Skip to main content
Erschienen in:

09.06.2021 | Magnetic Resonance

Brain connectivity markers in advanced Parkinson’s disease for predicting mild cognitive impairment

verfasst von: Hai Lin, Zesi Liu, Wei Yan, Doudou Zhang, Jiali Liu, Bin Xu, Weiping Li, Qiusheng Zhang, Xiaodong Cai

Erschienen in: European Radiology | Ausgabe 12/2021

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Mild cognitive impairment (MCI) is a well-defined non-motor manifestation and a harbinger of dementia in Parkinson’s disease. This study is to investigate brain connectivity markers of MCI using diffusion tensor imaging and resting-state functional MRI, and help MCI diagnosis in PD patients.

Methods

We evaluated 131 advanced PD patients (disease duration > 5 years; 59 patients with MCI) and 48 healthy control subjects who underwent a diffusion-weighted and resting-state functional MRI scanning. The patients were randomly assigned to training (n = 100) and testing (n = 31) groups. According to the Brainnetome Atlas, ROI-based structural and functional connectivity analysis was employed to extract connectivity features. To identify features with significant discriminative power for patient classification, all features were put into an all-relevant feature selection procedure within cross-validation loops.

Results

Nine features were identified to be significantly relevant to patient classification. They showed significant differences between PD patients with and without MCI and positively correlated with the MoCA score. Five of them did not differ between general MCI subjects and healthy controls from the ADNI database, which suggested that they could uniquely play a part in the MCI diagnosis of PD. On basis of these relevant features, the random forest model constructed from the training group achieved an accuracy of 83.9% in the testing group, to discriminate patients with and without MCI.

Conclusions

The results of our study provide preliminary evidence that structural and functional connectivity abnormalities may contribute to cognitive impairment and allow to predict the outcome of MCI diagnosis in PD.

Key Points

Nine MCI markers were identified using an all-relevant feature selection procedure.
Five of nine markers differed between MCI and NC in PD, but not in general persons.
A random forest model achieved an accuracy of 83.9% for MCI diagnosis in PD.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Litvan I, Goldman JG, Troster AI et al (2012) Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord 27:349–356PubMedPubMedCentralCrossRef Litvan I, Goldman JG, Troster AI et al (2012) Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord 27:349–356PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Caviness JN, Driver-Dunckley E, Connor DJ et al (2007) Defining mild cognitive impairment in Parkinson’s disease. Mov Disord 22:1272–1277PubMedCrossRef Caviness JN, Driver-Dunckley E, Connor DJ et al (2007) Defining mild cognitive impairment in Parkinson’s disease. Mov Disord 22:1272–1277PubMedCrossRef
3.
Zurück zum Zitat Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG (2008) The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord 23:837–844PubMedCrossRef Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG (2008) The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord 23:837–844PubMedCrossRef
4.
Zurück zum Zitat Niccolini F, Su P, Politis M (2014) Dopamine receptor mapping with PET imaging in Parkinson’s disease. J Neurol 261:2251–2263PubMedCrossRef Niccolini F, Su P, Politis M (2014) Dopamine receptor mapping with PET imaging in Parkinson’s disease. J Neurol 261:2251–2263PubMedCrossRef
5.
Zurück zum Zitat Fan Z, Aman Y, Ahmed I et al (2015) Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement 11:608–621PubMedCrossRef Fan Z, Aman Y, Ahmed I et al (2015) Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement 11:608–621PubMedCrossRef
6.
Zurück zum Zitat González-Redondo R, García-García D, Clavero P et al (2014) Grey matter hypometabolism and atrophy in Parkinson’s disease with cognitive impairment: a two-step process. Brain 137:2356–2367PubMedPubMedCentralCrossRef González-Redondo R, García-García D, Clavero P et al (2014) Grey matter hypometabolism and atrophy in Parkinson’s disease with cognitive impairment: a two-step process. Brain 137:2356–2367PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Wu L, Liu FT, Ge JJ et al (2018) Clinical characteristics of cognitive impairment in patients with Parkinson’s disease and its related pattern in 18 F-FDG PET imaging. Hum Brain Mapp 39:4652–4662PubMedPubMedCentralCrossRef Wu L, Liu FT, Ge JJ et al (2018) Clinical characteristics of cognitive impairment in patients with Parkinson’s disease and its related pattern in 18 F-FDG PET imaging. Hum Brain Mapp 39:4652–4662PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Uchida Y, Kan H, Sakurai K et al (2019) Voxel-based quantitative susceptibility mapping in Parkinson’s disease with mild cognitive impairment. Mov Disord 34:1164–1173PubMedCrossRef Uchida Y, Kan H, Sakurai K et al (2019) Voxel-based quantitative susceptibility mapping in Parkinson’s disease with mild cognitive impairment. Mov Disord 34:1164–1173PubMedCrossRef
9.
Zurück zum Zitat Mak E, Su L, Williams GB et al (2015) Baseline and longitudinal grey matter changes in newly diagnosed Parkinson’s disease: ICICLE-PD study. Brain 138:2974–2986PubMedPubMedCentralCrossRef Mak E, Su L, Williams GB et al (2015) Baseline and longitudinal grey matter changes in newly diagnosed Parkinson’s disease: ICICLE-PD study. Brain 138:2974–2986PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Pereira JB, Aarsland D, Ginestet CE et al (2015) Aberrant cerebral network topology and mild cognitive impairment in early Parkinson’s disease. Hum Brain Mapp 36:2980–2995PubMedPubMedCentralCrossRef Pereira JB, Aarsland D, Ginestet CE et al (2015) Aberrant cerebral network topology and mild cognitive impairment in early Parkinson’s disease. Hum Brain Mapp 36:2980–2995PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Yildiz D, Erer S, Zarifoğlu M et al (2015) Impaired cognitive performance and hippocampal atrophy in Parkinson disease. Turk J Med Sci 45:1173–1177PubMedCrossRef Yildiz D, Erer S, Zarifoğlu M et al (2015) Impaired cognitive performance and hippocampal atrophy in Parkinson disease. Turk J Med Sci 45:1173–1177PubMedCrossRef
12.
Zurück zum Zitat Wang N, Zhang L, Yang H, Luo X, Fan G (2019) Do multiple system atrophy and Parkinson’s disease show distinct patterns of volumetric alterations across hippocampal subfields? An exploratory study. Eur Radiol 29:4948–4956PubMedCrossRef Wang N, Zhang L, Yang H, Luo X, Fan G (2019) Do multiple system atrophy and Parkinson’s disease show distinct patterns of volumetric alterations across hippocampal subfields? An exploratory study. Eur Radiol 29:4948–4956PubMedCrossRef
13.
Zurück zum Zitat Agosta F, Canu E, Stefanova E et al (2014) Mild cognitive impairment in Parkinson’s disease is associated with a distributed pattern of brain white matter damage. Hum Brain Mapp 35:1921–1929PubMedCrossRef Agosta F, Canu E, Stefanova E et al (2014) Mild cognitive impairment in Parkinson’s disease is associated with a distributed pattern of brain white matter damage. Hum Brain Mapp 35:1921–1929PubMedCrossRef
14.
Zurück zum Zitat Bledsoe IO, Stebbins GT, Merkitch D, Goldman JG (2018) White matter abnormalities in the corpus callosum with cognitive impairment in Parkinson disease. Neurology 91:e2244–e2255PubMedPubMedCentralCrossRef Bledsoe IO, Stebbins GT, Merkitch D, Goldman JG (2018) White matter abnormalities in the corpus callosum with cognitive impairment in Parkinson disease. Neurology 91:e2244–e2255PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Seibert TM, Murphy EA, Kaestner EJ, Brewer JB (2012) Interregional correlations in Parkinson disease and Parkinson-related dementia with resting functional MR imaging. Radiology 263:226–234PubMedPubMedCentralCrossRef Seibert TM, Murphy EA, Kaestner EJ, Brewer JB (2012) Interregional correlations in Parkinson disease and Parkinson-related dementia with resting functional MR imaging. Radiology 263:226–234PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Olde Dubbelink KT, Schoonheim MM, Deijen JB, Twisk JW, Barkhof F, Berendse HW (2014) Functional connectivity and cognitive decline over 3 years in Parkinson disease. Neurology 83:2046–2053PubMedCrossRef Olde Dubbelink KT, Schoonheim MM, Deijen JB, Twisk JW, Barkhof F, Berendse HW (2014) Functional connectivity and cognitive decline over 3 years in Parkinson disease. Neurology 83:2046–2053PubMedCrossRef
17.
Zurück zum Zitat Baggio HC, Segura B, Sala-Llonch R et al (2015) Cognitive impairment and resting-state network connectivity in Parkinson’s disease. Hum Brain Mapp 36:199–212PubMedCrossRef Baggio HC, Segura B, Sala-Llonch R et al (2015) Cognitive impairment and resting-state network connectivity in Parkinson’s disease. Hum Brain Mapp 36:199–212PubMedCrossRef
18.
Zurück zum Zitat Aracil-Bolaños I, Sampedro F, Marín-Lahoz J et al (2019) A divergent breakdown of neurocognitive networks in Parkinson’s disease mild cognitive impairment. Hum Brain Mapp 40:3233–3242PubMedPubMedCentralCrossRef Aracil-Bolaños I, Sampedro F, Marín-Lahoz J et al (2019) A divergent breakdown of neurocognitive networks in Parkinson’s disease mild cognitive impairment. Hum Brain Mapp 40:3233–3242PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Fiorenzato E, Strafella AP, Kim J et al (2019) Dynamic functional connectivity changes associated with dementia in Parkinson’s disease. Brain 142:2860–2872PubMedPubMedCentralCrossRef Fiorenzato E, Strafella AP, Kim J et al (2019) Dynamic functional connectivity changes associated with dementia in Parkinson’s disease. Brain 142:2860–2872PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Wang W, Mei M, Gao Y et al (2020) Changes of brain structural network connection in Parkinson’s disease patients with mild cognitive dysfunction: a study based on diffusion tensor imaging. J Neurol 267:933–943PubMedCrossRef Wang W, Mei M, Gao Y et al (2020) Changes of brain structural network connection in Parkinson’s disease patients with mild cognitive dysfunction: a study based on diffusion tensor imaging. J Neurol 267:933–943PubMedCrossRef
21.
Zurück zum Zitat Jones DK (2008) Studying connections in the living human brain with diffusion MRI. Cortex 44:936–952PubMedCrossRef Jones DK (2008) Studying connections in the living human brain with diffusion MRI. Cortex 44:936–952PubMedCrossRef
22.
Zurück zum Zitat Lowe MJ, Dzemidzic M, Lurito JT, Mathews VP, Phillips MD (2000) Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage 12:582–587PubMedCrossRef Lowe MJ, Dzemidzic M, Lurito JT, Mathews VP, Phillips MD (2000) Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage 12:582–587PubMedCrossRef
23.
24.
Zurück zum Zitat Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184PubMedPubMedCentralCrossRef Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Cui Z, Zhong S, Xu P, He Y, Gong G (2013) PANDA: a pipeline toolbox for analyzing brain diffusion images. Front Hum Neurosci 7:42PubMedPubMedCentral Cui Z, Zhong S, Xu P, He Y, Gong G (2013) PANDA: a pipeline toolbox for analyzing brain diffusion images. Front Hum Neurosci 7:42PubMedPubMedCentral
26.
Zurück zum Zitat Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62:782–790PubMedCrossRef Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62:782–790PubMedCrossRef
27.
Zurück zum Zitat Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152PubMedCrossRef Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152PubMedCrossRef
28.
Zurück zum Zitat Griffanti L, Salimi-Khorshidi G, Beckmann CF et al (2014) ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage 95:232–247PubMedCrossRef Griffanti L, Salimi-Khorshidi G, Beckmann CF et al (2014) ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage 95:232–247PubMedCrossRef
29.
Zurück zum Zitat Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM (2014) Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90:449–468PubMedCrossRef Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM (2014) Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90:449–468PubMedCrossRef
30.
Zurück zum Zitat Lin H, Cai X, Zhang D, Liu J, Na P, Li W (2020) Functional connectivity markers of depression in advanced Parkinson’s disease. Neuroimage Clin 25:102130PubMedCrossRef Lin H, Cai X, Zhang D, Liu J, Na P, Li W (2020) Functional connectivity markers of depression in advanced Parkinson’s disease. Neuroimage Clin 25:102130PubMedCrossRef
31.
Zurück zum Zitat Lin H, Na P, Zhang D, Liu J, Cai X, Li W (2020) Brain connectivity markers for the identification of effective contacts in subthalamic nucleus deep brain stimulation. Hum Brain Mapp 41:2028–2036PubMedPubMedCentralCrossRef Lin H, Na P, Zhang D, Liu J, Cai X, Li W (2020) Brain connectivity markers for the identification of effective contacts in subthalamic nucleus deep brain stimulation. Hum Brain Mapp 41:2028–2036PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57:289–300
33.
Zurück zum Zitat Aarsland D, Kurz MW (2010) The epidemiology of dementia associated with Parkinson disease. J Neurol Sci 289:18–22PubMedCrossRef Aarsland D, Kurz MW (2010) The epidemiology of dementia associated with Parkinson disease. J Neurol Sci 289:18–22PubMedCrossRef
34.
Zurück zum Zitat Delgado-Alvarado M, Gago B, Navalpotro-Gomez I, Jiménez-Urbieta H, Rodriguez-Oroz MC (2016) Biomarkers for dementia and mild cognitive impairment in Parkinson’s disease. Mov Disord 31:861–881PubMedCrossRef Delgado-Alvarado M, Gago B, Navalpotro-Gomez I, Jiménez-Urbieta H, Rodriguez-Oroz MC (2016) Biomarkers for dementia and mild cognitive impairment in Parkinson’s disease. Mov Disord 31:861–881PubMedCrossRef
36.
Zurück zum Zitat Kato T, Inui Y, Nakamura A, Ito K (2016) Brain fluorodeoxyglucose (FDG) PET in dementia. Ageing Res Rev 30:73–84PubMedCrossRef Kato T, Inui Y, Nakamura A, Ito K (2016) Brain fluorodeoxyglucose (FDG) PET in dementia. Ageing Res Rev 30:73–84PubMedCrossRef
37.
Zurück zum Zitat Gomperts SN, Locascio JJ, Makaretz SJ et al (2016) Tau positron emission tomographic imaging in the Lewy body diseases. JAMA Neurol 73:1334–1341PubMedPubMedCentralCrossRef Gomperts SN, Locascio JJ, Makaretz SJ et al (2016) Tau positron emission tomographic imaging in the Lewy body diseases. JAMA Neurol 73:1334–1341PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Ibarretxe-Bilbao N, Zarei M, Junque C et al (2011) Dysfunctions of cerebral networks precede recognition memory deficits in early Parkinson’s disease. Neuroimage 57:589–597PubMedCrossRef Ibarretxe-Bilbao N, Zarei M, Junque C et al (2011) Dysfunctions of cerebral networks precede recognition memory deficits in early Parkinson’s disease. Neuroimage 57:589–597PubMedCrossRef
39.
Zurück zum Zitat Mohan A, Roberto AJ, Mohan A et al (2016) The significance of the default mode network (DMN) in neurological and neuropsychiatric disorders: a review. Yale J Biol Med 89:49–57PubMedPubMedCentral Mohan A, Roberto AJ, Mohan A et al (2016) The significance of the default mode network (DMN) in neurological and neuropsychiatric disorders: a review. Yale J Biol Med 89:49–57PubMedPubMedCentral
40.
Zurück zum Zitat Tessitore A, Esposito F, Vitale C et al (2012) Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology 79:2226–2232PubMedCrossRef Tessitore A, Esposito F, Vitale C et al (2012) Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology 79:2226–2232PubMedCrossRef
41.
Zurück zum Zitat Hou Y, Yang J, Luo C et al (2016) Dysfunction of the default mode network in drug-naïve Parkinson’s disease with mild cognitive impairments: a resting-state fMRI study. Front Aging Neurosci 8:247PubMedPubMedCentral Hou Y, Yang J, Luo C et al (2016) Dysfunction of the default mode network in drug-naïve Parkinson’s disease with mild cognitive impairments: a resting-state fMRI study. Front Aging Neurosci 8:247PubMedPubMedCentral
42.
Zurück zum Zitat Craig AD (2009) How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70PubMedCrossRef Craig AD (2009) How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70PubMedCrossRef
43.
Zurück zum Zitat Menon V, Gallardo G, Pinsk MA et al (2020) Microstructural organization of human insula is linked to its macrofunctional circuitry and predicts cognitive control. Elife 9:e53470PubMedPubMedCentralCrossRef Menon V, Gallardo G, Pinsk MA et al (2020) Microstructural organization of human insula is linked to its macrofunctional circuitry and predicts cognitive control. Elife 9:e53470PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Abós A, Baggio HC, Segura B et al (2017) Discriminating cognitive status in Parkinson’s disease through functional connectomics and machine learning. Sci Rep 7:45347PubMedPubMedCentralCrossRef Abós A, Baggio HC, Segura B et al (2017) Discriminating cognitive status in Parkinson’s disease through functional connectomics and machine learning. Sci Rep 7:45347PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Fathy YY, Hepp DH, de Jong FJ et al (2020) Anterior insular network disconnection and cognitive impairment in Parkinson’s disease. Neuroimage Clin 28:102364PubMedPubMedCentralCrossRef Fathy YY, Hepp DH, de Jong FJ et al (2020) Anterior insular network disconnection and cognitive impairment in Parkinson’s disease. Neuroimage Clin 28:102364PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Christopher L, Marras C, Duff-Canning S et al (2014) Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain 137:565–575PubMedCrossRef Christopher L, Marras C, Duff-Canning S et al (2014) Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain 137:565–575PubMedCrossRef
47.
Zurück zum Zitat Mak E, Zhou J, Tan LC, Au WL, Sitoh YY, Kandiah N (2014) Cognitive deficits in mild Parkinson’s disease are associated with distinct areas of grey matter atrophy. J Neurol Neurosurg Psychiatry 85:576–580PubMedCrossRef Mak E, Zhou J, Tan LC, Au WL, Sitoh YY, Kandiah N (2014) Cognitive deficits in mild Parkinson’s disease are associated with distinct areas of grey matter atrophy. J Neurol Neurosurg Psychiatry 85:576–580PubMedCrossRef
48.
Zurück zum Zitat Goldman JG, Holden SK, Litvan I, McKeith I, Stebbins GT, Taylor JP (2018) Evolution of diagnostic criteria and assessments for Parkinson’s disease mild cognitive impairment. Mov Disord 33:503–510PubMedCrossRef Goldman JG, Holden SK, Litvan I, McKeith I, Stebbins GT, Taylor JP (2018) Evolution of diagnostic criteria and assessments for Parkinson’s disease mild cognitive impairment. Mov Disord 33:503–510PubMedCrossRef
Metadaten
Titel
Brain connectivity markers in advanced Parkinson’s disease for predicting mild cognitive impairment
verfasst von
Hai Lin
Zesi Liu
Wei Yan
Doudou Zhang
Jiali Liu
Bin Xu
Weiping Li
Qiusheng Zhang
Xiaodong Cai
Publikationsdatum
09.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 12/2021
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-08086-3

Neu im Fachgebiet Radiologie

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.