Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2019

Open Access 01.12.2019 | Research

Breast cancer robotic nipple sparing mastectomy: evaluation of several surgical procedures and learning curve

verfasst von: G. Houvenaeghel, M. Bannier, S. Rua, J. Barrou, M. Heinemann, A. Van Troy, E. Lambaudie, M. Cohen

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2019

Abstract

Background

Few studies of robotic nipple sparing mastectomy (NSM) were reported. We report feasibility of robotic NSM and determine standard surgical procedure and learning curve threefold.

Methods

A cohort of patients with robotic NSM for breast cancer was analyzed. Complications and post-operative hospitalization stay were reported. The same technic was used for all patients except for skin and nipple areolar complex (NAC) dissection. Differences between three surgical procedures of NAC dissection were analyzed: group 1, dissection with robotic scissors using coagulation; group 2, dissection with robotic scissors without coagulation; and group 3, dissection with non-robotic scissors and then robotic dissection. We explored possible effect of learning curve among patients from group 1 with the same surgical procedure.

Results

Twenty-seven NSM with immediate breast reconstruction for breast cancers, 22 invasive and 5 in situ, were performed, with robotic latissimus dorsi-flap (RLDF) only in 17 cases, RLDF and breast implant in 6 cases, and implant alone in 4 cases. Repartition according to 3 surgical procedure groups was 16, 5, and 6 patients. Mean time of surgery and anesthesia decrease according to groups 1 to 3. Among 16 patients from group 1, time of surgery and anesthesia decreased with learning curve. Post-operative hospitalization decreased from group 1 to 3. We reported a total of 11 complications, with significant difference between groups (10 for group 1). Skin complications were higher for group 1 in comparison with groups 2–3 (p = 0.02).

Conclusion

Robotic NSM can be performed with a brief learning. Standardized technique is proposed with non-robotic scissors superficial dissection and then dissection with robot.

Introduction

Robotic oncologic surgery is considered a valid endoscopic technique for several indications including urologic, colorectal, and gynecologic surgery. Nipple sparing mastectomy (NSM) is today considered as a valid procedure for prophylactic mastectomy and an acceptable option for breast cancer (BC) therapeutic mastectomy [15]. Very few studies of robotic mastectomy were reported [69], and some studies were specifically published about endoscopic robotic latissimus dorsi-flap dissection [1018].
Since 2007, we have now a strong experience of gynecologic oncologic robotic surgery not only for hysterectomy but also for more complex procedures [1922]. These experiences conduct us to start breast robotic surgery development.
The aim of this study was to report feasibility of robotic NSM and determine standard surgical procedure and learning curve threefold.

Methods

Patients

Robotic mastectomies (RM) and immediate breast reconstruction (IBR) were performed by one surgeon during 16 months (from the first procedure in November 2016 to February 2018). All patients were informed of robotic assistance surgery. Our institutional ethical committee approved robotic breast surgery procedures.
We determined characteristics of patients (age, body mass index (BMI), tobacco use, diabetes, ASA status, breast volume), previous treatment for breast cancer (BC) (sentinel lymph node biopsy, axillary lymph node dissection (ALND), neo-adjuvant chemotherapy, previous breast radiotherapy), indications of NSM (primitive BC or local recurrence, reconstruction with robotic latissimus dorsi-flap (RLDF), and or breast implant).
Surgical technic with type of Da Vinci system, number of trocars, skin incision, duration of anesthesia, and surgery were reported according to period of treatment and association of surgical procedures (mastectomy, breast implant, RLDF, ALND, and contra lateral breast surgery). Six chronologically periods of 3 months was determined.
Complication rate was determined with Clavien-Dindo grading [23]. Re-operation rate, type of complication, and number of post-operative hospitalization days were analyzed.

Groups of surgical procedures

The same technic was used for all patients except for skin and nipple areolar complex (NAC) dissection, determining three groups: group 1, dissection with robotic scissors using coagulation; group 2, dissection with robotic scissors without coagulation; and group 3, dissection with non-robotic scissors after subcutaneous infiltration with adrenaline serum and then robotic dissection.
We explored possible effect of learning curve among patients from group 1 with the same surgical procedure (NSM and robotic LDF with or without breast implant).

Statistics

Main characteristics were reported with median, mean, and confidence interval 95% (CI 95%) for quantitative criteria. Comparisons were performed using χ², t test, and binary logistic regression with SPSS 16.0.

Results

Characteristics of patients are reported in Tables 1 and 2: 27 NSM with immediate breast reconstruction (IBR) for 10 (37%) local recurrences (7 invasive and 3 DCIS) and 17 (63%) primitive BC (15 invasive and 2 DCIS) were performed. Breast reconstruction used autologous RLDF only in 17 cases, RLDF and breast implant in 6 cases, and breast implant alone in 4 cases. Mean implant sizes were respectively 390 cc (range 311–490) for RLDF with implant and 283 (range 230–330) for breast implant reconstruction alone. Distribution according to 3 surgical procedure groups was 16, 5, and 6 patients.
Table 1
Characteristics of patients
  
Group 1
Group 2
Group 3
Total
χ²
 
Nb
%
Nb
%
Nb
%
Nb
%
p
Type reconstruction
Implant
1
6.2
2
40.0
1
16.7
4
14.8
0.15
Implant + RLDF
5
31.2
1
20.0
0
 
6
22.2
 
RLDF
10
62.6
2
40.0
5
83.3
17
63.0
 
Breast cancer
Primitive
10
62.5
3
60.0
4
66.7
17
63.0
0.973
Recurrence
6
37.5
2
40.0
2
33.3
10
37.0
 
Cup size
A–B
8
50.0
2
18.2
4
66.6
14
51.8
0.466
C
6
37.5
3
60.0
2
33.3
11
40.7
 
>C
2
12.5
0
 
0
 
2
7.4
 
Tobacco
No
12
75.0
3
60.0
5
83.3
20
74.1
0.673
Yes
4
25.0
2
40.0
1
16.7
7
25.9
 
Diabetes
No
15
93.8
5
100
6
100
26
96.3
0.700
Yes
1
6.2
0
 
0
 
1
3.7
 
ASA
1
8
50.0
2
40.0
2
33.3
12
44.4
0.763
2
8
50.0
3
60.0
4
66.7
15
55.6
 
Previous
contralateral BC
No
12
75.0
4
80.0
4
66.7
20
74.1
0.874
Yes
4
25.0
1
20.0
2
33.3
7
25.9
 
Previous conservative
breast surgery
No
8
50.0
3
60.0
2
33.3
13
48.1
0.660
Yes
8
50.0
2
40.0
4
66.7
14
51.9
 
Previous SLNB
No
13
81.2
3
75.0
2
33.3
19
70.4
0.092
Yes
3
18.8
1
25.0
4
66.7
8
29.6
 
Previous ALND
No
11
68.8
3
60.0
6
100
20
74.1
0.240
Yes
5
31.2
2
40.0
0
 
7
25.9
 
Previous homolateral
Radiotherapy
No
9
56.2
3
60.0
4
66.7
16
59.3
0.906
Yes
7
43.8
2
40.0
2
33.3
11
40.7
 
Neo-adjuvant
chemotherapy
No
13
81.2
5
100
6
100
24
88.9
0.3013
Yes
3
18.8
0
 
0
 
3
11.1
 
Implant volume
< = 300
3
50.1
1
33.3
0
 
4
40.0
0.65
311–330
2
33.4
1
33.3
1
100
4
40.0
 
> 400
1
16.7
1
33.3
0
 
2
20.0
 
Axillary surgery
No
10
 
3
 
4
 
17
62.9
0.90
SLNB
5
 
2
 
2
 
9
33.3
 
ALND
1
 
0
 
0
 
1
3.7
 
Trocar number
2
16
100
3
60.0
6
100
25
92.6
0.009
3
0
 
2
40.0
0
 
2
7.4
 
Da Vinci system
SI
11
68.8
2
40.0
1
16.7
14
51.9
0.079
XI
5
31.2
3
60.0
5
83.3
13
48.1
 
Procedure surgical
number
1
1
6.2
2
40.0
1
16.7
4
14.8
0.057
2
4
25.0
2
40.0
5
83.3
11
55.6
 
3
8
50.0
1
20.0
0
 
9
33.3
 
4
3
18.8
0
 
0
 
3
11.1
 
Post-operative
hospitalization
< 4 days
7
43.8
3
60.0
4
66.7
14
51.9
0.582
> = 4 days
9
56.2
2
40.0
2
33.3
13
48.1
 
BMI
< 23.5
      
22
 
0.763
> = 23.5
      
5
  
Surgical time
< 360
8
50.0
3
60.0
5
83.3
16
59.3
0.366
> = 360
8
50.0
2
40.0
1
16.7
11
40.7
 
Abbreviations: RLDF robotic latissimus dorsi flap, SLNB sentinel lymph node dissection, ALND axillary lymph node dissection, BMI body mass index
Table 2
Characteristics of patients and surgery according to three groups
 
Group 1
Group 2
Group 3
Total
Age
Median
49.5
57.0
50.0
51
Mean
52.4
51.0
45.3
51.2
CI 95%
45.9–58.9
29.8–72.2
14–76.8
45.75–56.67
Weight
Median
60.5
57.0
58.0
59
Mean
59.1
62.8
58.3
59.79
CI 95%
55.6–62.6
41.0–84.6
44.6–72.0
55.87–63.72
Patient size
Median
164.5
164
168
164.5
Mean
163.8
164.6
166
164.25
CI 95%
160.1–167.5
160.2–169.0
152.9–179.1
161.7–166.8
BMI
Median
22.25
21.19
20.7
21.58
Mean
22.0
23.0
21.1
22.11
CI 95%
21.0–23.0
16.4–29.7
17.8–24.5
20.9–23.3
Anesthesia
time
Median
448.5
349
375
431
Mean
436.6
393.2
344.3
416
CI 95%
394–479
242–544
99.3–589
376.7–455.4
Surgical
time
Median
370.5
265
285
349
Mean
372.5
303.4
257.7
343.75
CI 95%
330–415
167–439
24–491
304.0–383.5
Post-operative
hospitalization
Median
4
3.0
2.5
3.5
Mean
3.88
2.8
2.75
3.5
CI 95%
3.1–4.65
1.2–4.4
1.23–4.27
2.94–4.14
Mastectomy
weight
Median
237.5
194
350.5
237.5
Mean
303
250
351.5
288.9
CI 95%
227–378
23.5–477
65.4–638
228–350
Surgical time
NSM + RLDF
Median
390
360
335
351
Mean
374
364
324
362
CI 95%
329–419
114–613
280–368
329–395
Anesthesia time
NSM + RLDF
Median
455
457
408
442
Mean
440
460
413
437
CI 95%
395–485
179–741
362–464
403–470
Abbreviations: BMI body mass index, NSM nipple sparing mastectomy, RLDF robotic latissimus dorsi flap
Robotic mastectomies were performed in 14 patients with SI Da Vinci (51.9%) and 13 with XI system (XI was available since 24 February 2017: 5 with SI and 14 with XI (73.7%).

Surgical procedure

When mastectomy was performed with a concomitant RLDF, patients’ installation were dorsal decubitus then in side decubitus. For robotic NSM, installation was realized with anteflexion of arm in order to use robotic arm without strong limitation.
A vertical axillar incision, about 4 to 6 cm according to breast volume, on anterior axillary line allowed the beginning of the dissection on 3–4 cm for subcutaneous plan and a limited dissection under incision along anterior axillary line in order to introduce one robotic trocar about 6 cm under axillar incision. Then, a GelPoint mono-trocar was introduced through the axillar incision with two robotic trocars (one trocar for a 0° camera (Intuitive Surgical, Denzlingen, Germany) and one trocar for AirSeal insufflation also used for the assistant surgeon when necessary. We used a low pressure (7 mm). We introduced a monopolar scissors and bipolar clamp into up and down robotic trocars with camera in the middle robotic trocar. After superficial dissection, we started the dissection between major pectoralis muscle and breast gland, then we realized section of gland periphery on upper, internal and lower quadrant with robotic scissors using monopolar coagulation. After mono-trocar removal, we systematically performed a retro NAC biopsy with NAC eversion without extemporaneous analysis and verification of complete gland removal. We performed a complete resection of tissue under NAC and particularly under the nipple with only preservation of skin NAC.
After mastectomy, we start by the same incision and mono-trocar RLDF dissection with patient installation in lateral side. After mobilization of LDF, fixation of muscle was performed with several sutures and aspirate drainage disposed in dorsal area (2 drains through the inferior incision for robotic trocar) and in mastectomy area (1 drain). We do not perform dorsal padding. When implant was associated with RLDF, implant was disposed under the muscle without changing the patient’s position (patient installation in lateral side). When only implant was used, a robotic dissection of major pectoralis muscle provide pocket to manually introduce the prosthesis.

Time of surgery and anesthesia

Time of anesthesia is recorded from anesthesia induction to tracheal extubation. Time of surgery include all procedures and several installations from skin incision to the end of skin suture. Mean time of surgery decrease according to groups 1 to 3 (Table 2) with higher difference when we analyzed only NSM with concomitant RLDFR (Table 2 and Fig. 1). These differences were not significant in relation with the small number of patients in each group. Time of surgery increased according to association of procedures number (Fig. 2). Mean time of anesthesia also decrease according to groups 1 to 3 (Table 2) with higher difference when we analyzed only NSM with concomitant RLDF (Table 2).
Time of surgery and anesthesia were different between procedures performed with SI or XI system (Table 3), but XI system was used only from 24 February 2017. Median time of surgery and anesthesia for 5 SI vs 14 XI procedures since 24 February 2017 were not significantly different, respectively 347mn and 300mn (mean 316 and 312; E 153–456 and 197–420) for surgery and 455 and 380 (mean 412 and 384; E 234–575 and 288–480) for anesthesia (t test 0.936).
Specific times of surgery for NSM were different according to groups (means 161mn, 184mn, and 117mn respectively for groups 1 to 3, with no difference between groups 1 and 2 and significant differences between group 2 and 3 (p = 0.003) and group 1 and 3 (p = 0.010)) and according to breast cup size A–B vs C–D (mean 138mn vs 177mn; p = 0.018). There was no significant difference of cup sizes between the three groups.

Learning curve

Among 15 patients from group 1 with the same surgical procedure (NSM and RLDF), 3 periods of 3 months was determined (P1 to P3) with respectively 3, 8, and 4 patients in order to explore learning curve impact. Time of surgery and anesthesia decreased during third period (P3) in comparison with the two first periods (P1–2) (Table 3 and Figs. 3 and 4). Time of surgery and anesthesia were lesser for P3 in comparison with P1–2 (Table 3) without difference between P1 and P2. Number of associated surgical procedures was 2 or 3 for patients operated during P1–2 (three patients with three procedures) and three procedures for four patients operated during P3.

Outcome

Post-operative hospitalization decrease from group 1 to 3 (median days respectively 4, 3, and 2.5 (Table 2). We reported a total of 11 complications, with significant difference between groups (Table 4). Ten of these complications were observed in group 1. Seven complications of NSM were Clavien-Dindo grade II or III (7/27: 25.9%). Types of complications are reported in Table 4. The more important rate was in relation with dorsal lymphocele. Skin necrosis, about 2 cm out of NAC (1 patient: grade II) and cutaneous small blistering (5 patients: grade I) was significantly higher for group 1 in comparison with groups 2 and 3 (6/16 vs 0/11; p = 0.02). Re-operation was necessary for four patients within three cases explantation of prosthesis. For the last patient, a conversion from robotic to open surgery was required after half of dissection for bleeding on arterial perforant of arterial internal mammary, but without post-operative complication. Patients with Clavien-Dindo grade II–III complications and their characteristics are reported on Table 5.
Table 3
Time of surgery and anesthesia
 
Surgical time
t test
Anesthesia time
t test
Median
Mean
CI 95%
Range
p
Median
Mean
CI 95%
Range
p
SI
375
371
312–429
153–495
0.086
463.5
447
391–503
234–575
0.059
XI
300
312
273–351
197–420
 
380
384
343–424
288–480
 
P1
390
400
212–587
330–480
 
514
489
267–712
390–564
 
P2
409
394
327–462
241–495
 
462.5
460
412–509
354–563
 
P3
290
313
196–430
253–420
 
335
362.5
235–490
300–480
 
P1–2
398
396
345–447
241–495
0.083
470
468
425–511
354–564
0.020
P3
290
313
196–430
253–420
 
335
362
235–490
300–480
 
2 SP
405
409
326–491
351–474
 
497
499
414–583
438–563
 
3 SP
315
338
266–410
241–480
 
372
400
325–475
300–564
 
4 SP
430
424
240–608
347–495
 
470
468
437–499
455–480
 
Abbreviations: SI Da Vinci SI system, XI Da Vinci XI system, P1–2–3 periods 1–2–3, SP surgical procedures
Table 4
Complication results
  
Group 1
Group 2
Group 3
Total
 
Nb
%
Nb
%
Nb
%
Nb
%
Complications
 
10
62.5
1
20.0
0
 
11
40.7
Conversion
 
0
 
0
 
1
16.7
1
3.7
Re-operation
 
3
18.8
1
20.0
0
 
4
14.8
Clavien-Dindo Mastectomy
0
6
37.5
4
80.0
6
100
16
59.3
 
1
4
25.0
0
 
0
 
4
14.8
 
2
3
18.8
0
 
0
 
3
11.1
 
3
3
18.8
1
20.0
0
 
4
14.8
Type complication
Infection
3
18.75
1
20.0
0
 
4
14.8
Hematoma
2
12.5
1
20.0
0
 
3
11.1
Skin necrosis
1
6.25
0
 
0
 
1
3.7
Lymphocele
9
56.25
1
20.0
0
 
10
37.0
Explantation implant
2
12.5
1
20.0
0
 
3
30.0*
Skin blistering
5
31.25
0
 
0
 
5
18.5
*3/10 breast implant
Table 5
Characteristics of seven patients with grade II–III complications
 
Re-operation (grade III)
 
Grade II complication
Group
1
1
1
2
1
1
1
Previous radiotherapy
No
No
Yes
No
No
No
No
Neo-adjuvant chemotherapy
Yes
No
Yes
No
No
No
No
BMI
23.80
20.96
21.10
32.18
20.32
22.68
18.14
Weight mastectomy
500
244
231
555
160
212
348
Implant
Yes
No
No
Yes
No
Yes
No
Time of surgery
430
474
280
466
330
241
420
Time of anesthesia
480
563
300
575
390
354
480
Surgical procedure number
4
2
3
3
3
3
3
RLDFR
Yes
Yes
Yes
Yes
Yes
Yes
Yes
ALND
Yes
No
No
No
No
No
No
Cup size
D
C
C
C
B
B
C
Re-operation
Yes
Yes
Yes
Yes
No
No
No
Abbreviations: BMI body mass index, RLDFR robotic latissimus dorsi-flap reconstruction, ALND axillary lymph node dissection
In univariate analysis, complication rate was correlated with group 1 vs group 2–3 (10/16 vs 1/11: p = 0.007), group 1–2 vs group 3 (11/21 vs 0/6: 0.027), associated surgical procedure number 1 or 2 vs 3 or 4 (2/15 vs 9/12: 0.002), 6 periods of 3 months (0.006), and we observed a significant borderline result for BMI < or > = 23.5 (7/22 vs 4/5: 0.071). The following criteria were non-significant: time of surgery < or > = 360 (6/16 vs 5/11: 0.492), time of anesthesia < or > = 382 mn (4/10 vs 7/17: 0.637), type of system SI vs XI (7/14 vs 4/13: 0.267), previous neo-adjuvant chemotherapy or not (2/3 vs 9/24: 0.357), previous ipsilateral radiotherapy or not (5/11 vs 6/16: 0.492), previous ipsilateral conservative surgery or not (5/14 vs 6/13: 0.436), NSM for primitive BC or local recurrence (7/17 vs 4/10: 0.637), ASA 1 or 2 (6/12 vs 5/15: 0.315), implant or not (4/10 vs 2/17: 0.9), and cup size breast A–B or C–D (5/14 vs 6/13:0.436).
In univariate analysis, re-operation rate was correlated with previous neo-adjuvant chemotherapy or not (2/3 vs 2/24: 0.049) (OR 22.0, CI 95% 1.33–362, p = 0.031) and cup size breast A–B or C–D (0/14 vs 4/13: 0.041). Other criteria were non-significant: group 1 vs group 2–3 (3/16 vs 1/11: 0.455), group 1–2 vs group 3 (4/21 vs 0/6: 0.341), time of surgery < or > = 360 (1/16 vs 3/11: 0.169), time of anesthesia < or > = 382mn (1/10 vs 3/17: 0.523), BMI < or > = 23.5 (2/22 vs 2/5: 0.144), surgical procedure number 1–2 vs 3–4 (1/15 vs 3/12: 0.216), 6 periods of 3 months (0.347), type of system SI vs XI (3/14 vs 1/13: 0.327), previous ipsilateral radiotherapy or not (1/11 vs 3/16: 0.455), previous ipsilateral conservative surgery or not (1/14 vs 3/13: 0.269), NSM for primitive BC or local recurrence (4/17 vs 0/10: 0.136), ASA 1 or 2 (1/12 vs 3/15: 0.389), and implant or not (2/10 vs 7/17: 0.28). In binary logistic regression, any factors remain significantly correlated to re-operation rate.
In univariate analysis, complications grade II–III rates were correlated with associated surgical procedure number 1–2 vs 3–4 (1/15 vs 6/12: 0.016), previous homo-lateral conservative surgery or not (1/14 vs 6/13: 0.029), and NSM for primitive BC or local recurrence (7/17 vs 0/10: 0.022). Other criteria were non-significant: time of surgery < or > = 360 (3/16 vs 4/11: 0.279), BMI < or > = 23.5 (5/22 vs 2/5: 0.388), time of anesthesia < or > = 382mn (2/10 vs 5/17: 0.475), 6 periods of 3 months (0.215), type of system SI vs XI (5/14 vs 2/13: 0.224), implant or not (3/10 vs 4/17:0.60), previous neo-adjuvant chemotherapy or not (2/3 vs 5/24: 0.156), previous homo-lateral radiotherapy or not (1/11 vs 6/16: 0.112), ASA 1 or 2 (4/12 vs 3/15: 0.364), cup size breast A–B or C–D (2/14 vs 5/13: 0.161), group 1 vs group 2–3 (6/16 vs 1/11: p = 0.112), group 1–2 vs group 3 (7/21 vs 0/6: 0.131), and time of surgery < or > = 360 (3/16 vs 4/11: 0.279). In binary logistic regression, including NSM for primitive BC or local recurrence and associated surgical procedure number 1–2 vs 3–4 (with exclusion of previous ipsilateral conservative surgery or not which is strongly correlated with NSM for primitive BC or local recurrence), complications grade II–III were correlated with number of associated surgical procedures which remain highly significant (OR 54.0, CI 95% 2.8–1040, p = 0.008) but indication of NSM was not significant (0.998).

Breast cancer treatment

Previous radiotherapy was observed in 10 patients with local recurrences and for 1 patient with neo-adjuvant chemotherapy and radiotherapy. Neo-adjuvant chemotherapy was performed in three cases. Trastuzumab was administered in two cases.

Discussion

We reported our experience with robotic NSM for BC with evaluation of three surgical technics to perform mastectomy in order to propose a standardized procedure corresponding to the best and quicker procedure. Among 15 patients of group 1 using the same technic (dissection with robotic scissors with monopolar coagulation), we have evaluated the learning curve according to three periods of 3 months on surgical and anesthesia time. The main conclusions are (1) the third procedure of mastectomy dissection appeared to be the safer and quicker procedure (dissection with non-robotic scissors after subcutaneous infiltration and then robotic dissection), (2) learning curve need approximatively 10–11 robotic mastectomies even for surgeon with previous experience of robotic surgery for others indications.
This surgical procedure with incision in axillary basin allowed good cosmetic results without scar on breast and without dorsal scar with RLDF. IBR allows better quality of life in comparison with mastectomy without reconstruction [24], and small axillary incision with NSM increase good cosmetic results and contribute significantly to a woman’s body image and quality of life [25, 26]. These robotic NSM were realized without difference between SI and XI system, but XI system is easier for dissection with easier mobilization of robotic arms without conflictual movement between robotic arms and patient arm. Moreover, when RLDF is planned, quicker and easier re-installation was observed with XI system. We had used more often XI system since the installation of the second Da Vinci robot.
This study is the first specifically dedicated to BC and the first study with evaluation of several surgical dissections technics. Toesca et al. reported [9] a case series of 24 consecutive patients (29 procedures) for 10 prophylactic surgeries and 19 BC performed to access feasibility, reproducibility, and safety. A stronger selection of patients was reported in his study in comparison with our study. All patients in Toesca et al.’s study [9] had no associated comorbidities, a BMI < 25, were classified as low risk for anesthesia, small breast volume (weight of specimen range between 200 and 300 g) without ptosis > 2, without diabetes, and without previous radiotherapy. For comparison, we have included only BC patients: 11 with previous radiotherapy, 1 with BMI > =25, 13 (48.1%) with breast cup size C–D, 12 (44.4%) with mastectomy weight > 300 g, and 6 breast implant volume > 300 cc (60%). Greater breast volume observed in our study can explain longer incision for NSM in comparison with Sarfati et al.’s and Toesca et al.’s studies [8, 9]. Moreover, we have performed concomitant RLDF in 85.2% of patients in comparison with implant breast reconstruction for all patients in Toesca et al.’s study [9]. Sarfati et al. [8] reported one case of robotic mastectomy with XI system including two prophylactic mastectomies with implant reconstruction disposed in subcutaneous position for a patient with breast cup size C.
We observed some surgical differences with these previous studies. Like Toesca et al., we used a mono-trocar system with the same small previous dissection before robot docking. However, the second operative robotic arm was disposed out of mono-trocar on anterior axillary line 6 cm under axillary incision. Sarfati et al. [8] do not use mono-trocar. For superficial gland dissection, we propose to perform this time of surgery with non-robotic scissors without coagulation (bipolar coagulation was performed after docking and insufflation) and retro NAC biopsy with more than 2 cm at clinical and radiological exam for indication of NAC preservation [4, 27]. Toesca et al. [9] reported two cases of NAC removal for involvement of NAC by invasive carcinoma or DCIS (2/19: 10.5%) with proposition of NSM for patients with tumor-nipple distance greater than 1 cm. Safety of NAC preservation for BC have been well documented with mainly discussions about tumor distance and about thickness not removed under the skin and NAC [2830]. NSM can be proposed in selected cases of recurrent BC (37% of our cases) [31], after neo-adjuvant chemotherapy with or without neo-adjuvant radiotherapy (11.1% of our cases) [3234], and for DCIS (18.5% of our cases) [35].
Duration of surgery reduced gradually for the first case to the final cases with a total length of time of 7 h for the first robotic surgery to around 3 h for the last cases in Toesca et al.’s study for NSM with breast implant reconstruction [9]. Our median surgical times for NSM with RLDF decrease from 370 mn to 285 mn for the third group and for specific time of NSM from 161 to 117 mn. Conversion rates were 6.9% (2/29) for Toesca et al. [9] and 3.7% in our study (1/27). Small blistering was reported in two patients (2/24: 8.3%) by Toesca et al. [9]; we observed more skin breast complications with one small skin necrosis and five small skin blistering, all of them in group 1. Clavien-Dindo grade II–III complications were more often observed in our study for group 1 procedures with no such complication in group 3 and were correlated in logistic regression with surgical procedure number higher than 2.
Robotic surgery is usually considered as a very expensive procedure. Fixed costs (maintenance and amortization) and cost of robotic instruments can provide more costs than non-robotic endoscopy or open surgery. Additional costs per procedure were low when about 300 procedures were performed with 1 Da Vinci system [36] and minimized by use of only 2 robotic arms for dissection. A short learning curve would also no doubt decrease the operating theater costs [36].

Conclusion

The technique of robotic NSM can be achieved with a short learning curve for surgeons with previous experience of robotic surgery. Standardized technique proposed consisted to perform superficial gland dissection with non-robotic scissors and then to perform all other dissection with robot through a mono-trocar insert in axillary small incision. Reconstruction can be performed with breast implant after robotic dissection of major pectoralis muscle or with RLDF dissected by the same axillary incision with or without implant. Complications grade II–III are correlated with more than two surgical procedures including NSM, RLDF, implant, and ALND. A prospective evaluation is necessary and planned in order to confirm these results and determine advantages over an open approach. To increase breast reconstruction volume autologous fat grafting is usually performed after this procedure.

Acknowledgements

Funding

This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Availability of data and materials

Not applicable.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Smith BL, Tang R, Rai U, Plichta JK, Colwell AS, Gadd MA, et al. Oncologic safety of nipple-sparing mastectomy in women with breast cancer. J Am Coll Surg. 2017;225(3):361–5.PubMedCrossRef Smith BL, Tang R, Rai U, Plichta JK, Colwell AS, Gadd MA, et al. Oncologic safety of nipple-sparing mastectomy in women with breast cancer. J Am Coll Surg. 2017;225(3):361–5.PubMedCrossRef
2.
Zurück zum Zitat Li M, Chen K, Liu F, Su F, Li S, Zhu L. Nipple sparing mastectomy in breast cancer patients and long-term survival outcomes: an analysis of the SEER database. PLoS One. 2017;12(8):e0183448.PubMedPubMedCentralCrossRef Li M, Chen K, Liu F, Su F, Li S, Zhu L. Nipple sparing mastectomy in breast cancer patients and long-term survival outcomes: an analysis of the SEER database. PLoS One. 2017;12(8):e0183448.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Muller T, Baratte A, Bruant-Rodier C, Bodin F, Mathelin C. Oncological safety of nipple-sparing prophylactic mastectomy: a review of the literature on 3716 cases. Ann Chir Plast Esthet. 2018;63(3):e6-e13. Muller T, Baratte A, Bruant-Rodier C, Bodin F, Mathelin C. Oncological safety of nipple-sparing prophylactic mastectomy: a review of the literature on 3716 cases. Ann Chir Plast Esthet. 2018;63(3):e6-e13.
4.
Zurück zum Zitat Galimberti V, Vicini E, Corso G, Morigi C, Fontana S, Sacchini V, Veronesi P. Nipple-sparing and skin-sparing mastectomy: review of aims, oncological safety and contraindications. Breast. 2017;34(Suppl 1):S82–4.PubMedPubMedCentralCrossRef Galimberti V, Vicini E, Corso G, Morigi C, Fontana S, Sacchini V, Veronesi P. Nipple-sparing and skin-sparing mastectomy: review of aims, oncological safety and contraindications. Breast. 2017;34(Suppl 1):S82–4.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Munhoz AM. Outcome evaluation after 2023 nipple-sparing mastectomies: our experience. Plast Reconstr Surg. 2017;140(2):348e–9e.PubMedCrossRef Munhoz AM. Outcome evaluation after 2023 nipple-sparing mastectomies: our experience. Plast Reconstr Surg. 2017;140(2):348e–9e.PubMedCrossRef
6.
Zurück zum Zitat Toesca A, Peradze N, Galimberti V, Intra M, Gentilini O, Sances D, et al. Robotic nipple-sparing mastectomy and immediate breast reconstruction with implant: first report of surgical technique. Ann Surg. 2017;266:e28–30.PubMedCrossRef Toesca A, Peradze N, Galimberti V, Intra M, Gentilini O, Sances D, et al. Robotic nipple-sparing mastectomy and immediate breast reconstruction with implant: first report of surgical technique. Ann Surg. 2017;266:e28–30.PubMedCrossRef
7.
Zurück zum Zitat Toesca A, Manconi A, Peradze N, Loschi P, Panzeri R, Granata M, et al. Preliminary report of robotic nipple-sparing mastectomy and immediate breast reconstruction with implant. Eur J Cancer. 2015;51(3):S309.CrossRef Toesca A, Manconi A, Peradze N, Loschi P, Panzeri R, Granata M, et al. Preliminary report of robotic nipple-sparing mastectomy and immediate breast reconstruction with implant. Eur J Cancer. 2015;51(3):S309.CrossRef
8.
Zurück zum Zitat Sarfati B, Honart J-F, Leymarie N, Rimareix F, Khashnam HA, Kolb F. Robotic da Vinci Xi-assisted nipple-sparing mastectomy: first clinical report. Breast J. 2017;00:1–4. Sarfati B, Honart J-F, Leymarie N, Rimareix F, Khashnam HA, Kolb F. Robotic da Vinci Xi-assisted nipple-sparing mastectomy: first clinical report. Breast J. 2017;00:1–4.
9.
Zurück zum Zitat Toesca A, Peradze N, Manconi A, Galimberti V, Intra M, Colleoni M, et al. Robotic nipple-sparing mastectomy for the treatment of breast cancer: feasibility and safety study. Breast. 2017;31:51e56.CrossRef Toesca A, Peradze N, Manconi A, Galimberti V, Intra M, Colleoni M, et al. Robotic nipple-sparing mastectomy for the treatment of breast cancer: feasibility and safety study. Breast. 2017;31:51e56.CrossRef
10.
Zurück zum Zitat Selber JC, Baumann DP, Holsinger CF. Robotic harvest of the latissimus dorsi muscle: laboratory and clinical experience. J Reconstr Microsurg. 2012;28:457–64.PubMedCrossRef Selber JC, Baumann DP, Holsinger CF. Robotic harvest of the latissimus dorsi muscle: laboratory and clinical experience. J Reconstr Microsurg. 2012;28:457–64.PubMedCrossRef
11.
Zurück zum Zitat Missana MC, Pomel C. Endoscopic latissimus dorsi flap harvesting. Am J Surg. 2007;194(2):164–9.PubMedCrossRef Missana MC, Pomel C. Endoscopic latissimus dorsi flap harvesting. Am J Surg. 2007;194(2):164–9.PubMedCrossRef
12.
Zurück zum Zitat Dejode M, Barranger E. Endoscopic 3D latissimus dorsi flap harvesting for immediate breast reconstruction. Gynecol Obstet Fertil. 2016;44(6):372–4.PubMedCrossRef Dejode M, Barranger E. Endoscopic 3D latissimus dorsi flap harvesting for immediate breast reconstruction. Gynecol Obstet Fertil. 2016;44(6):372–4.PubMedCrossRef
13.
Zurück zum Zitat Iglesias M, Gonzalez-Chapa DR. Endoscopic latissimus dorsi muscle flap for breast reconstruction after skin-sparing total mastectomy: report of 14 cases. Aesthet Plast Surg. 2013;37(4):719–27.CrossRef Iglesias M, Gonzalez-Chapa DR. Endoscopic latissimus dorsi muscle flap for breast reconstruction after skin-sparing total mastectomy: report of 14 cases. Aesthet Plast Surg. 2013;37(4):719–27.CrossRef
14.
Zurück zum Zitat Xu S, Tang P, Chen X, Yang X, Pan Q, Gui Y, Chen L. Novel technique for laparoscopic harvesting of latissimus dorsi flap with prosthesis implantation for breast reconstruction: A preliminary study with 2 case reports. Medicine (Baltimore). 2016;95(46):e5428.CrossRef Xu S, Tang P, Chen X, Yang X, Pan Q, Gui Y, Chen L. Novel technique for laparoscopic harvesting of latissimus dorsi flap with prosthesis implantation for breast reconstruction: A preliminary study with 2 case reports. Medicine (Baltimore). 2016;95(46):e5428.CrossRef
15.
Zurück zum Zitat Nakajima H, Fujiwara I, Mizuta N, Sakaguchi K, Ohashi M, Nishiyama A, et al. Clinical outcomes of video-assisted skin-sparing partial mastectomy for breast cancer and immediate reconstruction with latissimus dorsi muscle flap as breast-conserving therapy. World J Surg. 2010;34(9):2197–203.PubMedCrossRef Nakajima H, Fujiwara I, Mizuta N, Sakaguchi K, Ohashi M, Nishiyama A, et al. Clinical outcomes of video-assisted skin-sparing partial mastectomy for breast cancer and immediate reconstruction with latissimus dorsi muscle flap as breast-conserving therapy. World J Surg. 2010;34(9):2197–203.PubMedCrossRef
16.
Zurück zum Zitat Chung JH, You HJ, Kim HS, Lee BI, Park SH, Yoon ES. A novel technique for robot assisted latissimus dorsi flap harvest. J Plast Reconstr Aesthet Surg. 2015;68(7):966–72.PubMedCrossRef Chung JH, You HJ, Kim HS, Lee BI, Park SH, Yoon ES. A novel technique for robot assisted latissimus dorsi flap harvest. J Plast Reconstr Aesthet Surg. 2015;68(7):966–72.PubMedCrossRef
17.
Zurück zum Zitat Clemens MW, Kronowitz S, Selber JC. Robotic-assisted latissimus dorsi harvest in delayed-immediate breast reconstruction. Semin Plast Surg. 2014;28(1):20–5.PubMedPubMedCentralCrossRef Clemens MW, Kronowitz S, Selber JC. Robotic-assisted latissimus dorsi harvest in delayed-immediate breast reconstruction. Semin Plast Surg. 2014;28(1):20–5.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Lambaudie E, Houvenaeghel G, Walz J, Bannier M, Buttarelli M, Gurriet B, et al. Robot-assisted laparoscopy in gynecologic oncology. Surg Endosc. 2008;22(12):2743–7.PubMedCrossRef Lambaudie E, Houvenaeghel G, Walz J, Bannier M, Buttarelli M, Gurriet B, et al. Robot-assisted laparoscopy in gynecologic oncology. Surg Endosc. 2008;22(12):2743–7.PubMedCrossRef
20.
Zurück zum Zitat Lambaudie E, Narducci F, Leblanc E, Bannier M, Houvenaeghel G. Robotically-assisted laparoscopic anterior pelvic exenteration for recurrent cervical cancer: report of three first cases. Gynecol Oncol. 2010;116(3):582–3.PubMedCrossRef Lambaudie E, Narducci F, Leblanc E, Bannier M, Houvenaeghel G. Robotically-assisted laparoscopic anterior pelvic exenteration for recurrent cervical cancer: report of three first cases. Gynecol Oncol. 2010;116(3):582–3.PubMedCrossRef
21.
Zurück zum Zitat Narducci F, Collinet P, Merlot B, Lambaudie E, Boulanger L, Lefebvre-Kuntz D, et al. Benefit of robot-assisted laparoscopy in nerve-sparing radical hysterectomy: urinary morbidity in early cervical cancer. Surg Endosc. 2013;27(4):1237–42.PubMedCrossRef Narducci F, Collinet P, Merlot B, Lambaudie E, Boulanger L, Lefebvre-Kuntz D, et al. Benefit of robot-assisted laparoscopy in nerve-sparing radical hysterectomy: urinary morbidity in early cervical cancer. Surg Endosc. 2013;27(4):1237–42.PubMedCrossRef
22.
Zurück zum Zitat Hudry D, Ahmad S, Zanagnolo V, Narducci F, Fastrez M, Ponce J, et al. Robotically assisted para-aortic lymphadenectomy: surgical results: a cohort study of 487 patients. Int J Gynecol Cancer. 2015;25(3):504–11.PubMedCrossRef Hudry D, Ahmad S, Zanagnolo V, Narducci F, Fastrez M, Ponce J, et al. Robotically assisted para-aortic lymphadenectomy: surgical results: a cohort study of 487 patients. Int J Gynecol Cancer. 2015;25(3):504–11.PubMedCrossRef
23.
Zurück zum Zitat Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.PubMedPubMedCentralCrossRef Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Dauplat J, Kwiatkowski F, Rouanet P, Delay E, Clough K, Verhaeghe JL, et al. Quality of life after mastectomy with or without immediate breast reconstruction. Br J Surg. 2017;104(9):1197–206.PubMedCrossRef Dauplat J, Kwiatkowski F, Rouanet P, Delay E, Clough K, Verhaeghe JL, et al. Quality of life after mastectomy with or without immediate breast reconstruction. Br J Surg. 2017;104(9):1197–206.PubMedCrossRef
25.
Zurück zum Zitat Bailey CR, Ogbuagu O, Baltodano PA, Simjee UF, Manahan MA, Cooney DS, et al. Quality-of-Life Outcomes Improve with Nipple-Sparing Mastectomy and Breast Reconstruction. Plast Reconstr Surg. 2017;140(2):219–26.PubMedCrossRef Bailey CR, Ogbuagu O, Baltodano PA, Simjee UF, Manahan MA, Cooney DS, et al. Quality-of-Life Outcomes Improve with Nipple-Sparing Mastectomy and Breast Reconstruction. Plast Reconstr Surg. 2017;140(2):219–26.PubMedCrossRef
26.
Zurück zum Zitat Satteson ES, Brown BJ, Nahabedian MY. Nipple-areolar complex reconstruction and patient satisfaction: a systematic review and meta-analysis. Gland Surg. 2017;6(1):4–13.PubMedPubMedCentralCrossRef Satteson ES, Brown BJ, Nahabedian MY. Nipple-areolar complex reconstruction and patient satisfaction: a systematic review and meta-analysis. Gland Surg. 2017;6(1):4–13.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Dent BL, Miller JA, Eden DJ, Swistel A, Talmor M. Tumor-to-Nipple Distance as a Predictor of Nipple Involvement: Expanding the Inclusion Criteria for Nipple-Sparing Mastectomy. Plast Reconstr Surg. 2017;140(1):1e–8e.PubMedCrossRef Dent BL, Miller JA, Eden DJ, Swistel A, Talmor M. Tumor-to-Nipple Distance as a Predictor of Nipple Involvement: Expanding the Inclusion Criteria for Nipple-Sparing Mastectomy. Plast Reconstr Surg. 2017;140(1):1e–8e.PubMedCrossRef
28.
Zurück zum Zitat Petit JY, Veronesi U, Orecchia R, Rey P, Martella S, Didier F, et al. Nipple sparing mastectomy with nipple sparing areola intraoperative radiotherapy: one thousand and one cases of five years experience at the European Institute of Oncology of Milan (EIO). Breast Cancer Res Treat. 2009;117:333–8.PubMedCrossRef Petit JY, Veronesi U, Orecchia R, Rey P, Martella S, Didier F, et al. Nipple sparing mastectomy with nipple sparing areola intraoperative radiotherapy: one thousand and one cases of five years experience at the European Institute of Oncology of Milan (EIO). Breast Cancer Res Treat. 2009;117:333–8.PubMedCrossRef
29.
Zurück zum Zitat Mallon P, Feron JG, Couturaud B, Fitoussi A, Lemasurier P, Guihard T, et al. The role of nipple-sparing mastectomy in breast cancer: a comprehensive review of the literature. Plast Reconstr Surg. 2013;131(5):969–84.PubMedCrossRef Mallon P, Feron JG, Couturaud B, Fitoussi A, Lemasurier P, Guihard T, et al. The role of nipple-sparing mastectomy in breast cancer: a comprehensive review of the literature. Plast Reconstr Surg. 2013;131(5):969–84.PubMedCrossRef
30.
31.
Zurück zum Zitat Murphy BL, Boughey JC, Hieken TJ. Nipple-sparing mastectomy for the management of recurrent breast cancer. Clin Breast Cancer. 2017;17(4):e209–13.PubMedCrossRef Murphy BL, Boughey JC, Hieken TJ. Nipple-sparing mastectomy for the management of recurrent breast cancer. Clin Breast Cancer. 2017;17(4):e209–13.PubMedCrossRef
32.
Zurück zum Zitat Agresti R, Sandri M, Gennaro M, Bianchi G, Maugeri I, Rampa M, et al. Evaluation of local oncologic safety in nipple-areola complex-sparing mastectomy after primary chemotherapy: a propensity score-matched study. Clin Breast Cancer. 2017;17(3):219–31.PubMedCrossRef Agresti R, Sandri M, Gennaro M, Bianchi G, Maugeri I, Rampa M, et al. Evaluation of local oncologic safety in nipple-areola complex-sparing mastectomy after primary chemotherapy: a propensity score-matched study. Clin Breast Cancer. 2017;17(3):219–31.PubMedCrossRef
33.
Zurück zum Zitat Frey JD, Salibian AA, Choi M, Karp NS. Mastectomy flap thickness and complications in nipple-sparing mastectomy: objective evaluation using magnetic resonance imaging. Plast Reconstr Surg Glob Open. 2017;5(8):e1439.PubMedPubMedCentralCrossRef Frey JD, Salibian AA, Choi M, Karp NS. Mastectomy flap thickness and complications in nipple-sparing mastectomy: objective evaluation using magnetic resonance imaging. Plast Reconstr Surg Glob Open. 2017;5(8):e1439.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Barrou J, Bannier M, Cohen M, Lambaudie E, Gonçalves A, Bertrand P, et al. Pathological complete response in invasive breast cancer treated by skin sparing mastectomy and immediate reconstruction following neoadjuvant chemotherapy and radiation therapy: Comparison between immunohistochemical subtypes. Breast. 2017;32:37–43.PubMedCrossRef Barrou J, Bannier M, Cohen M, Lambaudie E, Gonçalves A, Bertrand P, et al. Pathological complete response in invasive breast cancer treated by skin sparing mastectomy and immediate reconstruction following neoadjuvant chemotherapy and radiation therapy: Comparison between immunohistochemical subtypes. Breast. 2017;32:37–43.PubMedCrossRef
35.
Zurück zum Zitat Lago V, Maisto V, Gimenez-Climent J, Vila J, Vazquez C, Estevan R. Nipple-sparing mastectomy as treatment for patients with ductal carcinoma in situ: a 10-year follow-up study. Breast J. 2018;24(3):298–303. Lago V, Maisto V, Gimenez-Climent J, Vila J, Vazquez C, Estevan R. Nipple-sparing mastectomy as treatment for patients with ductal carcinoma in situ: a 10-year follow-up study. Breast J. 2018;24(3):298–303.
36.
Zurück zum Zitat Marino P, Houvenaeghel G, Narducci F, Boyer-Chammard A, Ferron G, Uzan C, et al. Cost-effectiveness of conventional vs robotic-assisted laparoscopy in gynecologic oncologic indications. Int J Gynecol Cancer. 2015;25(6):1102–8.PubMedCrossRef Marino P, Houvenaeghel G, Narducci F, Boyer-Chammard A, Ferron G, Uzan C, et al. Cost-effectiveness of conventional vs robotic-assisted laparoscopy in gynecologic oncologic indications. Int J Gynecol Cancer. 2015;25(6):1102–8.PubMedCrossRef
Metadaten
Titel
Breast cancer robotic nipple sparing mastectomy: evaluation of several surgical procedures and learning curve
verfasst von
G. Houvenaeghel
M. Bannier
S. Rua
J. Barrou
M. Heinemann
A. Van Troy
E. Lambaudie
M. Cohen
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2019
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-019-1567-y

Weitere Artikel der Ausgabe 1/2019

World Journal of Surgical Oncology 1/2019 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

CME: 2 Punkte

Prof. Dr. med. Gregor Antoniadis Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

CME: 2 Punkte

Dr. med. Benjamin Meyknecht, PD Dr. med. Oliver Pieske Das Webinar S2e-Leitlinie „Distale Radiusfraktur“ beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

CME: 2 Punkte

Dr. med. Mihailo Andric
Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.