Skip to main content
Erschienen in: Urolithiasis 1/2015

01.01.2015 | Invited Review

Biomimetic Randall’s plaque as an in vitro model system for studying the role of acidic biopolymers in idiopathic stone formation

verfasst von: Archana Chidambaram, Douglas Rodriguez, Saeed Khan, Laurie Gower

Erschienen in: Urolithiasis | Sonderheft 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Randall’s plaque (RP) deposits seem to be consistent among the most common type of kidney stone formers, idiopathic calcium oxalate stone formers. This group forms calcium oxalate renal stones without any systemic symptoms, which contributes to the difficulty of understanding and treating this painful and recurring disease. Thus, the development of an in vitro model system to study idiopathic nephrolithiasis, beginning with RP pathogenesis, can help in identifying how plaques and subsequently stones form. One main theory of RP formation is that calcium phosphate deposits initially form in the basement membrane of the thin loops of Henle, which then fuse and spread into the interstitial tissue, and ultimately make their way across the urothelium, where upon exposure to the urine, the mineralized tissue serves as a nidus for overgrowth with calcium oxalate into a stone. Our group has found that many of the unusual morphologies found in RP and stones, such as concentrically laminated spherulites and mineralized collagenous tissue, can be reproduced in vitro using a polymer-induced liquid precursor (PILP) process, in which acidic polypeptides induce a liquid phase amorphous precursor to the mineral, yielding non-equilibrium crystal morphologies. Given that there are many acidic proteins and polysaccharides present in the renal tissue and urine, we have put forth the hypothesis that the PILP system may be involved in urolithiasis. Therefore, our goal is to develop an in vitro model system of these two stages of composite stone formation to study the role that various acidic macromolecules may play. In our initial experiments presented here, the development of “biomimetic” RP was investigated, which will then serve as a nidus for calcium oxalate overgrowth studies. To mimic the tissue environment, MatriStem® (ACell, Inc.), a decellularized porcine urinary bladder matrix was used, because it has both an intact epithelial basement membrane surface and a tunica propria layer, thus providing the two types of matrix constituents found associated with mineral in the early stages of RP formation. We found that when using the PILP process to mineralize this tissue matrix, the two sides led to dramatically different mineral textures, and they bore a striking resemblance to native RP, which was not seen in the tissue mineralized via the classical crystal nucleation and growth process. The interstitium side predominantly consisted of collagen-associated mineral, while the luminal side had much less mineral, which appeared to be tiny spherules embedded within the basement membrane. Although these studies are only preliminary, they support our hypothesis that kidney stones may involve non-classical crystallization pathways induced by the large variety of macromolecular species in the urinary environment. We believe that mineralization of native tissue scaffolds is useful for developing a model system of stone formation, with the ultimate goal of developing strategies to avoid RP and its detrimental consequences in stone formation, or developing therapeutic treatments to prevent or cure the disease. Supported by NIDDK grant RO1DK092311.
Literatur
1.
Zurück zum Zitat Randall A (1940) Papillary pathology as precursor of primary renal calculus. J Urol 44:580–589 Randall A (1940) Papillary pathology as precursor of primary renal calculus. J Urol 44:580–589
5.
Zurück zum Zitat Al-Atar U et al (2010) Mechanism of calcium oxalate monohydrate kidney stones formation: layered spherulitic growth. Chem Mater 22(4):1318–1329CrossRef Al-Atar U et al (2010) Mechanism of calcium oxalate monohydrate kidney stones formation: layered spherulitic growth. Chem Mater 22(4):1318–1329CrossRef
6.
Zurück zum Zitat Evan A et al (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69(8):1313–1318PubMed Evan A et al (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69(8):1313–1318PubMed
7.
Zurück zum Zitat Evan AP (2007) Histopathology predicts the mechanism of stone formation. AIP Conf Proc 900(1):15–25CrossRef Evan AP (2007) Histopathology predicts the mechanism of stone formation. AIP Conf Proc 900(1):15–25CrossRef
8.
Zurück zum Zitat Evan AP et al (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec: Adv Integr Anat Evol Biol 290(10):1315–1323CrossRef Evan AP et al (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec: Adv Integr Anat Evol Biol 290(10):1315–1323CrossRef
9.
Zurück zum Zitat Evan AP et al (2005) Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68(1):145–154PubMedCrossRef Evan AP et al (2005) Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68(1):145–154PubMedCrossRef
10.
Zurück zum Zitat Evan AP et al (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Investig 111(5):607–616PubMedCentralPubMedCrossRef Evan AP et al (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Investig 111(5):607–616PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Low RK, Stoller ML (1997) Endoscopic mapping of renal papillae for Randall’s plaques in patients with urinary stone disease. J Urol 158(6):2062–2064PubMedCrossRef Low RK, Stoller ML (1997) Endoscopic mapping of renal papillae for Randall’s plaques in patients with urinary stone disease. J Urol 158(6):2062–2064PubMedCrossRef
13.
Zurück zum Zitat Grases F et al (2013) Renal papillary calcification and the development of calcium oxalate monohydrate papillary renal calculi: a case series study. BMC Urol 13:14PubMedCentralPubMedCrossRef Grases F et al (2013) Renal papillary calcification and the development of calcium oxalate monohydrate papillary renal calculi: a case series study. BMC Urol 13:14PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Matlaga BR et al (2006) Endoscopic evidence of calculus attachment to Randall’s plaque. J Urol 175(5):1720–1724PubMedCrossRef Matlaga BR et al (2006) Endoscopic evidence of calculus attachment to Randall’s plaque. J Urol 175(5):1720–1724PubMedCrossRef
16.
Zurück zum Zitat Miller NL et al (2009) A formal test of the hypothesis that idiopathic calcium oxalate stones grow on Randall’s plaque. BJU Int 103(7):966–971PubMedCentralPubMedCrossRef Miller NL et al (2009) A formal test of the hypothesis that idiopathic calcium oxalate stones grow on Randall’s plaque. BJU Int 103(7):966–971PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Sepe V et al (2006) Henle loop basement membrane as initial site for Randall plaque formation. Am J Kidney Dis 48(5):706–711PubMedCrossRef Sepe V et al (2006) Henle loop basement membrane as initial site for Randall plaque formation. Am J Kidney Dis 48(5):706–711PubMedCrossRef
18.
Zurück zum Zitat Sayer JA, Carr G, Simmons NL (2004) Nephrocalcinosis: molecular insights into calcium precipitation within the kidney. Clin Sci 106(6):549–561PubMedCrossRef Sayer JA, Carr G, Simmons NL (2004) Nephrocalcinosis: molecular insights into calcium precipitation within the kidney. Clin Sci 106(6):549–561PubMedCrossRef
19.
Zurück zum Zitat Vervaet BA et al (2009) Nephrocalcinosis: new insights into mechanisms and consequences. Nephrol Dial Transplant 24(7):2030–2035PubMedCrossRef Vervaet BA et al (2009) Nephrocalcinosis: new insights into mechanisms and consequences. Nephrol Dial Transplant 24(7):2030–2035PubMedCrossRef
20.
Zurück zum Zitat Ghadially FN (2001) As you like it, Part 3: a critique and historical review of calcification as seen with the electron microscope. Ultrastruct Pathol 25(3):243–267PubMedCrossRef Ghadially FN (2001) As you like it, Part 3: a critique and historical review of calcification as seen with the electron microscope. Ultrastruct Pathol 25(3):243–267PubMedCrossRef
21.
Zurück zum Zitat Stoller ML et al (1996) High resolution radiography of cadaveric kidneys: unraveling the mystery of Randall’s plaque formation. J Urol 156(4):1263–1266PubMedCrossRef Stoller ML et al (1996) High resolution radiography of cadaveric kidneys: unraveling the mystery of Randall’s plaque formation. J Urol 156(4):1263–1266PubMedCrossRef
22.
Zurück zum Zitat Stoller ML et al (2004) The primary stone event: a new hypothesis involving a vascular etiology. J Urol 171(5):1920–1924PubMedCrossRef Stoller ML et al (2004) The primary stone event: a new hypothesis involving a vascular etiology. J Urol 171(5):1920–1924PubMedCrossRef
23.
Zurück zum Zitat Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157(1):376–383PubMedCrossRef Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157(1):376–383PubMedCrossRef
24.
Zurück zum Zitat Tiselius HG (2011) A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol Res 39(4):231–243PubMedCrossRef Tiselius HG (2011) A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol Res 39(4):231–243PubMedCrossRef
25.
Zurück zum Zitat Bazin D, Daudon M (2012) Pathological calcifications and selected examples at the medicine-solid-state physics interface. J Phys D Appl Phys 45(38):383001CrossRef Bazin D, Daudon M (2012) Pathological calcifications and selected examples at the medicine-solid-state physics interface. J Phys D Appl Phys 45(38):383001CrossRef
26.
Zurück zum Zitat Amos F et al (2009) Mechanism of formation of concentrically laminated spherules: implication to Randall’s plaque and stone formation. Urol Res 37(1):11–17PubMedCentralPubMedCrossRef Amos F et al (2009) Mechanism of formation of concentrically laminated spherules: implication to Randall’s plaque and stone formation. Urol Res 37(1):11–17PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Khan S (2006) Renal tubular damage/dysfunction: key to the formation of kidney stones. Urol Res 34(2):86–91PubMedCrossRef Khan S (2006) Renal tubular damage/dysfunction: key to the formation of kidney stones. Urol Res 34(2):86–91PubMedCrossRef
28.
Zurück zum Zitat Olszta MJ et al (2007) Bone structure and formation: a new perspective. Mater Sci Eng R Rep 58(3–5):77–116CrossRef Olszta MJ et al (2007) Bone structure and formation: a new perspective. Mater Sci Eng R Rep 58(3–5):77–116CrossRef
29.
Zurück zum Zitat Ohman S, Larsson L (1992) Evidence for Randall’s plaques to be the origin of primary renal stones. Med Hypotheses 39(4):360–363PubMedCrossRef Ohman S, Larsson L (1992) Evidence for Randall’s plaques to be the origin of primary renal stones. Med Hypotheses 39(4):360–363PubMedCrossRef
30.
Zurück zum Zitat Khan SR, Finlayson B, Hackett R (1984) Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23(2):194–199PubMedCrossRef Khan SR, Finlayson B, Hackett R (1984) Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23(2):194–199PubMedCrossRef
31.
Zurück zum Zitat Tiselius HG et al (2009) Studies on the role of calcium phosphate in the process of calcium oxalate crystal formation. Urol Res 37(4):181–192PubMedCrossRef Tiselius HG et al (2009) Studies on the role of calcium phosphate in the process of calcium oxalate crystal formation. Urol Res 37(4):181–192PubMedCrossRef
32.
Zurück zum Zitat Khan SR, Canales BK (2011) Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall’s plaques? J Urol 186(3):1107–1113PubMedCentralPubMedCrossRef Khan SR, Canales BK (2011) Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall’s plaques? J Urol 186(3):1107–1113PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Nancollas G, Henneman Z (2010) Calcium oxalate: calcium phosphate transformations. Urol Res 38(4):277–280PubMedCrossRef Nancollas G, Henneman Z (2010) Calcium oxalate: calcium phosphate transformations. Urol Res 38(4):277–280PubMedCrossRef
34.
Zurück zum Zitat Hug S et al (2012) Mechanism of inhibition of calcium oxalate crystal growth by an osteopontin phosphopeptide. Soft Matter 8(4):1226–1233CrossRef Hug S et al (2012) Mechanism of inhibition of calcium oxalate crystal growth by an osteopontin phosphopeptide. Soft Matter 8(4):1226–1233CrossRef
35.
Zurück zum Zitat Saw NK, Rao PN, Kavanagh JP (2008) A nidus, crystalluria and aggregation: key ingredients for stone enlargement. Urol Res 36(1):11–15PubMedCrossRef Saw NK, Rao PN, Kavanagh JP (2008) A nidus, crystalluria and aggregation: key ingredients for stone enlargement. Urol Res 36(1):11–15PubMedCrossRef
36.
Zurück zum Zitat Thurgood LA et al (2010) Comparison of the specific incorporation of intracrystalline proteins into urinary calcium oxalate monohydrate and dihydrate crystals. J Proteome Res 9(9):4745–4757PubMedCrossRef Thurgood LA et al (2010) Comparison of the specific incorporation of intracrystalline proteins into urinary calcium oxalate monohydrate and dihydrate crystals. J Proteome Res 9(9):4745–4757PubMedCrossRef
37.
Zurück zum Zitat Achilles W (1997) In vitro crystallisation systems for the study of urinary stone formation. World J Urol 15(4):244–251PubMedCrossRef Achilles W (1997) In vitro crystallisation systems for the study of urinary stone formation. World J Urol 15(4):244–251PubMedCrossRef
38.
Zurück zum Zitat Christmas KG et al (2002) Aggregation and dispersion characteristics of calcium oxalate monohydrate: effect of urinary species. J Colloid Interface Sci 256(1):168–174PubMedCrossRef Christmas KG et al (2002) Aggregation and dispersion characteristics of calcium oxalate monohydrate: effect of urinary species. J Colloid Interface Sci 256(1):168–174PubMedCrossRef
39.
Zurück zum Zitat Hirose M et al (2012) Role of osteopontin in early phase of renal crystal formation: immunohistochemical and microstructural comparisons with osteopontin knock-out mice. Urol Res 40(2):121–129PubMedCrossRef Hirose M et al (2012) Role of osteopontin in early phase of renal crystal formation: immunohistochemical and microstructural comparisons with osteopontin knock-out mice. Urol Res 40(2):121–129PubMedCrossRef
40.
Zurück zum Zitat Kolbach AM et al (2012) Relative deficiency of acidic isoforms of osteopontin from stone former urine. Urol Res 40(5):447–454PubMedCrossRef Kolbach AM et al (2012) Relative deficiency of acidic isoforms of osteopontin from stone former urine. Urol Res 40(5):447–454PubMedCrossRef
41.
Zurück zum Zitat Okada A et al (2008) Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney. J Bone Miner Res 23(10):1629–1637PubMedCrossRef Okada A et al (2008) Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney. J Bone Miner Res 23(10):1629–1637PubMedCrossRef
42.
Zurück zum Zitat Okada A et al (2010) Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice: detection by association analysis of stone-related gene expression and microstructural observation. J Bone Miner Res 25(12):2701–2711PubMedCrossRef Okada A et al (2010) Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice: detection by association analysis of stone-related gene expression and microstructural observation. J Bone Miner Res 25(12):2701–2711PubMedCrossRef
43.
Zurück zum Zitat Lan M et al (2007) Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am J Physiol Renal Physiol 293(6):F1935–F1943CrossRef Lan M et al (2007) Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am J Physiol Renal Physiol 293(6):F1935–F1943CrossRef
44.
Zurück zum Zitat Liu Y et al (2010) Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein. Am J Physiol Renal Physiol 299(3):F469–F478PubMedCentralPubMedCrossRef Liu Y et al (2010) Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein. Am J Physiol Renal Physiol 299(3):F469–F478PubMedCentralPubMedCrossRef
45.
Zurück zum Zitat Grohe B et al (2009) Crystallization of calcium oxalates is controlled by molecular hydrophilicity and specific polyanion-crystal interactions. Langmuir 25(19):11635–11646PubMedCrossRef Grohe B et al (2009) Crystallization of calcium oxalates is controlled by molecular hydrophilicity and specific polyanion-crystal interactions. Langmuir 25(19):11635–11646PubMedCrossRef
46.
Zurück zum Zitat Kleinman JG et al (1995) Expression of osteopontin, a urinary inhibitor of stone mineral crystal growth, in rat kidney. Kidney Int 47(6):1585–1596PubMedCrossRef Kleinman JG et al (1995) Expression of osteopontin, a urinary inhibitor of stone mineral crystal growth, in rat kidney. Kidney Int 47(6):1585–1596PubMedCrossRef
47.
48.
Zurück zum Zitat Kim IW Biomimetic and bioinspired crystallization with macromolecular additives Kim IW Biomimetic and bioinspired crystallization with macromolecular additives
49.
Zurück zum Zitat Marangella M et al (1985) Urine saturation with calcium salts in normal subjects and idiopathic calcium stone-formers estimated by an improved computer model system. Urol Res 13(4):189–193PubMedCrossRef Marangella M et al (1985) Urine saturation with calcium salts in normal subjects and idiopathic calcium stone-formers estimated by an improved computer model system. Urol Res 13(4):189–193PubMedCrossRef
50.
Zurück zum Zitat Wesson JA et al (2003) Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 14(1):139–147PubMedCrossRef Wesson JA et al (2003) Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 14(1):139–147PubMedCrossRef
51.
Zurück zum Zitat Xie A-J et al (2009) Formation of calcium oxalate concentric precipitate rings in two-dimensional agar gel systems containing Ca2+ –RE3+(RE=Er, Gd and La)–C2O4 2−. Colloids Surfaces A: Physicochem Eng Aspects 332(2):192–199CrossRef Xie A-J et al (2009) Formation of calcium oxalate concentric precipitate rings in two-dimensional agar gel systems containing Ca2+ –RE3+(RE=Er, Gd and La)–C2O4 2−. Colloids Surfaces A: Physicochem Eng Aspects 332(2):192–199CrossRef
52.
Zurück zum Zitat Khan SR, Finlayson B, Hackett RL (1982) Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papilla. Am J Pathol 107(1):59PubMedCentralPubMed Khan SR, Finlayson B, Hackett RL (1982) Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papilla. Am J Pathol 107(1):59PubMedCentralPubMed
53.
Zurück zum Zitat Gnessin E, Lingeman JE, Evan AP (2010) Pathogenesis of renal calculi. Turkish J Urol 36(2):190–199CrossRef Gnessin E, Lingeman JE, Evan AP (2010) Pathogenesis of renal calculi. Turkish J Urol 36(2):190–199CrossRef
54.
Zurück zum Zitat Khan SR (2012) Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 189(3):803–811PubMedCrossRef Khan SR (2012) Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 189(3):803–811PubMedCrossRef
55.
Zurück zum Zitat Gower LB, Amos FF, Khan SR (2010) Mineralogical signatures of stone formation mechanisms. Urol Res 38(4):281–292PubMedCrossRef Gower LB, Amos FF, Khan SR (2010) Mineralogical signatures of stone formation mechanisms. Urol Res 38(4):281–292PubMedCrossRef
56.
Zurück zum Zitat Grover PK, Kim DS, Ryall RL (2002) The effect of seed crystals of hydroxyapatite and brushite on the crystallization of calcium oxalate in undiluted human urine in vitro: implications for urinary stone pathogenesis. Mol Med 8(4):200–209PubMedCentralPubMed Grover PK, Kim DS, Ryall RL (2002) The effect of seed crystals of hydroxyapatite and brushite on the crystallization of calcium oxalate in undiluted human urine in vitro: implications for urinary stone pathogenesis. Mol Med 8(4):200–209PubMedCentralPubMed
57.
Zurück zum Zitat Amos FF et al. (2007) Relevance of a polymer-induced liquid-precursor (PILP) mineralization process to normal and pathological biomineralization. In: biomineralization—medical aspects of solubility. Wiley, New York. pp. 125–217 Amos FF et al. (2007) Relevance of a polymer-induced liquid-precursor (PILP) mineralization process to normal and pathological biomineralization. In: biomineralization—medical aspects of solubility. Wiley, New York. pp. 125–217
58.
Zurück zum Zitat Olszta MJ, Douglas EP, Gower LB (2003) Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process. Calcif Tissue Int 72(5):583–591PubMedCrossRef Olszta MJ, Douglas EP, Gower LB (2003) Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process. Calcif Tissue Int 72(5):583–591PubMedCrossRef
59.
Zurück zum Zitat Gower LB, Odom DJ (2000) Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J Cryst Growth 210(4):719–734CrossRef Gower LB, Odom DJ (2000) Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J Cryst Growth 210(4):719–734CrossRef
60.
Zurück zum Zitat Jee S–S, Thula TT, Gower LB (2010) Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: influence of polymer molecular weight. Acta Biomater 6(9):3676–3686PubMedCrossRef Jee S–S, Thula TT, Gower LB (2010) Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: influence of polymer molecular weight. Acta Biomater 6(9):3676–3686PubMedCrossRef
61.
Zurück zum Zitat Gower LB (2008) Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 108(11):4551–4627PubMedCrossRef Gower LB (2008) Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 108(11):4551–4627PubMedCrossRef
62.
Zurück zum Zitat Ryall R (2008) The future of stone research: rummagings in the attic, Randall’s plaque, nanobacteria, and lessons from phylogeny. Urol Res 36(2):77–97PubMedCrossRef Ryall R (2008) The future of stone research: rummagings in the attic, Randall’s plaque, nanobacteria, and lessons from phylogeny. Urol Res 36(2):77–97PubMedCrossRef
64.
Zurück zum Zitat Nudelman F et al (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9(12):1004–1009PubMedCentralPubMedCrossRef Nudelman F et al (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9(12):1004–1009PubMedCentralPubMedCrossRef
65.
Zurück zum Zitat Bradt J-H et al (1999) Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem Mater 11(10):2694–2701CrossRef Bradt J-H et al (1999) Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem Mater 11(10):2694–2701CrossRef
66.
Zurück zum Zitat Rodriguez DE et al (2014) Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts. Acta Biomater 10(1):494–507PubMedCrossRef Rodriguez DE et al (2014) Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts. Acta Biomater 10(1):494–507PubMedCrossRef
67.
Zurück zum Zitat Thula TT et al (2010) Mimicking the nanostructure of bone: comparison of polymeric process-directing agents. Polymers 3(1):10–35CrossRef Thula TT et al (2010) Mimicking the nanostructure of bone: comparison of polymeric process-directing agents. Polymers 3(1):10–35CrossRef
68.
Zurück zum Zitat Kim YK et al (2010) Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions. Biomaterials 31(25):6618–6627PubMedCentralPubMedCrossRef Kim YK et al (2010) Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions. Biomaterials 31(25):6618–6627PubMedCentralPubMedCrossRef
69.
Zurück zum Zitat Baumann JM, Affolter B, Casella R (2011) Aggregation of freshly precipitated calcium oxalate crystals in urine of calcium stone patients and controls. Urol Res 39(6):421–427PubMedCrossRef Baumann JM, Affolter B, Casella R (2011) Aggregation of freshly precipitated calcium oxalate crystals in urine of calcium stone patients and controls. Urol Res 39(6):421–427PubMedCrossRef
71.
Zurück zum Zitat Viswanathan P et al (2011) Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein. Urol Res 39(4):269–282PubMedCentralPubMedCrossRef Viswanathan P et al (2011) Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein. Urol Res 39(4):269–282PubMedCentralPubMedCrossRef
72.
73.
Zurück zum Zitat Hunter GK et al (1985) Inhibition of hydroxyapatite formation in collagen gels by chondroitin sulphate. Biochem J 228(2):463–469PubMedCentralPubMed Hunter GK et al (1985) Inhibition of hydroxyapatite formation in collagen gels by chondroitin sulphate. Biochem J 228(2):463–469PubMedCentralPubMed
75.
Zurück zum Zitat Boskey AL et al (2012) Post-translational modification of osteopontin: effects on in vitro hydroxyapatite formation and growth. Biochem Biophys Res Commun 419(2):333–338PubMedCentralPubMedCrossRef Boskey AL et al (2012) Post-translational modification of osteopontin: effects on in vitro hydroxyapatite formation and growth. Biochem Biophys Res Commun 419(2):333–338PubMedCentralPubMedCrossRef
76.
Zurück zum Zitat Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5(1):1–13PubMedCrossRef Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5(1):1–13PubMedCrossRef
77.
Zurück zum Zitat Freytes DO et al (2008) Hydrated versus lyophilized forms of porcine extracellular matrix derived from the urinary bladder. J Biomed Mater Res A 87A(4):862–872CrossRef Freytes DO et al (2008) Hydrated versus lyophilized forms of porcine extracellular matrix derived from the urinary bladder. J Biomed Mater Res A 87A(4):862–872CrossRef
78.
Zurück zum Zitat Azuma N et al (2006) A rapid method for purifying osteopontin from bovine milk and interaction between osteopontin and other milk proteins. Int Dairy J 16(4):370–378CrossRef Azuma N et al (2006) A rapid method for purifying osteopontin from bovine milk and interaction between osteopontin and other milk proteins. Int Dairy J 16(4):370–378CrossRef
79.
Zurück zum Zitat Sørensen E, Petersen T (1993) Purification and characterization of three proteins isolated from the proteose peptone fraction of bovine milk. J Dairy Res 60:189–197PubMedCrossRef Sørensen E, Petersen T (1993) Purification and characterization of three proteins isolated from the proteose peptone fraction of bovine milk. J Dairy Res 60:189–197PubMedCrossRef
80.
Zurück zum Zitat Thula TT et al (2011) In vitro mineralization of dense collagen substrates: a biomimetic approach toward the development of bone-graft materials. Acta Biomater 7(8):3158–3169PubMedCentralPubMedCrossRef Thula TT et al (2011) In vitro mineralization of dense collagen substrates: a biomimetic approach toward the development of bone-graft materials. Acta Biomater 7(8):3158–3169PubMedCentralPubMedCrossRef
81.
Zurück zum Zitat Bewernitz MA et al (2012) A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss 159:291–312CrossRef Bewernitz MA et al (2012) A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss 159:291–312CrossRef
82.
Zurück zum Zitat Kwak S-Y et al (2009) Role of 20-kDa amelogenin (P148) phosphorylation in calcium phosphate formation in vitro. J Biol Chem 284(28):18972–18979PubMedCentralPubMedCrossRef Kwak S-Y et al (2009) Role of 20-kDa amelogenin (P148) phosphorylation in calcium phosphate formation in vitro. J Biol Chem 284(28):18972–18979PubMedCentralPubMedCrossRef
83.
Zurück zum Zitat Deshpande AS et al (2011) Primary structure and phosphorylation of Dentin Matrix Protein 1 (DMP1) and Dentin Phosphophoryn (DPP) uniquely determine their role in biomineralization. Biomacromolecules 12(8):2933–2945PubMedCentralPubMedCrossRef Deshpande AS et al (2011) Primary structure and phosphorylation of Dentin Matrix Protein 1 (DMP1) and Dentin Phosphophoryn (DPP) uniquely determine their role in biomineralization. Biomacromolecules 12(8):2933–2945PubMedCentralPubMedCrossRef
84.
Zurück zum Zitat LeBleu VS, MacDonald B, Kalluri R (2007) Structure and function of basement membranes. Exp Biol Med 232(9):1121–1129CrossRef LeBleu VS, MacDonald B, Kalluri R (2007) Structure and function of basement membranes. Exp Biol Med 232(9):1121–1129CrossRef
Metadaten
Titel
Biomimetic Randall’s plaque as an in vitro model system for studying the role of acidic biopolymers in idiopathic stone formation
verfasst von
Archana Chidambaram
Douglas Rodriguez
Saeed Khan
Laurie Gower
Publikationsdatum
01.01.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Urolithiasis / Ausgabe Sonderheft 1/2015
Print ISSN: 2194-7228
Elektronische ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-014-0704-x

Weitere Artikel der Sonderheft 1/2015

Urolithiasis 1/2015 Zur Ausgabe

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.