. Hip Inter 6(2):51–58 Ramaniraka NA, Leyvraz PF, Rakotomanana LR, Rubin PJ, Zysset PK (1996) Micromotion at the bone-stem interface during the gait cycle after cementless total hip replacement: influence of stem design and loading level. Hip Inter 6(2):51–58
3.
Zurück zum Zitat Peter B, Gauthier O, Laib S, Bujoli B, Guicheux J, Janvier P et al (2006) Local delivery of bisphosphonate from coated orthopedic implants increases implants mechanical stability in osteoporotic rats. J Biomed Mater Res A 76(1):133–143PubMed Peter B, Gauthier O, Laib S, Bujoli B, Guicheux J, Janvier P et al (2006) Local delivery of bisphosphonate from coated orthopedic implants increases implants mechanical stability in osteoporotic rats. J Biomed Mater Res A 76(1):133–143PubMed
4.
Zurück zum Zitat Chen CS (2008) Mechanotransduction—a field pulling together? J Cell Sci 121(Pt 20):3285–3292PubMedCrossRef Chen CS (2008) Mechanotransduction—a field pulling together? J Cell Sci 121(Pt 20):3285–3292PubMedCrossRef
5.
Zurück zum Zitat Jacobs CR, Yellowley CE, Davis BR, Zhou Z, Cimbala JM, Donahue HJ (1998) Differential effect of steady versus oscillating flow on bone cells. J Biomech 31(11):969–976PubMedCrossRef Jacobs CR, Yellowley CE, Davis BR, Zhou Z, Cimbala JM, Donahue HJ (1998) Differential effect of steady versus oscillating flow on bone cells. J Biomech 31(11):969–976PubMedCrossRef
6.
Zurück zum Zitat Cavalcant-Adam EA, Shapiro IM, Composto RJ, Macarak EJ, Adams CS (2002) RGD peptides immobilized on a mechanically deformable surface promote osteoblast differentiation. J Bone Miner Res 17(12):2130–2140CrossRef Cavalcant-Adam EA, Shapiro IM, Composto RJ, Macarak EJ, Adams CS (2002) RGD peptides immobilized on a mechanically deformable surface promote osteoblast differentiation. J Bone Miner Res 17(12):2130–2140CrossRef
7.
Zurück zum Zitat Lacouture ME, Schaffer JL, Klickstein LB (2002) A comparison of type I collagen, fibronectin, and vitronectin in supporting adhesion of mechanically strained osteoblasts. J Bone Miner Res 17(3):481–492PubMedCrossRef Lacouture ME, Schaffer JL, Klickstein LB (2002) A comparison of type I collagen, fibronectin, and vitronectin in supporting adhesion of mechanically strained osteoblasts. J Bone Miner Res 17(3):481–492PubMedCrossRef
8.
Zurück zum Zitat Handschel J, Wiesmann HP, Stratmann U, Kleinheinz J, Meyer U, Joos U (2002) TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model. Biomaterials 23(7):1689–1695PubMedCrossRef Handschel J, Wiesmann HP, Stratmann U, Kleinheinz J, Meyer U, Joos U (2002) TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model. Biomaterials 23(7):1689–1695PubMedCrossRef
9.
10.
Zurück zum Zitat Butler DL, Goldstein SA, Guilak F (2000) Functional tissue engineering: the role of biomechanics. J Biomech Eng 122(6):570–575PubMedCrossRef Butler DL, Goldstein SA, Guilak F (2000) Functional tissue engineering: the role of biomechanics. J Biomech Eng 122(6):570–575PubMedCrossRef
11.
Zurück zum Zitat Tate ML, Knothe U (2000) An ex vivo model to study transport processes and fluid flow in loaded bone. J Biomech 33(2):247–254CrossRef Tate ML, Knothe U (2000) An ex vivo model to study transport processes and fluid flow in loaded bone. J Biomech 33(2):247–254CrossRef
12.
Zurück zum Zitat Cowin SC (2001) Mechanics of materials. In: Cowin SC (ed) Bone mechanics handbook—2nd edition. CRC Press, Boca Raton, pp 6.1–6.16 Cowin SC (2001) Mechanics of materials. In: Cowin SC (ed) Bone mechanics handbook—2nd edition. CRC Press, Boca Raton, pp 6.1–6.16
13.
Zurück zum Zitat Ghanbari J, Naghdabadi R (2009) Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure. J Biomech 42(10):1560–1565PubMedCrossRef Ghanbari J, Naghdabadi R (2009) Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure. J Biomech 42(10):1560–1565PubMedCrossRef
14.
Zurück zum Zitat Blecha LD, Zambelli PY, Ramaniraka NA, Bourban PE, Manson JA, Pioletti DP (2005) How plate positioning impacts the biomechanics of the open wedge tibial osteotomy; a finite element analysis. Comput Methods Biomech Biomed Eng 8(5):307–313CrossRef Blecha LD, Zambelli PY, Ramaniraka NA, Bourban PE, Manson JA, Pioletti DP (2005) How plate positioning impacts the biomechanics of the open wedge tibial osteotomy; a finite element analysis. Comput Methods Biomech Biomed Eng 8(5):307–313CrossRef
15.
Zurück zum Zitat Mathieu LM, Mueller TL, Bourban PE, Pioletti DP, Muller R, Manson JA (2006) Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27(6):905–916PubMedCrossRef Mathieu LM, Mueller TL, Bourban PE, Pioletti DP, Muller R, Manson JA (2006) Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27(6):905–916PubMedCrossRef
16.
Zurück zum Zitat Meyer U, Joos U, Wiesmann HP (2004) Biological and biophysical principles in extracorporal bone tissue engineering. Part III International journal of oral and maxillofacial surgery 33(7):635–641CrossRef Meyer U, Joos U, Wiesmann HP (2004) Biological and biophysical principles in extracorporal bone tissue engineering. Part III International journal of oral and maxillofacial surgery 33(7):635–641CrossRef
17.
Zurück zum Zitat Brunski JB (1991) Influence of biomechanical factors at the bone–biomaterial interface. In: Davis JE (ed) The bone-biomaterial interface. University of Toronto Press, Toronto, pp 391–405 Brunski JB (1991) Influence of biomechanical factors at the bone–biomaterial interface. In: Davis JE (ed) The bone-biomaterial interface. University of Toronto Press, Toronto, pp 391–405
18.
Zurück zum Zitat Stadelmann VA, Terrier A, Pioletti DP (2008) Microstimulation at the bone-implant interface upregulates osteoclast activation pathways. Bone 42(2):358–364PubMedCrossRef Stadelmann VA, Terrier A, Pioletti DP (2008) Microstimulation at the bone-implant interface upregulates osteoclast activation pathways. Bone 42(2):358–364PubMedCrossRef
19.
Zurück zum Zitat Jasty M, Bragdon C, Burke D, O'Connor D, Lowenstein J, Harris WH (1997) In vivo skeletal responses to porous-surfaced implants subjected to small induced motions. J Bone Joint Surg Am 79(5):707–714PubMed Jasty M, Bragdon C, Burke D, O'Connor D, Lowenstein J, Harris WH (1997) In vivo skeletal responses to porous-surfaced implants subjected to small induced motions. J Bone Joint Surg Am 79(5):707–714PubMed
20.
Zurück zum Zitat Prendergast PJ, Huiskes R, Soballe K (1997) ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30(6):539–548PubMedCrossRef Prendergast PJ, Huiskes R, Soballe K (1997) ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30(6):539–548PubMedCrossRef
21.
Zurück zum Zitat Carter DR, Beaupre GS, Giori NJ, Helms JA (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355(Suppl):S41–S55PubMedCrossRef Carter DR, Beaupre GS, Giori NJ, Helms JA (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355(Suppl):S41–S55PubMedCrossRef
22.
Zurück zum Zitat Buchler P, Pioletti DP, Rakotomanana LR (2003) Biphasic constitutive laws for biological interface evolution. Biomech Model Mechanobiol 1(4):239–249PubMedCrossRef Buchler P, Pioletti DP, Rakotomanana LR (2003) Biphasic constitutive laws for biological interface evolution. Biomech Model Mechanobiol 1(4):239–249PubMedCrossRef
23.
Zurück zum Zitat Behravesh E, Yasko AW, Engel PS, Mikos AG (1999) Synthetic biodegradable polymers for orthopaedic applications. Clin Orthop 367(Suppl):S118–S129PubMed Behravesh E, Yasko AW, Engel PS, Mikos AG (1999) Synthetic biodegradable polymers for orthopaedic applications. Clin Orthop 367(Suppl):S118–S129PubMed
24.
Zurück zum Zitat Carter DR, Fyhrie DP, Whalen RT (1987) Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J Biomech 20(8):785–794PubMedCrossRef Carter DR, Fyhrie DP, Whalen RT (1987) Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J Biomech 20(8):785–794PubMedCrossRef
25.
Zurück zum Zitat Brazel E, Taylor D (2009) Predicting the structural integrity of bone defects repaired using bone graft materials. Comput Methods Biomech Biomed Eng 12(3):297–304CrossRef Brazel E, Taylor D (2009) Predicting the structural integrity of bone defects repaired using bone graft materials. Comput Methods Biomech Biomed Eng 12(3):297–304CrossRef
26.
Zurück zum Zitat Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE et al (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827PubMedCrossRef Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE et al (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827PubMedCrossRef
27.
Zurück zum Zitat Sikavitsas VI, Temenoff JS, Mikos AG (2001) Biomaterials and bone mechanotransduction. Biomaterials 22(19):2581–2593PubMedCrossRef Sikavitsas VI, Temenoff JS, Mikos AG (2001) Biomaterials and bone mechanotransduction. Biomaterials 22(19):2581–2593PubMedCrossRef
28.
Zurück zum Zitat Klein-Nulend J, Bacabac RG, Mullender MG (2005) Mechanobiology of bone tissue. Pathol Biol (Paris) 53(10):576–580 Klein-Nulend J, Bacabac RG, Mullender MG (2005) Mechanobiology of bone tissue. Pathol Biol (Paris) 53(10):576–580
29.
Zurück zum Zitat Bilodeau K, Mantovani D (2006) Bioreactors for tissue engineering: focus on mechanical constraints. A comparative review. Tissue Eng 12(8):2367–2383PubMedCrossRef Bilodeau K, Mantovani D (2006) Bioreactors for tissue engineering: focus on mechanical constraints. A comparative review. Tissue Eng 12(8):2367–2383PubMedCrossRef
30.
Zurück zum Zitat Yu X, Botchwey EA, Levine EM, Pollack SR, Laurencin CT (2004) Bioreactor-based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc Natl Acad Sci U S A 101(31):11203–11208PubMedCrossRef Yu X, Botchwey EA, Levine EM, Pollack SR, Laurencin CT (2004) Bioreactor-based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc Natl Acad Sci U S A 101(31):11203–11208PubMedCrossRef
31.
Zurück zum Zitat Datta N, Pham QP, Sharma U, Sikavitsas VI, Jansen JA, Mikos AG (2006) In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci U S A 103(8):2488–2493PubMedCrossRef Datta N, Pham QP, Sharma U, Sikavitsas VI, Jansen JA, Mikos AG (2006) In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci U S A 103(8):2488–2493PubMedCrossRef
32.
Zurück zum Zitat Mauney JR, Sjostorm S, Blumberg J, Horan R, O'Leary JP, Vunjak-Novakovic G et al (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 74(5):458–468PubMedCrossRef Mauney JR, Sjostorm S, Blumberg J, Horan R, O'Leary JP, Vunjak-Novakovic G et al (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 74(5):458–468PubMedCrossRef
33.
Zurück zum Zitat Jaecques SV, Van Oosterwyck H, Muraru L, Van Cleynenbreugel T, De Smet E, Wevers M et al (2004) Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone. Biomaterials 25(9):1683–1696PubMedCrossRef Jaecques SV, Van Oosterwyck H, Muraru L, Van Cleynenbreugel T, De Smet E, Wevers M et al (2004) Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone. Biomaterials 25(9):1683–1696PubMedCrossRef
34.
Zurück zum Zitat Milan JL, Planell JA, Lacroix D (2009) Computational modelling of the mechanical environment of osteogenesis within a polylactic acid-calcium phosphate glass scaffold. Biomaterials 30(25):4219–4226PubMedCrossRef Milan JL, Planell JA, Lacroix D (2009) Computational modelling of the mechanical environment of osteogenesis within a polylactic acid-calcium phosphate glass scaffold. Biomaterials 30(25):4219–4226PubMedCrossRef
35.
Zurück zum Zitat Jungreuthmayer C, Donahue SW, Jaasma MJ, Al-Munajjed AA, Zanghellini J, Kelly DJ et al (2009) A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors. Tissue Eng A 15(5):1141–1149CrossRef Jungreuthmayer C, Donahue SW, Jaasma MJ, Al-Munajjed AA, Zanghellini J, Kelly DJ et al (2009) A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors. Tissue Eng A 15(5):1141–1149CrossRef
36.
Zurück zum Zitat Kelly DJ, Prendergast PJ (2006) Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng 12(9):2509–2519PubMedCrossRef Kelly DJ, Prendergast PJ (2006) Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng 12(9):2509–2519PubMedCrossRef
37.
Zurück zum Zitat Sengers BG, Taylor M, Please CP, Oreffo RO (2007) Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials 28(10):1926–1940PubMedCrossRef Sengers BG, Taylor M, Please CP, Oreffo RO (2007) Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials 28(10):1926–1940PubMedCrossRef
38.
Zurück zum Zitat Martin I, Smith T, Wendt D (2009) Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol 27(9):495–502PubMedCrossRef Martin I, Smith T, Wendt D (2009) Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol 27(9):495–502PubMedCrossRef
Metadaten
Titel
Biomechanics and tissue engineering
verfasst von
D. P. Pioletti
Publikationsdatum
01.06.2011
Verlag
Springer-Verlag
Erschienen in
Osteoporosis International / Ausgabe 6/2011
Print ISSN: 0937-941X
Elektronische ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-011-1616-z

Weitere Artikel der Ausgabe 6/2011

Osteoporosis International 6/2011 Zur Ausgabe

Bone Quality Seminars: Bone Fracture Healing and Strengthening

Bone lengthening (distraction osteogenesis): a literature review

Bone Quality Seminars: Bone Fracture Healing and Strengthening

Evaluation of bone scaffolds by micro-CT

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.