Skip to main content
Erschienen in: Brain Structure and Function 8/2020

20.08.2020 | Original Article

Brain connections derived from diffusion MRI tractography can be highly anatomically accurate—if we know where white matter pathways start, where they end, and where they do not go

verfasst von: Kurt G. Schilling, Laurent Petit, Francois Rheault, Samuel Remedios, Carlo Pierpaoli, Adam W. Anderson, Bennett A. Landman, Maxime Descoteaux

Erschienen in: Brain Structure and Function | Ausgabe 8/2020

Einloggen, um Zugang zu erhalten

Abstract

MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has been intense interest in defining and mitigating the intrinsic limitations of the method. Recent studies have reported that tractography is inherently limited in its ability to accurately reconstruct the connections of the brain, when based on voxel-averaged estimates of local fiber orientation alone. Several validation studies have confirmed that tractography techniques are plagued by both false-positive and false-negative connections. However, these validation studies which quantify sensitivity and specificity, particularly in animal models, have not utilized prior anatomical knowledge, as is done in the human literature, for virtual dissection of white matter pathways, instead assessing tractography implemented in a relatively unconstrained manner. Thus, they represent a worse-case scenario for bundle-segmentation techniques and may not be indicative of the anatomical accuracy in the process of bundle segmentation, where streamline filtering using inclusion and exclusion regions-of-interest is common. With this in mind, the aim of the current study is to investigate and quantify the upper bounds of accuracy using current tractography methods. Making use of the same dataset utilized in two seminal validation papers, we show that prior anatomical knowledge in the form of manually placed or template-driven constraints can significantly improve the anatomical accuracy of estimated brain connections. Thus, we show that it is possible to achieve a high sensitivity and high specificity simultaneously, and conclude that current tractography algorithms, in combination with anatomically driven constraints, can result in reconstructions which very accurately reflect the ground truth white matter connections.
Literatur
Zurück zum Zitat Alonso-Ortiz E, Levesque IR, Pike GB (2015) MRI-based myelin water imaging: a technical review. Magn Reson Med 73:70–81PubMed Alonso-Ortiz E, Levesque IR, Pike GB (2015) MRI-based myelin water imaging: a technical review. Magn Reson Med 73:70–81PubMed
Zurück zum Zitat Ambrosen KS, Eskildsen SF, Hinne M, Krug K, Lundell H, Schmidt MN et al (2020) Validation of structural brain connectivity networks: the impact of scanning parameters. Neuroimage 204:116207PubMed Ambrosen KS, Eskildsen SF, Hinne M, Krug K, Lundell H, Schmidt MN et al (2020) Validation of structural brain connectivity networks: the impact of scanning parameters. Neuroimage 204:116207PubMed
Zurück zum Zitat Aydogan DB, Jacobs R, Dulawa S, Thompson SL, Francois MC, Toga AW et al (2018) When tractography meets tracer injections: a systematic study of trends and variation sources of diffusion-based connectivity. Brain Struct Funct 223:2841–2858PubMedPubMedCentral Aydogan DB, Jacobs R, Dulawa S, Thompson SL, Francois MC, Toga AW et al (2018) When tractography meets tracer injections: a systematic study of trends and variation sources of diffusion-based connectivity. Brain Struct Funct 223:2841–2858PubMedPubMedCentral
Zurück zum Zitat Azadbakht H, Parkes LM, Haroon HA, Augath M, Logothetis NK, de Crespigny A et al (2015) Validation of high-resolution tractography against in vivo tracing in the macaque visual cortex. Cereb Cortex 25:4299–4309PubMedPubMedCentral Azadbakht H, Parkes LM, Haroon HA, Augath M, Logothetis NK, de Crespigny A et al (2015) Validation of high-resolution tractography against in vivo tracing in the macaque visual cortex. Cereb Cortex 25:4299–4309PubMedPubMedCentral
Zurück zum Zitat Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632PubMed Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632PubMed
Zurück zum Zitat Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S et al (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088PubMed Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S et al (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088PubMed
Zurück zum Zitat Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34:144–155PubMed Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34:144–155PubMed
Zurück zum Zitat Calabrese E, Badea A, Cofer G, Qi Y, Johnson GA (2015) A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data. Cereb Cortex 25:4628–4637PubMedPubMedCentral Calabrese E, Badea A, Cofer G, Qi Y, Johnson GA (2015) A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data. Cereb Cortex 25:4628–4637PubMedPubMedCentral
Zurück zum Zitat Catani M, de Schotten MT (2012) Atlas of human brain connections. Oxford University Press, Oxford, UK Catani M, de Schotten MT (2012) Atlas of human brain connections. Oxford University Press, Oxford, UK
Zurück zum Zitat Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94PubMed Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94PubMed
Zurück zum Zitat Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96:10422–10427PubMedPubMedCentral Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96:10422–10427PubMedPubMedCentral
Zurück zum Zitat Cote MA, Girard G, Bore A, Garyfallidis E, Houde JC, Descoteaux M (2013) Tractometer: towards validation of tractography pipelines. Med Image Anal 17:844–857PubMed Cote MA, Girard G, Bore A, Garyfallidis E, Houde JC, Descoteaux M (2013) Tractometer: towards validation of tractography pipelines. Med Image Anal 17:844–857PubMed
Zurück zum Zitat Daducci A, Dal Palu A, Lemkaddem A, Thiran JP (2015) COMMIT: Convex optimization modeling for microstructure informed tractography. IEEE Trans Med Imaging 34:246–257PubMed Daducci A, Dal Palu A, Lemkaddem A, Thiran JP (2015) COMMIT: Convex optimization modeling for microstructure informed tractography. IEEE Trans Med Imaging 34:246–257PubMed
Zurück zum Zitat Dauguet J, Peled S, Berezovskii V, Delzescaux T, Warfield SK, Born R et al (2006) 3D histological reconstruction of fiber tracts and direct comparison with diffusion tensor MRI tractography. Med Image Comput Comput Assist Interv 9:109–116PubMed Dauguet J, Peled S, Berezovskii V, Delzescaux T, Warfield SK, Born R et al (2006) 3D histological reconstruction of fiber tracts and direct comparison with diffusion tensor MRI tractography. Med Image Comput Comput Assist Interv 9:109–116PubMed
Zurück zum Zitat Dauguet J, Peled S, Berezovskii V, Delzescaux T, Warfield SK, Born R et al (2007) Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. Neuroimage 37:530–538PubMed Dauguet J, Peled S, Berezovskii V, Delzescaux T, Warfield SK, Born R et al (2007) Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. Neuroimage 37:530–538PubMed
Zurück zum Zitat De Benedictis A, Nocerino E, Menna F, Remondino F, Barbareschi M, Rozzanigo U et al (2018) Photogrammetry of the human brain: a novel method for three-dimensional quantitative exploration of the structural connectivity in neurosurgery and neurosciences. World Neurosurg 115:e279–e291PubMed De Benedictis A, Nocerino E, Menna F, Remondino F, Barbareschi M, Rozzanigo U et al (2018) Photogrammetry of the human brain: a novel method for three-dimensional quantitative exploration of the structural connectivity in neurosurgery and neurosciences. World Neurosurg 115:e279–e291PubMed
Zurück zum Zitat Delettre C, Messe A, Dell LA, Foubet O, Heuer K, Larrat B et al (2019) Comparison between diffusion MRI tractography and histological tract-tracing of cortico-cortical structural connectivity in the ferret brain. Netw Neurosci 3:1038–1050PubMedPubMedCentral Delettre C, Messe A, Dell LA, Foubet O, Heuer K, Larrat B et al (2019) Comparison between diffusion MRI tractography and histological tract-tracing of cortico-cortical structural connectivity in the ferret brain. Netw Neurosci 3:1038–1050PubMedPubMedCentral
Zurück zum Zitat Deslauriers-Gauthier S, Lina JM, Butler R, Whittingstall K, Gilbert G, Bernier PM et al (2019) White matter information flow mapping from diffusion MRI and EEG. Neuroimage 201:116017PubMed Deslauriers-Gauthier S, Lina JM, Butler R, Whittingstall K, Gilbert G, Bernier PM et al (2019) White matter information flow mapping from diffusion MRI and EEG. Neuroimage 201:116017PubMed
Zurück zum Zitat Ding Z, Huang Y, Bailey SK, Gao Y, Cutting LE, Rogers BP et al (2018) Detection of synchronous brain activity in white matter tracts at rest and under functional loading. Proc Natl Acad Sci USA 115:595–600PubMed Ding Z, Huang Y, Bailey SK, Gao Y, Cutting LE, Rogers BP et al (2018) Detection of synchronous brain activity in white matter tracts at rest and under functional loading. Proc Natl Acad Sci USA 115:595–600PubMed
Zurück zum Zitat Donahue CJ, Sotiropoulos SN, Jbabdi S, Hernandez-Fernandez M, Behrens TE, Dyrby TB et al (2016) Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey. J Neurosci 36:6758–6770PubMedPubMedCentral Donahue CJ, Sotiropoulos SN, Jbabdi S, Hernandez-Fernandez M, Behrens TE, Dyrby TB et al (2016) Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey. J Neurosci 36:6758–6770PubMedPubMedCentral
Zurück zum Zitat Dyrby TB, Sogaard LV, Parker GJ, Alexander DC, Lind NM, Baare WF et al (2007) Validation of in vitro probabilistic tractography. Neuroimage 37:1267–1277PubMed Dyrby TB, Sogaard LV, Parker GJ, Alexander DC, Lind NM, Baare WF et al (2007) Validation of in vitro probabilistic tractography. Neuroimage 37:1267–1277PubMed
Zurück zum Zitat Dyrby TB, Innocenti G, Bech M, Lundell H (2018) Validation strategies for the interpretation of microstructure imaging using diffusion MRI. Neuroimage 182:62–79PubMed Dyrby TB, Innocenti G, Bech M, Lundell H (2018) Validation strategies for the interpretation of microstructure imaging using diffusion MRI. Neuroimage 182:62–79PubMed
Zurück zum Zitat Feng L, Jeon T, Yu Q, Ouyang M, Peng Q, Mishra V et al (2017) Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space. Brain Struct Funct 222:4131–4147PubMedPubMedCentral Feng L, Jeon T, Yu Q, Ouyang M, Peng Q, Mishra V et al (2017) Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space. Brain Struct Funct 222:4131–4147PubMedPubMedCentral
Zurück zum Zitat Forkel SJ, Thiebaut de Schotten M, Kawadler JM, Dell'Acqua F, Danek A, Catani M (2014) The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex 56:73–84PubMed Forkel SJ, Thiebaut de Schotten M, Kawadler JM, Dell'Acqua F, Danek A, Catani M (2014) The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex 56:73–84PubMed
Zurück zum Zitat Frank LR, Galinsky VL (2016) Dynamic multiscale modes of resting state brain activity detected by entropy field decomposition. Neural Comput 28:1769–1811PubMedPubMedCentral Frank LR, Galinsky VL (2016) Dynamic multiscale modes of resting state brain activity detected by entropy field decomposition. Neural Comput 28:1769–1811PubMedPubMedCentral
Zurück zum Zitat Galinsky VL, Frank LR (2015) Simultaneous multi-scale diffusion estimation and tractography guided by entropy spectrum pathways. IEEE Trans Med Imaging 34:1177–1193PubMed Galinsky VL, Frank LR (2015) Simultaneous multi-scale diffusion estimation and tractography guided by entropy spectrum pathways. IEEE Trans Med Imaging 34:1177–1193PubMed
Zurück zum Zitat Galinsky VL, Frank LR (2017) A unified theory of neuro-MRI data shows scale-free nature of connectivity modes. Neural Comput 29:1441–1467PubMedPubMedCentral Galinsky VL, Frank LR (2017) A unified theory of neuro-MRI data shows scale-free nature of connectivity modes. Neural Comput 29:1441–1467PubMedPubMedCentral
Zurück zum Zitat Galinsky VL, Martinez A, Paulus MP, Frank LR (2018) Joint estimation of effective brain wave activation modes using EEG/MEG sensor arrays and multimodal MRI volumes. Neural Comput 30:1725–1749PubMedPubMedCentral Galinsky VL, Martinez A, Paulus MP, Frank LR (2018) Joint estimation of effective brain wave activation modes using EEG/MEG sensor arrays and multimodal MRI volumes. Neural Comput 30:1725–1749PubMedPubMedCentral
Zurück zum Zitat Ganzetti M, Wenderoth N, Mantini D (2014) Whole brain myelin mapping using T1- and T2-weighted MR imaging data. Front Hum Neurosci 8:671PubMedPubMedCentral Ganzetti M, Wenderoth N, Mantini D (2014) Whole brain myelin mapping using T1- and T2-weighted MR imaging data. Front Hum Neurosci 8:671PubMedPubMedCentral
Zurück zum Zitat Garyfallidis E, Brett M, Amirbekian B, Rokem A, van der Walt S, Descoteaux M et al (2014) Dipy, a library for the analysis of diffusion MRI data. Front Neuroinform 8:8PubMedPubMedCentral Garyfallidis E, Brett M, Amirbekian B, Rokem A, van der Walt S, Descoteaux M et al (2014) Dipy, a library for the analysis of diffusion MRI data. Front Neuroinform 8:8PubMedPubMedCentral
Zurück zum Zitat Garyfallidis E, Cote MA, Rheault F, Sidhu J, Hau J, Petit L et al (2018) Recognition of white matter bundles using local and global streamline-based registration and clustering. Neuroimage 170:283–295PubMed Garyfallidis E, Cote MA, Rheault F, Sidhu J, Hau J, Petit L et al (2018) Recognition of white matter bundles using local and global streamline-based registration and clustering. Neuroimage 170:283–295PubMed
Zurück zum Zitat Girard G, Whittingstall K, Deriche R, Descoteaux M (2014) Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage 98:266–278PubMed Girard G, Whittingstall K, Deriche R, Descoteaux M (2014) Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage 98:266–278PubMed
Zurück zum Zitat Girard G, Daducci A, Petit L, Thiran JP, Whittingstall K, Deriche R et al (2017) AxTract: Toward microstructure informed tractography. Hum Brain Mapp 38:5485–5500PubMedPubMedCentral Girard G, Daducci A, Petit L, Thiran JP, Whittingstall K, Deriche R et al (2017) AxTract: Toward microstructure informed tractography. Hum Brain Mapp 38:5485–5500PubMedPubMedCentral
Zurück zum Zitat Gore JC, Li M, Gao Y, Wu TL, Schilling KG, Huang Y et al (2019) Functional MRI and resting state connectivity in white matter—a mini-review. Magn Reson Imaging 63:1–11PubMedPubMedCentral Gore JC, Li M, Gao Y, Wu TL, Schilling KG, Huang Y et al (2019) Functional MRI and resting state connectivity in white matter—a mini-review. Magn Reson Imaging 63:1–11PubMedPubMedCentral
Zurück zum Zitat Guevara P, Duclap D, Poupon C, Marrakchi-Kacem L, Fillard P, Le Bihan D et al (2012) Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. Neuroimage 61:1083–1099PubMed Guevara P, Duclap D, Poupon C, Marrakchi-Kacem L, Fillard P, Le Bihan D et al (2012) Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. Neuroimage 61:1083–1099PubMed
Zurück zum Zitat Hau J, Sarubbo S, Houde JC, Corsini F, Girard G, Deledalle C et al (2017) Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain Struct Funct 222:1645–1662PubMed Hau J, Sarubbo S, Houde JC, Corsini F, Girard G, Deledalle C et al (2017) Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain Struct Funct 222:1645–1662PubMed
Zurück zum Zitat Huang Y, Bailey SK, Wang P, Cutting LE, Gore JC, Ding Z (2018) Voxel-wise detection of functional networks in white matter. Neuroimage 183:544–552PubMed Huang Y, Bailey SK, Wang P, Cutting LE, Gore JC, Ding Z (2018) Voxel-wise detection of functional networks in white matter. Neuroimage 183:544–552PubMed
Zurück zum Zitat Innocenti GM, Dyrby TB, Andersen KW, Rouiller EM, Caminiti R (2017) The crossed projection to the striatum in two species of monkey and in humans: behavioral and evolutionary significance. Cereb Cortex 27:3217–3230PubMed Innocenti GM, Dyrby TB, Andersen KW, Rouiller EM, Caminiti R (2017) The crossed projection to the striatum in two species of monkey and in humans: behavioral and evolutionary significance. Cereb Cortex 27:3217–3230PubMed
Zurück zum Zitat Jbabdi S, Lehman JF, Haber SN, Behrens TE (2013) Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography. J Neurosci 33:3190–3201PubMedPubMedCentral Jbabdi S, Lehman JF, Haber SN, Behrens TE (2013) Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography. J Neurosci 33:3190–3201PubMedPubMedCentral
Zurück zum Zitat Knosche TR, Anwander A, Liptrot M, Dyrby TB (2015) Validation of tractography: comparison with manganese tracing. Hum Brain Mapp 36:4116–4134PubMedPubMedCentral Knosche TR, Anwander A, Liptrot M, Dyrby TB (2015) Validation of tractography: comparison with manganese tracing. Hum Brain Mapp 36:4116–4134PubMedPubMedCentral
Zurück zum Zitat Landman BA, Farrell JA, Jones CK, Smith SA, Prince JL, Mori S (2007) Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T. Neuroimage 36:1123–1138PubMed Landman BA, Farrell JA, Jones CK, Smith SA, Prince JL, Mori S (2007) Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T. Neuroimage 36:1123–1138PubMed
Zurück zum Zitat Lawes IN, Barrick TR, Murugam V, Spierings N, Evans DR, Song M et al (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage 39:62–79PubMed Lawes IN, Barrick TR, Murugam V, Spierings N, Evans DR, Song M et al (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage 39:62–79PubMed
Zurück zum Zitat Lazar M, Alexander AL (2005) Bootstrap white matter tractography (BOOT-TRAC). Neuroimage 24:524–532PubMed Lazar M, Alexander AL (2005) Bootstrap white matter tractography (BOOT-TRAC). Neuroimage 24:524–532PubMed
Zurück zum Zitat Maier-Hein KH, Neher PF, Houde JC, Cote MA, Garyfallidis E, Zhong J et al (2017) The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 8:1349PubMedPubMedCentral Maier-Hein KH, Neher PF, Houde JC, Cote MA, Garyfallidis E, Zhong J et al (2017) The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 8:1349PubMedPubMedCentral
Zurück zum Zitat Mandonnet E, Sarubbo S, Petit L (2018) The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification. Front Neuroanat 12:94PubMedPubMedCentral Mandonnet E, Sarubbo S, Petit L (2018) The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification. Front Neuroanat 12:94PubMedPubMedCentral
Zurück zum Zitat Mars RB, Jbabdi S, Sallet J, O'Reilly JX, Croxson PL, Olivier E et al (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31:4087–4100PubMedPubMedCentral Mars RB, Jbabdi S, Sallet J, O'Reilly JX, Croxson PL, Olivier E et al (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31:4087–4100PubMedPubMedCentral
Zurück zum Zitat Mars RB, Sallet J, Schuffelgen U, Jbabdi S, Toni I, Rushworth MF (2012) Connectivity-based subdivisions of the human right "temporoparietal junction area": evidence for different areas participating in different cortical networks. Cereb Cortex 22:1894–1903PubMed Mars RB, Sallet J, Schuffelgen U, Jbabdi S, Toni I, Rushworth MF (2012) Connectivity-based subdivisions of the human right "temporoparietal junction area": evidence for different areas participating in different cortical networks. Cereb Cortex 22:1894–1903PubMed
Zurück zum Zitat Mars RB, Foxley S, Verhagen L, Jbabdi S, Sallet J, Noonan MP et al (2016) The extreme capsule fiber complex in humans and macaque monkeys: a comparative diffusion MRI tractography study. Brain Struct Funct 221:4059–4071PubMed Mars RB, Foxley S, Verhagen L, Jbabdi S, Sallet J, Noonan MP et al (2016) The extreme capsule fiber complex in humans and macaque monkeys: a comparative diffusion MRI tractography study. Brain Struct Funct 221:4059–4071PubMed
Zurück zum Zitat Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies - a technical review. NMR Biomed 15:468–480PubMed Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies - a technical review. NMR Biomed 15:468–480PubMed
Zurück zum Zitat Mori S, van Zijl P (2007) Human white matter atlas. Am J Psychiatry 164:1005PubMed Mori S, van Zijl P (2007) Human white matter atlas. Am J Psychiatry 164:1005PubMed
Zurück zum Zitat Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269PubMed Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269PubMed
Zurück zum Zitat Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K et al (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40:570–582PubMed Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K et al (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40:570–582PubMed
Zurück zum Zitat Neher PF, Laun FB, Stieltjes B, Maier-Hein KH (2014) Fiberfox: facilitating the creation of realistic white matter software phantoms. Magn Reson Med 72:1460–1470PubMed Neher PF, Laun FB, Stieltjes B, Maier-Hein KH (2014) Fiberfox: facilitating the creation of realistic white matter software phantoms. Magn Reson Med 72:1460–1470PubMed
Zurück zum Zitat Neubert FX, Mars RB, Thomas AG, Sallet J, Rushworth MF (2014) Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81:700–713PubMed Neubert FX, Mars RB, Thomas AG, Sallet J, Rushworth MF (2014) Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81:700–713PubMed
Zurück zum Zitat Neubert FX, Mars RB, Sallet J, Rushworth MF (2015) Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proc Natl Acad Sci USA 112:E2695–E2704PubMedPubMedCentral Neubert FX, Mars RB, Sallet J, Rushworth MF (2015) Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proc Natl Acad Sci USA 112:E2695–E2704PubMedPubMedCentral
Zurück zum Zitat Panesar SS, Fernandez-Miranda J (2019) Commentary: the nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification. Front Neuroanat 13:61PubMedPubMedCentral Panesar SS, Fernandez-Miranda J (2019) Commentary: the nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification. Front Neuroanat 13:61PubMedPubMedCentral
Zurück zum Zitat Parker GJ, Haroon HA, Wheeler-Kingshott CA (2003) A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imaging 18:242–254PubMed Parker GJ, Haroon HA, Wheeler-Kingshott CA (2003) A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imaging 18:242–254PubMed
Zurück zum Zitat Poulin P, Jorgens D, Jodoin PM, Descoteaux M (2019) Tractography and machine learning: current state and open challenges. Magn Reson Imaging 64:37–38PubMed Poulin P, Jorgens D, Jodoin PM, Descoteaux M (2019) Tractography and machine learning: current state and open challenges. Magn Reson Imaging 64:37–38PubMed
Zurück zum Zitat Reveley C, Seth AK, Pierpaoli C, Silva AC, Yu D, Saunders RC et al (2015) Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc Natl Acad Sci USA 112:E2820–E2828PubMedPubMedCentral Reveley C, Seth AK, Pierpaoli C, Silva AC, Yu D, Saunders RC et al (2015) Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc Natl Acad Sci USA 112:E2820–E2828PubMedPubMedCentral
Zurück zum Zitat Rheault F, St-Onge E, Sidhu J, Maier-Hein K, Tzourio-Mazoyer N, Petit L et al (2019) Bundle-specific tractography with incorporated anatomical and orientational priors. Neuroimage 186:382–398PubMed Rheault F, St-Onge E, Sidhu J, Maier-Hein K, Tzourio-Mazoyer N, Petit L et al (2019) Bundle-specific tractography with incorporated anatomical and orientational priors. Neuroimage 186:382–398PubMed
Zurück zum Zitat Rheault F, De Benedictis A, Daducci A, Maffei C, Tax CMW, Romascano D et al (2020) Tractostorm: The what, why, and how of tractography dissection reproducibility. Hum Brain Mapp 41:1859–1874PubMedPubMedCentral Rheault F, De Benedictis A, Daducci A, Maffei C, Tax CMW, Romascano D et al (2020) Tractostorm: The what, why, and how of tractography dissection reproducibility. Hum Brain Mapp 41:1859–1874PubMedPubMedCentral
Zurück zum Zitat Safadi Z, Grisot G, Jbabdi S, Behrens TE, Heilbronner SR, McLaughlin NCR et al (2018) Functional segmentation of the anterior limb of the internal capsule: linking white matter abnormalities to specific connections. J Neurosci 38:2106–2117PubMedPubMedCentral Safadi Z, Grisot G, Jbabdi S, Behrens TE, Heilbronner SR, McLaughlin NCR et al (2018) Functional segmentation of the anterior limb of the internal capsule: linking white matter abnormalities to specific connections. J Neurosci 38:2106–2117PubMedPubMedCentral
Zurück zum Zitat Sallet J, Mars RB, Noonan MP, Neubert FX, Jbabdi S, O'Reilly JX et al (2013) The organization of dorsal frontal cortex in humans and macaques. J Neurosci 33:12255–12274PubMedPubMedCentral Sallet J, Mars RB, Noonan MP, Neubert FX, Jbabdi S, O'Reilly JX et al (2013) The organization of dorsal frontal cortex in humans and macaques. J Neurosci 33:12255–12274PubMedPubMedCentral
Zurück zum Zitat Sarubbo S, De Benedictis A, Maldonado IL, Basso G, Duffau H (2013) Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct 218:21–37PubMed Sarubbo S, De Benedictis A, Maldonado IL, Basso G, Duffau H (2013) Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct 218:21–37PubMed
Zurück zum Zitat Schilling KG, Nath V, Hansen C, Parvathaneni P, Blaber J, Gao Y et al (2018a) Limits to anatomical accuracy of diffusion tractography using modern approaches. Neuroimage 185:1–11PubMed Schilling KG, Nath V, Hansen C, Parvathaneni P, Blaber J, Gao Y et al (2018a) Limits to anatomical accuracy of diffusion tractography using modern approaches. Neuroimage 185:1–11PubMed
Zurück zum Zitat Schilling K, Gao Y, Janve V, Stepniewska I, Landman BA, Anderson AW (2018b) Confirmation of a gyral bias in diffusion MRI fiber tractography. Hum Brain Mapp 39:1449–1466PubMed Schilling K, Gao Y, Janve V, Stepniewska I, Landman BA, Anderson AW (2018b) Confirmation of a gyral bias in diffusion MRI fiber tractography. Hum Brain Mapp 39:1449–1466PubMed
Zurück zum Zitat Schilling KG, Gao Y, Stepniewska I, Janve V, Landman BA, Anderson AW (2019) Anatomical accuracy of standard-practice tractography algorithms in the motor system—A histological validation in the squirrel monkey brain. Magnetic Reson Imaging 55:7–25 Schilling KG, Gao Y, Stepniewska I, Janve V, Landman BA, Anderson AW (2019) Anatomical accuracy of standard-practice tractography algorithms in the motor system—A histological validation in the squirrel monkey brain. Magnetic Reson Imaging 55:7–25
Zurück zum Zitat Schmahmann JD, Pandya D (2006) Fiber pathways of the brain. Oxford University Press Schmahmann JD, Pandya D (2006) Fiber pathways of the brain. Oxford University Press
Zurück zum Zitat Shen K, Bezgin G, Schirner M, Ritter P, Everling S, McIntosh AR (2019) A macaque connectome for large-scale network simulations in TheVirtualBrain. Sci Data 6:123PubMedPubMedCentral Shen K, Bezgin G, Schirner M, Ritter P, Everling S, McIntosh AR (2019) A macaque connectome for large-scale network simulations in TheVirtualBrain. Sci Data 6:123PubMedPubMedCentral
Zurück zum Zitat Smith RE, Tournier JD, Calamante F, Connelly A (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62:1924–1938PubMed Smith RE, Tournier JD, Calamante F, Connelly A (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62:1924–1938PubMed
Zurück zum Zitat Smith RE, Tournier JD, Calamante F, Connelly A (2013) SIFT: Spherical-deconvolution informed filtering of tractograms. Neuroimage 67:298–312PubMed Smith RE, Tournier JD, Calamante F, Connelly A (2013) SIFT: Spherical-deconvolution informed filtering of tractograms. Neuroimage 67:298–312PubMed
Zurück zum Zitat St-Onge E, Daducci A, Girard G, Descoteaux M (2018) Surface-enhanced tractography (SET). Neuroimage 169:524–539PubMed St-Onge E, Daducci A, Girard G, Descoteaux M (2018) Surface-enhanced tractography (SET). Neuroimage 169:524–539PubMed
Zurück zum Zitat Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA et al (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci USA 111:16574–16579PubMedPubMedCentral Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA et al (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci USA 111:16574–16579PubMedPubMedCentral
Zurück zum Zitat Tournier JD, Yeh CH, Calamante F, Cho KH, Connelly A, Lin CP (2008) Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. Neuroimage 42:617–625PubMed Tournier JD, Yeh CH, Calamante F, Cho KH, Connelly A, Lin CP (2008) Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. Neuroimage 42:617–625PubMed
Zurück zum Zitat Tournier JD, Calamante F, Connelly A (2012) MRtrix: Diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22:53–66 Tournier JD, Calamante F, Connelly A (2012) MRtrix: Diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22:53–66
Zurück zum Zitat Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M et al (2019) MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202:116137PubMed Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M et al (2019) MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202:116137PubMed
Zurück zum Zitat van den Heuvel MP, de Reus MA, Barrett LF, Scholtens LH, Coopmans FM, Schmidt R et al (2015) Comparison of diffusion tractography and tract-tracing measures of connectivity strength in rhesus macaque connectome. Hum Brain Mapp 36:3064–3075PubMedPubMedCentral van den Heuvel MP, de Reus MA, Barrett LF, Scholtens LH, Coopmans FM, Schmidt R et al (2015) Comparison of diffusion tractography and tract-tracing measures of connectivity strength in rhesus macaque connectome. Hum Brain Mapp 36:3064–3075PubMedPubMedCentral
Zurück zum Zitat Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL et al (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36:630–644PubMed Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL et al (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36:630–644PubMed
Zurück zum Zitat Wang X, Pathak S, Stefaneanu L, Yeh FC, Li S, Fernandez-Miranda JC (2016) Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct Funct 221:2075–2092PubMed Wang X, Pathak S, Stefaneanu L, Yeh FC, Li S, Fernandez-Miranda JC (2016) Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct Funct 221:2075–2092PubMed
Zurück zum Zitat Warrington S, Bryant KL, Khrapitchev AA, Sallet J, Charquero-Ballester M, Douaud G et al (2020) XTRACT - Standardised protocols for automated tractography in the human and macaque brain. Neuroimage 217:116923PubMed Warrington S, Bryant KL, Khrapitchev AA, Sallet J, Charquero-Ballester M, Douaud G et al (2020) XTRACT - Standardised protocols for automated tractography in the human and macaque brain. Neuroimage 217:116923PubMed
Zurück zum Zitat Wassermann D, Makris N, Rathi Y, Shenton M, Kikinis R, Kubicki M et al (2013) On describing human white matter anatomy: the white matter query language. Med Image Comput Comput Assist Interv 16:647–654PubMedPubMedCentral Wassermann D, Makris N, Rathi Y, Shenton M, Kikinis R, Kubicki M et al (2013) On describing human white matter anatomy: the white matter query language. Med Image Comput Comput Assist Interv 16:647–654PubMedPubMedCentral
Zurück zum Zitat Wassermann D, Makris N, Rathi Y, Shenton M, Kikinis R, Kubicki M et al (2016) The white matter query language: a novel approach for describing human white matter anatomy. Brain Struct Funct 221:4705–4721PubMedPubMedCentral Wassermann D, Makris N, Rathi Y, Shenton M, Kikinis R, Kubicki M et al (2016) The white matter query language: a novel approach for describing human white matter anatomy. Brain Struct Funct 221:4705–4721PubMedPubMedCentral
Zurück zum Zitat Wasserthal J, Neher P, Maier-Hein KH (2018) TractSeg - Fast and accurate white matter tract segmentation. Neuroimage 183:239–253PubMed Wasserthal J, Neher P, Maier-Hein KH (2018) TractSeg - Fast and accurate white matter tract segmentation. Neuroimage 183:239–253PubMed
Zurück zum Zitat Wasserthal J, Neher PF, Hirjak D, Maier-Hein KH (2019) Combined tract segmentation and orientation mapping for bundle-specific tractography. Med Image Anal 58:101559PubMed Wasserthal J, Neher PF, Hirjak D, Maier-Hein KH (2019) Combined tract segmentation and orientation mapping for bundle-specific tractography. Med Image Anal 58:101559PubMed
Zurück zum Zitat Yendiki A, Panneck P, Srinivasan P, Stevens A, Zollei L, Augustinack J et al (2011) Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Front Neuroinform 5:23PubMedPubMedCentral Yendiki A, Panneck P, Srinivasan P, Stevens A, Zollei L, Augustinack J et al (2011) Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Front Neuroinform 5:23PubMedPubMedCentral
Zurück zum Zitat Zhang F, Wu Y, Norton I, Rigolo L, Rathi Y, Makris N et al (2018) An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. Neuroimage 179:429–447PubMed Zhang F, Wu Y, Norton I, Rigolo L, Rathi Y, Makris N et al (2018) An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. Neuroimage 179:429–447PubMed
Metadaten
Titel
Brain connections derived from diffusion MRI tractography can be highly anatomically accurate—if we know where white matter pathways start, where they end, and where they do not go
verfasst von
Kurt G. Schilling
Laurent Petit
Francois Rheault
Samuel Remedios
Carlo Pierpaoli
Adam W. Anderson
Bennett A. Landman
Maxime Descoteaux
Publikationsdatum
20.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 8/2020
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-020-02129-z

Weitere Artikel der Ausgabe 8/2020

Brain Structure and Function 8/2020 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.