Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 4/2020

04.02.2020 | Original Article

Bovine papillomavirus prostate cancer antigen virus-like particle vaccines are efficacious in advanced cancers in the TRAMP mouse spontaneous prostate cancer model

verfasst von: Brian W. Simons, Fabiana Cannella, Dayana T. Rowley, Raphael P. Viscidi

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Abstract

Prostate cancer is a candidate for immunotherapy because cancer cells express tissue-specific proteins that can be therapeutic targets. However, immune checkpoint inhibitors and active immunization have performed poorly in clinical trials. We developed a novel virus-like particle (VLP) vaccine composed of bovine papillomavirus L1 protein engineered to display surface docking sites. We decorated VLPs with peptides encoding T cell epitopes from two prostate cancer-associated tumor antigens, prostate stem cell antigen (PSCA), and prostatic acid phosphatase (PAP-1 and PAP-2), and a neo-antigen, stimulator of prostatic adenocarcinoma-specific T cells (SPAS-1). The VLP vaccines induced a mean frequency of antigen-specific IFN-γ secreting CD8 + T cells of 2.9% to PSCA, 9.5% to SPAS-1, 0.03% to PAP-1, and 0.03% to PAP-2 in tumor-bearing TRAMP mice. We treated TRAMP mice at 19–20 weeks of age, when mice have advanced stages of carcinogenesis, with either VLP vaccine, anti-PD1 antibody, or combination immunotherapy. The VLP vaccine alone or in combination with anti-PD1 antibody significantly reduced tumor burden, while anti-PD1 antibody had a modest non-significant therapeutic effect. All treatments significantly increased CD3 + and CD8 + T cell infiltration into tumor tissue compared to control mice, and combination therapy resulted in significantly greater CD3 + and CD8 + T cell infiltration than monotherapy. Reduction in tumor burden in vaccine-treated mice was inversely correlated with CD8 + T cell numbers in tumor tissue. No other immunotherapy has shown efficacy in this animal model of advanced prostate cancer, making bovine papillomavirus VLPs an attractive vaccine technology to test in patients with metastatic prostate cancer.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Miranti CK, Koul HR (2017) Meeting Report of Joint Society of Basic Urologic Research (SBUR) and European Society of Urological Research (ESUR) symposium fall 2017. Am J Clin Exp Urol 5(1):1–92 (Abstract# P54) CrossRef Miranti CK, Koul HR (2017) Meeting Report of Joint Society of Basic Urologic Research (SBUR) and European Society of Urological Research (ESUR) symposium fall 2017. Am J Clin Exp Urol 5(1):1–92 (Abstract# P54) CrossRef
3.
Zurück zum Zitat Kiessling A, Wehner R, Fussel S, Bachmann M, Wirth MP, Schmitz M (2012) Tumor-associated antigens for specific immunotherapy of prostate cancer. Cancers (Basel) 4:193–217CrossRef Kiessling A, Wehner R, Fussel S, Bachmann M, Wirth MP, Schmitz M (2012) Tumor-associated antigens for specific immunotherapy of prostate cancer. Cancers (Basel) 4:193–217CrossRef
4.
Zurück zum Zitat Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422CrossRefPubMed Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422CrossRefPubMed
5.
Zurück zum Zitat Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, Provost N, Frohlich MW (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115:3670–3679CrossRefPubMed Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, Provost N, Frohlich MW (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115:3670–3679CrossRefPubMed
6.
Zurück zum Zitat Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, Gravis G, Ganju V, Polikoff J, Saad F, Humanski P, Piulats JM, Gonzalez MP, Ng SS, Jaeger D, Parnis FX, Franke FA, Puente J, Carvajal R, Sengelov L, McHenry MB, Varma A, van den Eertwegh AJ, Gerritsen W (2017) Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol 35:40–47CrossRefPubMed Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, Gravis G, Ganju V, Polikoff J, Saad F, Humanski P, Piulats JM, Gonzalez MP, Ng SS, Jaeger D, Parnis FX, Franke FA, Puente J, Carvajal R, Sengelov L, McHenry MB, Varma A, van den Eertwegh AJ, Gerritsen W (2017) Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol 35:40–47CrossRefPubMed
7.
Zurück zum Zitat van den Eertwegh AJ, Versluis J, van den Berg HP, Santegoets SJ, van Moorselaar RJ, van der Sluis TM, Gall HE, Harding TC, Jooss K, Lowy I, Pinedo HM, Scheper RJ, Stam AG, von Blomberg BM, de Gruijl TD, Hege K, Sacks N, Gerritsen WR (2012) Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol 13:509–517CrossRefPubMed van den Eertwegh AJ, Versluis J, van den Berg HP, Santegoets SJ, van Moorselaar RJ, van der Sluis TM, Gall HE, Harding TC, Jooss K, Lowy I, Pinedo HM, Scheper RJ, Stam AG, von Blomberg BM, de Gruijl TD, Hege K, Sacks N, Gerritsen WR (2012) Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol 13:509–517CrossRefPubMed
8.
Zurück zum Zitat Parsons JK, Pinto PA, Pavlovich CP, Uchio E, Kim HL, Nguyen MN, Gulley JL, Jamieson C, Hsu P, Wojtowicz M, Parnes H, Schlom J, Dahut WL, Madan RA, Donahue RN, Chow HS (2018) A randomized, double-blind, phase II trial of PSA-TRICOM (PROSTVAC) in patients with localized prostate cancer: the immunotherapy to prevent progression on active surveillance study. Eur Urol Focus 4:636–638CrossRefPubMedPubMedCentral Parsons JK, Pinto PA, Pavlovich CP, Uchio E, Kim HL, Nguyen MN, Gulley JL, Jamieson C, Hsu P, Wojtowicz M, Parnes H, Schlom J, Dahut WL, Madan RA, Donahue RN, Chow HS (2018) A randomized, double-blind, phase II trial of PSA-TRICOM (PROSTVAC) in patients with localized prostate cancer: the immunotherapy to prevent progression on active surveillance study. Eur Urol Focus 4:636–638CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Kantoff PW, Gulley JL, Pico-Navarro C (2017) Revised overall survival analysis of a phase II, randomized, double-blind, controlled study of PROSTVAC in men with metastatic castration-resistant prostate cancer. J Clin Oncol 35:124–125CrossRefPubMed Kantoff PW, Gulley JL, Pico-Navarro C (2017) Revised overall survival analysis of a phase II, randomized, double-blind, controlled study of PROSTVAC in men with metastatic castration-resistant prostate cancer. J Clin Oncol 35:124–125CrossRefPubMed
10.
Zurück zum Zitat Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, Manson K, Panicali DL, Laus R, Schlom J, Dahut WL, Arlen PM, Gulley JL, Godfrey WR (2010) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28:1099–1105CrossRefPubMedPubMedCentral Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, Manson K, Panicali DL, Laus R, Schlom J, Dahut WL, Arlen PM, Gulley JL, Godfrey WR (2010) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28:1099–1105CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Higano CS, Corman JM, Smith DC, Centeno AS, Steidle CP, Gittleman M, Simons JW, Sacks N, Aimi J, Small EJ (2008) Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer 113:975–984CrossRefPubMed Higano CS, Corman JM, Smith DC, Centeno AS, Steidle CP, Gittleman M, Simons JW, Sacks N, Aimi J, Small EJ (2008) Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer 113:975–984CrossRefPubMed
12.
Zurück zum Zitat Lubaroff DM (2012) Prostate cancer vaccines in clinical trials. Expert Rev Vaccines 11:857–868CrossRefPubMed Lubaroff DM (2012) Prostate cancer vaccines in clinical trials. Expert Rev Vaccines 11:857–868CrossRefPubMed
13.
Zurück zum Zitat McNeel DG, Dunphy EJ, Davies JG, Frye TP, Johnson LE, Staab MJ, Horvath DL, Straus J, Alberti D, Marnocha R, Liu G, Eickhoff JC, Wilding G (2009) Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J Clin Oncol 27:4047–4054CrossRefPubMedPubMedCentral McNeel DG, Dunphy EJ, Davies JG, Frye TP, Johnson LE, Staab MJ, Horvath DL, Straus J, Alberti D, Marnocha R, Liu G, Eickhoff JC, Wilding G (2009) Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J Clin Oncol 27:4047–4054CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Pavlenko M, Roos AK, Lundqvist A, Palmborg A, Miller AM, Ozenci V, Bergman B, Egevad L, Hellstrom M, Kiessling R, Masucci G, Wersall P, Nilsson S, Pisa P (2004) A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br J Cancer 91:688–694CrossRefPubMedPubMedCentral Pavlenko M, Roos AK, Lundqvist A, Palmborg A, Miller AM, Ozenci V, Bergman B, Egevad L, Hellstrom M, Kiessling R, Masucci G, Wersall P, Nilsson S, Pisa P (2004) A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br J Cancer 91:688–694CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Pejawar-Gaddy S, Rajawat Y, Hilioti Z, Xue J, Gaddy DF, Finn OJ, Viscidi RP, Bossis I (2010) Generation of a tumor vaccine candidate based on conjugation of a MUC1 peptide to polyionic papillomavirus virus-like particles. Cancer Immunol Immunother 59:1685–1696CrossRefPubMedPubMedCentral Pejawar-Gaddy S, Rajawat Y, Hilioti Z, Xue J, Gaddy DF, Finn OJ, Viscidi RP, Bossis I (2010) Generation of a tumor vaccine candidate based on conjugation of a MUC1 peptide to polyionic papillomavirus virus-like particles. Cancer Immunol Immunother 59:1685–1696CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Garcia-Hernandez ML, Gray A, Hubby B, Klinger OJ, Kast WM (2008) Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Res 68:861–869CrossRef Garcia-Hernandez ML, Gray A, Hubby B, Klinger OJ, Kast WM (2008) Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Res 68:861–869CrossRef
17.
Zurück zum Zitat Spies E, Reichardt W, Alvarez G, Groettrup M, Ohlschlager P (2012) An artificial PAP gene breaks self-tolerance and promotes tumor regression in the TRAMP model for prostate carcinoma. Mol Ther 20:555–564CrossRefPubMed Spies E, Reichardt W, Alvarez G, Groettrup M, Ohlschlager P (2012) An artificial PAP gene breaks self-tolerance and promotes tumor regression in the TRAMP model for prostate carcinoma. Mol Ther 20:555–564CrossRefPubMed
18.
Zurück zum Zitat Fasso M, Waitz R, Hou Y, Rim T, Greenberg NM, Shastri N, Fong L, Allison JP (2008) SPAS-1 (stimulator of prostatic adenocarcinoma-specific T cells)/SH3GLB2: A prostate tumor antigen identified by CTLA-4 blockade. Proc Natl Acad Sci USA 105:3509–3514CrossRefPubMedPubMedCentral Fasso M, Waitz R, Hou Y, Rim T, Greenberg NM, Shastri N, Fong L, Allison JP (2008) SPAS-1 (stimulator of prostatic adenocarcinoma-specific T cells)/SH3GLB2: A prostate tumor antigen identified by CTLA-4 blockade. Proc Natl Acad Sci USA 105:3509–3514CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Hearn A, York IA, Rock KL (2009) The specificity of trimming of MHC class I-presented peptides in the endoplasmic reticulum. J Immunol 183:5526–5536CrossRefPubMed Hearn A, York IA, Rock KL (2009) The specificity of trimming of MHC class I-presented peptides in the endoplasmic reticulum. J Immunol 183:5526–5536CrossRefPubMed
20.
Zurück zum Zitat Coban C, Kobiyama K, Aoshi T, Takeshita F, Horii T, Akira S, Ishii KJ (2011) Novel strategies to improve DNA vaccine immunogenicity. Curr Gene Ther 11:479–484CrossRefPubMed Coban C, Kobiyama K, Aoshi T, Takeshita F, Horii T, Akira S, Ishii KJ (2011) Novel strategies to improve DNA vaccine immunogenicity. Curr Gene Ther 11:479–484CrossRefPubMed
21.
Zurück zum Zitat Eriksson F, Totterman T, Maltais AK, Pisa P, Yachnin J (2013) DNA vaccine coding for the rhesus prostate specific antigen delivered by intradermal electroporation in patients with relapsed prostate cancer. Vaccine 31:3843–3848CrossRefPubMed Eriksson F, Totterman T, Maltais AK, Pisa P, Yachnin J (2013) DNA vaccine coding for the rhesus prostate specific antigen delivered by intradermal electroporation in patients with relapsed prostate cancer. Vaccine 31:3843–3848CrossRefPubMed
22.
Zurück zum Zitat Ura T, Okuda K, Shimada M (2014) Developments in viral vector-based vaccines. Vaccines (Basel) 2:624–641CrossRef Ura T, Okuda K, Shimada M (2014) Developments in viral vector-based vaccines. Vaccines (Basel) 2:624–641CrossRef
24.
Zurück zum Zitat Calvo TM, Allard M, Dutoit V, Dietrich PY, Walker PR (2019) Peptides as cancer vaccines. Curr Opin Pharmacol 47:20–26CrossRef Calvo TM, Allard M, Dutoit V, Dietrich PY, Walker PR (2019) Peptides as cancer vaccines. Curr Opin Pharmacol 47:20–26CrossRef
25.
Zurück zum Zitat Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L (2018) Trial watch: Peptide-based vaccines in anticancer therapy. Oncoimmunology 7:e1511506CrossRefPubMedPubMedCentral Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L (2018) Trial watch: Peptide-based vaccines in anticancer therapy. Oncoimmunology 7:e1511506CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Obara W, Sato F, Takeda K, Kato R, Kato Y, Kanehira M, Takata R, Mimata H, Sugai T, Nakamura Y, Fujioka T (2017) Phase I clinical trial of cell division associated 1 (CDCA1) peptide vaccination for castration resistant prostate cancer. Cancer Sci 108:1452–1457CrossRefPubMedPubMedCentral Obara W, Sato F, Takeda K, Kato R, Kato Y, Kanehira M, Takata R, Mimata H, Sugai T, Nakamura Y, Fujioka T (2017) Phase I clinical trial of cell division associated 1 (CDCA1) peptide vaccination for castration resistant prostate cancer. Cancer Sci 108:1452–1457CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Bastola R, Noh G, Keum T, Bashyal S, Seo JE, Choi J, Oh Y, Cho Y, Lee S (2017) Vaccine adjuvants: smart components to boost the immune system. Arch Pharm Res 40:1238–1248CrossRefPubMed Bastola R, Noh G, Keum T, Bashyal S, Seo JE, Choi J, Oh Y, Cho Y, Lee S (2017) Vaccine adjuvants: smart components to boost the immune system. Arch Pharm Res 40:1238–1248CrossRefPubMed
28.
Zurück zum Zitat Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA (2019) Nanoparticle systems for cancer vaccine. Nanomedicine (Lond) 14:627–648CrossRef Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA (2019) Nanoparticle systems for cancer vaccine. Nanomedicine (Lond) 14:627–648CrossRef
29.
Zurück zum Zitat Lenz P, Day PM, Pang YY, Frye SA, Jensen PN, Lowy DR, Schiller JT (2001) Papillomavirus-like particles induce acute activation of dendritic cells. J Immunol 166:5346–5355CrossRefPubMed Lenz P, Day PM, Pang YY, Frye SA, Jensen PN, Lowy DR, Schiller JT (2001) Papillomavirus-like particles induce acute activation of dendritic cells. J Immunol 166:5346–5355CrossRefPubMed
30.
Zurück zum Zitat Lenz P, Lowy DR, Schiller JT (2005) Papillomavirus virus-like particles induce cytokines characteristic of innate immune responses in plasmacytoid dendritic cells. Eur J Immunol 35:1548–1556CrossRefPubMed Lenz P, Lowy DR, Schiller JT (2005) Papillomavirus virus-like particles induce cytokines characteristic of innate immune responses in plasmacytoid dendritic cells. Eur J Immunol 35:1548–1556CrossRefPubMed
31.
Zurück zum Zitat Yang R, Murillo FM, Lin KY, Yutzy WH, Uematsu S, Takeda K, Akira S, Viscidi RP, Roden RB (2004) Human papillomavirus type-16 virus-like particles activate complementary defense responses in key dendritic cell subpopulations. J Immunol 173:2624–2631CrossRefPubMed Yang R, Murillo FM, Lin KY, Yutzy WH, Uematsu S, Takeda K, Akira S, Viscidi RP, Roden RB (2004) Human papillomavirus type-16 virus-like particles activate complementary defense responses in key dendritic cell subpopulations. J Immunol 173:2624–2631CrossRefPubMed
32.
Zurück zum Zitat Yang R, Murillo FM, Cui H, Blosser R, Uematsu S, Takeda K, Akira S, Viscidi RP, Roden RB (2004) Papillomavirus-like particles stimulate murine bone marrow-derived dendritic cells to produce alpha interferon and Th1 immune responses via MyD88. J Virol 78:11152–11160CrossRefPubMedPubMedCentral Yang R, Murillo FM, Cui H, Blosser R, Uematsu S, Takeda K, Akira S, Viscidi RP, Roden RB (2004) Papillomavirus-like particles stimulate murine bone marrow-derived dendritic cells to produce alpha interferon and Th1 immune responses via MyD88. J Virol 78:11152–11160CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Saif JM, Vadakekolathu J, Rane SS, McDonald D, Ahmad M, Mathieu M, Pockley AG, Durrant L, Metheringham R, Rees RC, McArdle SE (2014) Novel prostate acid phosphatase-based peptide vaccination strategy induces antigen-specific T-cell responses and limits tumour growth in mice. Eur J Immunol 44:994–1004CrossRefPubMed Saif JM, Vadakekolathu J, Rane SS, McDonald D, Ahmad M, Mathieu M, Pockley AG, Durrant L, Metheringham R, Rees RC, McArdle SE (2014) Novel prostate acid phosphatase-based peptide vaccination strategy induces antigen-specific T-cell responses and limits tumour growth in mice. Eur J Immunol 44:994–1004CrossRefPubMed
34.
Zurück zum Zitat Cappuccini F, Stribbling S, Pollock E, Hill AV, Redchenko I (2016) Immunogenicity and efficacy of the novel cancer vaccine based on simian adenovirus and MVA vectors alone and in combination with PD-1 mAb in a mouse model of prostate cancer. Cancer Immunol Immunother 65:701–713CrossRefPubMedPubMedCentral Cappuccini F, Stribbling S, Pollock E, Hill AV, Redchenko I (2016) Immunogenicity and efficacy of the novel cancer vaccine based on simian adenovirus and MVA vectors alone and in combination with PD-1 mAb in a mouse model of prostate cancer. Cancer Immunol Immunother 65:701–713CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Mueller M, Reichardt W, Koerner J, Groettrup M (2012) Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice. J Control Release 162:159–166CrossRefPubMed Mueller M, Reichardt W, Koerner J, Groettrup M (2012) Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice. J Control Release 162:159–166CrossRefPubMed
36.
Zurück zum Zitat Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, Donjacour AA, Matusik RJ, Rosen JM (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92:3439–3443CrossRefPubMedPubMedCentral Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, Donjacour AA, Matusik RJ, Rosen JM (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92:3439–3443CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Gingrich JR, Barrios RJ, Foster BA, Greenberg NM (1999) Pathologic progression of autochthonous prostate cancer in the TRAMP model. Prostate Cancer Prostatic Dis 2:70–75CrossRefPubMed Gingrich JR, Barrios RJ, Foster BA, Greenberg NM (1999) Pathologic progression of autochthonous prostate cancer in the TRAMP model. Prostate Cancer Prostatic Dis 2:70–75CrossRefPubMed
38.
Zurück zum Zitat Kido LA, de Almeida LC, Marostica MR Jr, Cagnon VHA (2019) Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model: a good alternative to study PCa progression and chemoprevention approaches. Life Sci 217:141–147CrossRefPubMed Kido LA, de Almeida LC, Marostica MR Jr, Cagnon VHA (2019) Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model: a good alternative to study PCa progression and chemoprevention approaches. Life Sci 217:141–147CrossRefPubMed
39.
Zurück zum Zitat Gray A, de la Garcia-Hernandez L, van WM, Kanodia S, Hubby B, Kast WM, (2009) Prostate cancer immunotherapy yields superior long-term survival in TRAMP mice when administered at an early stage of carcinogenesis prior to the establishment of tumor-associated immunosuppression at later stages. Vaccine 27(Suppl 6):G52–G59CrossRefPubMedPubMedCentral Gray A, de la Garcia-Hernandez L, van WM, Kanodia S, Hubby B, Kast WM, (2009) Prostate cancer immunotherapy yields superior long-term survival in TRAMP mice when administered at an early stage of carcinogenesis prior to the establishment of tumor-associated immunosuppression at later stages. Vaccine 27(Suppl 6):G52–G59CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Hurwitz AA, Foster BA, Kwon ED, Truong T, Choi EM, Greenberg NM, Burg MB, Allison JP (2000) Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res 60:2444–2448PubMed Hurwitz AA, Foster BA, Kwon ED, Truong T, Choi EM, Greenberg NM, Burg MB, Allison JP (2000) Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res 60:2444–2448PubMed
41.
Zurück zum Zitat Krupa M, Canamero M, Gomez CE, Najera JL, Gil J, Esteban M (2011) Immunization with recombinant DNA and modified vaccinia virus Ankara (MVA) vectors delivering PSCA and STEAP1 antigens inhibits prostate cancer progression. Vaccine 29:1504–1513CrossRefPubMed Krupa M, Canamero M, Gomez CE, Najera JL, Gil J, Esteban M (2011) Immunization with recombinant DNA and modified vaccinia virus Ankara (MVA) vectors delivering PSCA and STEAP1 antigens inhibits prostate cancer progression. Vaccine 29:1504–1513CrossRefPubMed
42.
Zurück zum Zitat Kwilas AR, Ardiani A, Dirmeier U, Wottawah C, Schlom J, Hodge JW (2015) A poxviral-based cancer vaccine the transcription factor twist inhibits primary tumor growth and metastases in a model of metastatic breast cancer and improves survival in a spontaneous prostate cancer model. Oncotarget 6:28194–28210CrossRefPubMedPubMedCentral Kwilas AR, Ardiani A, Dirmeier U, Wottawah C, Schlom J, Hodge JW (2015) A poxviral-based cancer vaccine the transcription factor twist inhibits primary tumor growth and metastases in a model of metastatic breast cancer and improves survival in a spontaneous prostate cancer model. Oncotarget 6:28194–28210CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Fu J, Malm IJ, Kadayakkara DK, Levitsky H, Pardoll D, Kim YJ (2014) Preclinical evidence that PD1 blockade cooperates with cancer vaccine TEGVAX to elicit regression of established tumors. Cancer Res 74:4042–4052CrossRefPubMedPubMedCentral Fu J, Malm IJ, Kadayakkara DK, Levitsky H, Pardoll D, Kim YJ (2014) Preclinical evidence that PD1 blockade cooperates with cancer vaccine TEGVAX to elicit regression of established tumors. Cancer Res 74:4042–4052CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA, Humphrey PA, Sundberg JP, Rozengurt N, Barrios R, Ward JM, Cardiff RD (2004) Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res 64:2270–2305CrossRefPubMed Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA, Humphrey PA, Sundberg JP, Rozengurt N, Barrios R, Ward JM, Cardiff RD (2004) Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res 64:2270–2305CrossRefPubMed
45.
Zurück zum Zitat Beck SE, Queen SE, Viscidi R, Johnson D, Kent SJ, Adams RJ, Tarwater PM, Mankowski JL (2016) Central nervous system-specific consequences of simian immunodeficiency virus Gag escape from major histocompatibility complex class I-mediated control. J Neurovirol 22:498–507CrossRefPubMedPubMedCentral Beck SE, Queen SE, Viscidi R, Johnson D, Kent SJ, Adams RJ, Tarwater PM, Mankowski JL (2016) Central nervous system-specific consequences of simian immunodeficiency virus Gag escape from major histocompatibility complex class I-mediated control. J Neurovirol 22:498–507CrossRefPubMedPubMedCentral
Metadaten
Titel
Bovine papillomavirus prostate cancer antigen virus-like particle vaccines are efficacious in advanced cancers in the TRAMP mouse spontaneous prostate cancer model
verfasst von
Brian W. Simons
Fabiana Cannella
Dayana T. Rowley
Raphael P. Viscidi
Publikationsdatum
04.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 4/2020
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-020-02493-z

Weitere Artikel der Ausgabe 4/2020

Cancer Immunology, Immunotherapy 4/2020 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.