Skip to main content
Erschienen in: Brain Structure and Function 3/2016

18.12.2014 | Original Article

Brain intracellular metabolites are freely diffusing along cell fibers in grey and white matter, as measured by diffusion-weighted MR spectroscopy in the human brain at 7 T

verfasst von: Chloé Najac, Francesca Branzoli, Itamar Ronen, Julien Valette

Erschienen in: Brain Structure and Function | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Due to the specific compartmentation of brain metabolites, diffusion-weighted magnetic resonance spectroscopy opens unique insight into neuronal and astrocytic microstructures. The apparent diffusion coefficient (ADC) of brain metabolites depends on various intracellular parameters including cytosol viscosity and molecular crowding. When diffusion time (t d) is long enough, the size and geometry of the compartment in which the metabolites diffuse strongly influence metabolites ADC. In a previous study, performed in the macaque brain, we measured neuronal and astrocytic metabolites ADC at long t d (from 86 to 1,011 ms) in a large voxel enclosing an equal proportion of white and grey matter. We showed that metabolites apparently diffuse freely along the axis of dendrites, axons and astrocytic processes. To assess potential differences between these two tissue types, here we measured for the first time in the Human brain the t d-dependency of metabolites trace/3 ADC at 7 teslas using a localized diffusion-weighted STEAM sequence, in parietal and occipital voxels, respectively, containing mainly white and grey matter. We show that, in both tissues and over the observed timescale (t d varying from 92 to 712 ms) metabolite ADC reaches a non-zero plateau, suggesting that metabolites are not confined inside subcellular regions such as cell bodies, or inside subcellular compartments such as organelles, but are rather free to diffuse in the whole fiber-like structure of neurons and astrocytes. Beyond the fundamental insights into intracellular compartmentation of metabolites, this work also provides a new framework for interpreting results of neuroimaging techniques based on molecular diffusion, such as diffusion-weighted magnetic resonance spectroscopy and imaging.
Literatur
Zurück zum Zitat Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61CrossRefPubMed Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61CrossRefPubMed
Zurück zum Zitat Balinov B, Jonsson B, Linse P, Söderman O (1993) The NMR self-diffusion method applied to restricted diffusion. Simulation of echo attenuation from molecules in spheres and between planes. J Magn Reson Series A 104:17–25CrossRef Balinov B, Jonsson B, Linse P, Söderman O (1993) The NMR self-diffusion method applied to restricted diffusion. Simulation of echo attenuation from molecules in spheres and between planes. J Magn Reson Series A 104:17–25CrossRef
Zurück zum Zitat Branzoli F, Techawiboonwong A, Kan H, Webb A, Ronen I (2013) Functional diffusion-weighted magnetic resonance spectroscopy of the human primary visual cortex at 7 T. Magn Reson Med 69:303–309CrossRefPubMed Branzoli F, Techawiboonwong A, Kan H, Webb A, Ronen I (2013) Functional diffusion-weighted magnetic resonance spectroscopy of the human primary visual cortex at 7 T. Magn Reson Med 69:303–309CrossRefPubMed
Zurück zum Zitat Branzoli F, Ercan E, Webb A, Ronen I (2014) The interaction between apparent diffusion coefficients and transverse relaxation rates of human brain metabolites and water studied by diffusion-weighted spectroscopy at 7 T. NMR Biomed. doi:10.1002/nbm.3085 PubMed Branzoli F, Ercan E, Webb A, Ronen I (2014) The interaction between apparent diffusion coefficients and transverse relaxation rates of human brain metabolites and water studied by diffusion-weighted spectroscopy at 7 T. NMR Biomed. doi:10.​1002/​nbm.​3085 PubMed
Zurück zum Zitat Budde MD, Frank JA (2010) Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke. Proc Natl Acad Sci USA 107:14472–14477CrossRefPubMedPubMedCentral Budde MD, Frank JA (2010) Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke. Proc Natl Acad Sci USA 107:14472–14477CrossRefPubMedPubMedCentral
Zurück zum Zitat Budde MD, Janes L, Gold E, Turtzo LC, Frank JA (2011) The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. Brain 134:2248–2260CrossRefPubMedPubMedCentral Budde MD, Janes L, Gold E, Turtzo LC, Frank JA (2011) The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. Brain 134:2248–2260CrossRefPubMedPubMedCentral
Zurück zum Zitat Chklovskii DB, Schikorski T, Stevens CF (2002) Wiring optimization in cortical circuits. Neuron 34:341–347CrossRefPubMed Chklovskii DB, Schikorski T, Stevens CF (2002) Wiring optimization in cortical circuits. Neuron 34:341–347CrossRefPubMed
Zurück zum Zitat Choi JK, Dedeoglu A, Jenkins BG (2007) Application of MRS to mouse models of neurodegenerative illness. NMR Biomed 20:216–237CrossRefPubMed Choi JK, Dedeoglu A, Jenkins BG (2007) Application of MRS to mouse models of neurodegenerative illness. NMR Biomed 20:216–237CrossRefPubMed
Zurück zum Zitat Ellegood J, Hanstock CC, Beaulieu C (2005) Trace apparent diffusion coefficients of metabolites in human brain using diffusion weighted magnetic resonance spectroscopy. Magn Reson Med 53:1025–1032CrossRefPubMed Ellegood J, Hanstock CC, Beaulieu C (2005) Trace apparent diffusion coefficients of metabolites in human brain using diffusion weighted magnetic resonance spectroscopy. Magn Reson Med 53:1025–1032CrossRefPubMed
Zurück zum Zitat Ellegood J, Hanstock CC, Beaulieu C (2006) Diffusion tensor spectroscopy (DTS) of human brain. Magn Reson Med 55:1–8CrossRefPubMed Ellegood J, Hanstock CC, Beaulieu C (2006) Diffusion tensor spectroscopy (DTS) of human brain. Magn Reson Med 55:1–8CrossRefPubMed
Zurück zum Zitat Ellegood J, Hanstock CC, Beaulieu C (2011) Considerations for measuring the fractional anisotropy of metabolites with diffusion tensor spectroscopy. NMR Biomed 24:270–280CrossRefPubMed Ellegood J, Hanstock CC, Beaulieu C (2011) Considerations for measuring the fractional anisotropy of metabolites with diffusion tensor spectroscopy. NMR Biomed 24:270–280CrossRefPubMed
Zurück zum Zitat Ercan AE, Techawiboonwong A, Versluis MJ, Webb AG, Ronen I (2014) Diffusion-weighted chemical shift imaging of human brain metabolites at 7T. Magn Reson Med. doi:10.1002/mrm.25346 PubMed Ercan AE, Techawiboonwong A, Versluis MJ, Webb AG, Ronen I (2014) Diffusion-weighted chemical shift imaging of human brain metabolites at 7T. Magn Reson Med. doi:10.​1002/​mrm.​25346 PubMed
Zurück zum Zitat Filley CM (2010) White matter; organization and functional relevance. Neuropsycho Rev 20:158–173CrossRef Filley CM (2010) White matter; organization and functional relevance. Neuropsycho Rev 20:158–173CrossRef
Zurück zum Zitat Gudbjartsson H, Maier SE, Mulkern RV, Mórocz IA, Patz S, Jolesz FA (1996) Line scan diffusion imaging. Magn Reson Med 36:509–519CrossRefPubMed Gudbjartsson H, Maier SE, Mulkern RV, Mórocz IA, Patz S, Jolesz FA (1996) Line scan diffusion imaging. Magn Reson Med 36:509–519CrossRefPubMed
Zurück zum Zitat Harada M, Uno M, Hong F, Hisaoka S, Nishitani H, Matsuda T (2002) Diffusion-weighted in vivo localized proton MR spectroscopy of human cerebral ischemia and tumor. NMR Biomed 15:69–74CrossRefPubMed Harada M, Uno M, Hong F, Hisaoka S, Nishitani H, Matsuda T (2002) Diffusion-weighted in vivo localized proton MR spectroscopy of human cerebral ischemia and tumor. NMR Biomed 15:69–74CrossRefPubMed
Zurück zum Zitat Jara H, Wehrli FW (1994) Determination of background gradients with diffusion MR imaging. J Magn Reson Imaging 4:787–797CrossRefPubMed Jara H, Wehrli FW (1994) Determination of background gradients with diffusion MR imaging. J Magn Reson Imaging 4:787–797CrossRefPubMed
Zurück zum Zitat Jespersen SN, Kroenke CD, Østergaard L, Ackerman JJH, Yablonskiy DA (2007) Modeling dendrite density from magnetic resonance diffusion measurements. NeuroImage 34:1473–1486CrossRefPubMed Jespersen SN, Kroenke CD, Østergaard L, Ackerman JJH, Yablonskiy DA (2007) Modeling dendrite density from magnetic resonance diffusion measurements. NeuroImage 34:1473–1486CrossRefPubMed
Zurück zum Zitat Kan HE, Techawiboonwong A, van Osch MJP, Versluis MJ, Deelchand DK, Henry P-G, Marjańska M, van Buchem MA, Webb AG, Ronen I (2012) Differences in apparent diffusion coefficients of brain metabolites between grey and white matter in the human brain measured at 7 T. Magn Reson Med 67:1203–1209CrossRefPubMed Kan HE, Techawiboonwong A, van Osch MJP, Versluis MJ, Deelchand DK, Henry P-G, Marjańska M, van Buchem MA, Webb AG, Ronen I (2012) Differences in apparent diffusion coefficients of brain metabolites between grey and white matter in the human brain measured at 7 T. Magn Reson Med 67:1203–1209CrossRefPubMed
Zurück zum Zitat Kroenke CD, Ackerman JJH, Yablonskiy DA (2004) On the nature of the NAA diffusion attenuated MR signal in the central nervous system. Magn Reson Med 52:1052–1059CrossRefPubMed Kroenke CD, Ackerman JJH, Yablonskiy DA (2004) On the nature of the NAA diffusion attenuated MR signal in the central nervous system. Magn Reson Med 52:1052–1059CrossRefPubMed
Zurück zum Zitat Linse P, Söderman O (1995) The validity of the short-gradient-pulse approximation in NMR studies of restricted diffusion. Simulations of molecules diffusing between planes, in cylinders and spheres. J. Magn. Reson. Series A 116:77–86CrossRef Linse P, Söderman O (1995) The validity of the short-gradient-pulse approximation in NMR studies of restricted diffusion. Simulations of molecules diffusing between planes, in cylinders and spheres. J. Magn. Reson. Series A 116:77–86CrossRef
Zurück zum Zitat López-Muñoz F, Boya J, Alamo C (2006) Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal. Brain Res Bull 70:391–405CrossRefPubMed López-Muñoz F, Boya J, Alamo C (2006) Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal. Brain Res Bull 70:391–405CrossRefPubMed
Zurück zum Zitat Marchadour C, Brouillet E, Hantraye P, Lebon V, Valette J (2012) Anomalous diffusion of brain metabolites evidenced by diffusion-weighted magnetic resonance spectroscopy in vivo. J Cereb Blood Flow Metab 32:2153–2160CrossRefPubMedPubMedCentral Marchadour C, Brouillet E, Hantraye P, Lebon V, Valette J (2012) Anomalous diffusion of brain metabolites evidenced by diffusion-weighted magnetic resonance spectroscopy in vivo. J Cereb Blood Flow Metab 32:2153–2160CrossRefPubMedPubMedCentral
Zurück zum Zitat Najac C, Marchadour C, Guillermier M, Houitte D, Slavov V, Brouillet E, Hantraye P, Lebon V, Valette J (2014) Intracellular metabolites in the primate brain are primarily localized in long fibers rather than in cell bodies, as shown by diffusion-weighted magnetic resonance spectroscopy. NeuroImage 90:374–380CrossRefPubMed Najac C, Marchadour C, Guillermier M, Houitte D, Slavov V, Brouillet E, Hantraye P, Lebon V, Valette J (2014) Intracellular metabolites in the primate brain are primarily localized in long fibers rather than in cell bodies, as shown by diffusion-weighted magnetic resonance spectroscopy. NeuroImage 90:374–380CrossRefPubMed
Zurück zum Zitat Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530CrossRefPubMed Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530CrossRefPubMed
Zurück zum Zitat Neeman M, Freyer JP, Sillerud LO (1990) Pulsed-gradient spin-echo diffusion studies in nmr imaging. Effects of the imaging gradients on the determination of diffusion coefficients. J Magn Reson Series 90:303–312 (1969) Neeman M, Freyer JP, Sillerud LO (1990) Pulsed-gradient spin-echo diffusion studies in nmr imaging. Effects of the imaging gradients on the determination of diffusion coefficients. J Magn Reson Series 90:303–312 (1969)
Zurück zum Zitat Neeman M, Freyer JP, Sillerud LO (1991) A simple method for obtaining cross-term-free images for diffusion anisotropy studies in NMR microimaging. Magn Reson Med 21:138–143CrossRefPubMed Neeman M, Freyer JP, Sillerud LO (1991) A simple method for obtaining cross-term-free images for diffusion anisotropy studies in NMR microimaging. Magn Reson Med 21:138–143CrossRefPubMed
Zurück zum Zitat Nicolay K, Braun KP, de Graaf RA, Dijkhuizen RM, Kruiskamp MJ (2001) Diffusion NMR spectroscopy. NMR Biomed 14:94–111CrossRefPubMed Nicolay K, Braun KP, de Graaf RA, Dijkhuizen RM, Kruiskamp MJ (2001) Diffusion NMR spectroscopy. NMR Biomed 14:94–111CrossRefPubMed
Zurück zum Zitat Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287CrossRefPubMedPubMedCentral Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287CrossRefPubMedPubMedCentral
Zurück zum Zitat Posse S, Cuenod CA, Le Bihan D (1993) Human brain: proton diffusion MR spectroscopy. Radiology 188:719–725CrossRefPubMed Posse S, Cuenod CA, Le Bihan D (1993) Human brain: proton diffusion MR spectroscopy. Radiology 188:719–725CrossRefPubMed
Zurück zum Zitat Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679CrossRefPubMed Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679CrossRefPubMed
Zurück zum Zitat Purves D, Augustine GJ, Fitzpatrick D, Hall William C, LaMantia AS, McNamara JO, Williams SM (2004) Neuroscience, 3rd edn. Sinauer Asociates Inc, Sunderland Purves D, Augustine GJ, Fitzpatrick D, Hall William C, LaMantia AS, McNamara JO, Williams SM (2004) Neuroscience, 3rd edn. Sinauer Asociates Inc, Sunderland
Zurück zum Zitat Ribeiro PFM, Ventura-Antunes L, Gabi M, Mota B, Grinberg LT, Farfel JM, Ferretti-Rebustini REL, Leite REP, Filho WJ, Herculano-Houzel S (2013) The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding. Front Neuroanat. doi:10.3389/fnana.2013.00028 PubMedPubMedCentral Ribeiro PFM, Ventura-Antunes L, Gabi M, Mota B, Grinberg LT, Farfel JM, Ferretti-Rebustini REL, Leite REP, Filho WJ, Herculano-Houzel S (2013) The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding. Front Neuroanat. doi:10.​3389/​fnana.​2013.​00028 PubMedPubMedCentral
Zurück zum Zitat Ronen I, Ercan E, Webb A (2013) Axonal and glial microstructural information obtained with diffusion-weighted magnetic resonance spectroscopy at 7T. Front Integr Neurosci. 13:7–13 Ronen I, Ercan E, Webb A (2013) Axonal and glial microstructural information obtained with diffusion-weighted magnetic resonance spectroscopy at 7T. Front Integr Neurosci. 13:7–13
Zurück zum Zitat Ronen I, Budde M, Ercan E, Annese J, Techawiboonwong A, Webb A (2014) Microstructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and post-mortem histology. Brain Struct Funct 219:1773–1785CrossRefPubMed Ronen I, Budde M, Ercan E, Annese J, Techawiboonwong A, Webb A (2014) Microstructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and post-mortem histology. Brain Struct Funct 219:1773–1785CrossRefPubMed
Zurück zum Zitat Upadhyay J, Hallock K, Erb K, Kim DS, Ronen I (2007) Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy. Magn Reson Med 58:1045–1053CrossRefPubMed Upadhyay J, Hallock K, Erb K, Kim DS, Ronen I (2007) Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy. Magn Reson Med 58:1045–1053CrossRefPubMed
Zurück zum Zitat Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–989PubMed Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–989PubMed
Zurück zum Zitat Valette J, Chaumeil M, Guillermier M, Bloch G, Hantraye P, Lebon V (2008) Diffusion-weighted NMR spectroscopy allows probing of 13C labeling of glutamate inside distinct metabolic compartments in the brain. Magn Reson Med 60:306–311CrossRefPubMed Valette J, Chaumeil M, Guillermier M, Bloch G, Hantraye P, Lebon V (2008) Diffusion-weighted NMR spectroscopy allows probing of 13C labeling of glutamate inside distinct metabolic compartments in the brain. Magn Reson Med 60:306–311CrossRefPubMed
Zurück zum Zitat Wood ET, Ronen I, Techawiboonwong A, Jones CK, Barker PB, Calabresi P, Harrison D, Reich DS (2012) Investigating axonal damage in multiple sclerosis by diffusion tensor spectroscopy. J Neurosci 32:6665–6669CrossRefPubMedPubMedCentral Wood ET, Ronen I, Techawiboonwong A, Jones CK, Barker PB, Calabresi P, Harrison D, Reich DS (2012) Investigating axonal damage in multiple sclerosis by diffusion tensor spectroscopy. J Neurosci 32:6665–6669CrossRefPubMedPubMedCentral
Zurück zum Zitat Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57CrossRefPubMed Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57CrossRefPubMed
Zurück zum Zitat Zheng DD, Liu ZH, Fang J, Wang XY, Zhang J (2012) The effect of age and cerebral ischemia on diffusion-weighted proton MR spectroscopy of the human brain. AJNR Am J Neuroradiol 33:563–568CrossRefPubMed Zheng DD, Liu ZH, Fang J, Wang XY, Zhang J (2012) The effect of age and cerebral ischemia on diffusion-weighted proton MR spectroscopy of the human brain. AJNR Am J Neuroradiol 33:563–568CrossRefPubMed
Zurück zum Zitat Zhong J, Kennan RP, Gore JC (1991) Effects of susceptibility variations on NMR measurements of diffusion. J Magn Reson 95:267–280 Zhong J, Kennan RP, Gore JC (1991) Effects of susceptibility variations on NMR measurements of diffusion. J Magn Reson 95:267–280
Metadaten
Titel
Brain intracellular metabolites are freely diffusing along cell fibers in grey and white matter, as measured by diffusion-weighted MR spectroscopy in the human brain at 7 T
verfasst von
Chloé Najac
Francesca Branzoli
Itamar Ronen
Julien Valette
Publikationsdatum
18.12.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 3/2016
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0968-5

Weitere Artikel der Ausgabe 3/2016

Brain Structure and Function 3/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.