Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 4/2016

16.05.2016 | Review

Calcific Aortic Valve Disease: Part 2—Morphomechanical Abnormalities, Gene Reexpression, and Gender Effects on Ventricular Hypertrophy and Its Reversibility

verfasst von: Ares Pasipoularides

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

In part 1, we considered cytomolecular mechanisms underlying calcific aortic valve disease (CAVD), hemodynamics, and adaptive feedbacks controlling pathological left ventricular hypertrophy provoked by ensuing aortic valvular stenosis (AVS). In part 2, we survey diverse signal transduction pathways that precede cellular/molecular mechanisms controlling hypertrophic gene expression by activation of specific transcription factors that induce sarcomere replication in-parallel. Such signaling pathways represent potential targets for therapeutic intervention and prevention of decompensation/failure. Hypertrophy provoking signals, in the form of dynamic stresses and ligand/effector molecules that bind to specific receptors to initiate the hypertrophy, are transcribed across the sarcolemma by several second messengers. They comprise intricate feedback mechanisms involving gene network cascades, specific signaling molecules encompassing G protein-coupled receptors and mechanotransducers, and myocardial stresses. Future multidisciplinary studies will characterize the adaptive/maladaptive nature of the AVS-induced hypertrophy, its gender- and individual patient-dependent peculiarities, and its response to surgical/medical interventions. They will herald more effective, precision medicine treatments.
Literatur
1.
Zurück zum Zitat Pasipoularides, A. (2016). Calcific aortic valve disease: part 1—molecular pathogenetic aspects, hemodynamics and adaptive feedbacks. Journal of Cardiovascular Translational Research, 9, 102–118. Pasipoularides, A. (2016). Calcific aortic valve disease: part 1—molecular pathogenetic aspects, hemodynamics and adaptive feedbacks. Journal of Cardiovascular Translational Research, 9, 102–118.
2.
Zurück zum Zitat Krishnamurthy, V. K., Godby, R. C., Liu, G. R., et al. (2014). Review of molecular and mechanical interactions in the aortic valve and aorta: implications for the shared pathogenesis of aortic valve disease and aortopathy. Journal of Cardiovascular Translational Research, 7, 823–46.PubMedCrossRef Krishnamurthy, V. K., Godby, R. C., Liu, G. R., et al. (2014). Review of molecular and mechanical interactions in the aortic valve and aorta: implications for the shared pathogenesis of aortic valve disease and aortopathy. Journal of Cardiovascular Translational Research, 7, 823–46.PubMedCrossRef
3.
Zurück zum Zitat Pasipoularides, A. (2010). Heart's vortex: intracardiac blood flow phenomena. Shelton: People's Medical Publishing House. 960 p. Pasipoularides, A. (2010). Heart's vortex: intracardiac blood flow phenomena. Shelton: People's Medical Publishing House. 960 p.
4.
Zurück zum Zitat Osler, W. (1892). The principles and practice of medicine: designed for the use of practitioners and students of medicine. New York: D. Appleton. Osler, W. (1892). The principles and practice of medicine: designed for the use of practitioners and students of medicine. New York: D. Appleton.
5.
Zurück zum Zitat Pasipoularides, A. (2015). Mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations: part 1. Journal of Cardiovascular Translational Research, 8, 76–87.PubMedPubMedCentralCrossRef Pasipoularides, A. (2015). Mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations: part 1. Journal of Cardiovascular Translational Research, 8, 76–87.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Pasipoularides, A. (2015). Mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations: part 2. Journal of Cardiovascular Translational Research, 8, 293–318.PubMedPubMedCentralCrossRef Pasipoularides, A. (2015). Mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations: part 2. Journal of Cardiovascular Translational Research, 8, 293–318.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Barbato, E., Barton, P. J., Bartunek, J., Huber, S., Ibanez, B., Judge, D. P., Lara-Pezzi, E., Stolen, C. M., Taylor, A., & Hall, J. L. (2015). Review and updates in regenerative and personalized medicine, preclinical animal models, and clinical care in cardiovascular medicine. Journal of Cardiovascular Translational Research, 8, 466–74.PubMedCrossRef Barbato, E., Barton, P. J., Bartunek, J., Huber, S., Ibanez, B., Judge, D. P., Lara-Pezzi, E., Stolen, C. M., Taylor, A., & Hall, J. L. (2015). Review and updates in regenerative and personalized medicine, preclinical animal models, and clinical care in cardiovascular medicine. Journal of Cardiovascular Translational Research, 8, 466–74.PubMedCrossRef
8.
Zurück zum Zitat Leri, A., Kajstura, J., & Anversa, P. (2011). Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circulation Research, 109, 941–61.PubMedPubMedCentralCrossRef Leri, A., Kajstura, J., & Anversa, P. (2011). Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circulation Research, 109, 941–61.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Ellison, G. M., Nadal-Ginard, B., & Torella, D. (2012). Optimizing cardiac repair and regeneration through activation of the endogenous cardiac stem cell compartment. Journal of Cardiovascular Translational Research, 5, 667–77.PubMedCrossRef Ellison, G. M., Nadal-Ginard, B., & Torella, D. (2012). Optimizing cardiac repair and regeneration through activation of the endogenous cardiac stem cell compartment. Journal of Cardiovascular Translational Research, 5, 667–77.PubMedCrossRef
10.
Zurück zum Zitat Marketou, M. E., Parthenakis, F., & Vardas, P. E. (2016). Pathological left ventricular hypertrophy and stem cells: current evidence and new perspectives. Stem Cells International, 2016, 5720758.PubMedCrossRef Marketou, M. E., Parthenakis, F., & Vardas, P. E. (2016). Pathological left ventricular hypertrophy and stem cells: current evidence and new perspectives. Stem Cells International, 2016, 5720758.PubMedCrossRef
11.
Zurück zum Zitat Urbanek, K., Quaini, F., Tasca, G., et al. (2003). Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 100, 10440–5.PubMedPubMedCentralCrossRef Urbanek, K., Quaini, F., Tasca, G., et al. (2003). Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 100, 10440–5.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science, 284, 770–6.PubMedCrossRef Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science, 284, 770–6.PubMedCrossRef
13.
Zurück zum Zitat Mumm, J. S., & Kopan, R. (2000). Notch signaling: from the outside in. Developmental Biology, 228, 151–65.PubMedCrossRef Mumm, J. S., & Kopan, R. (2000). Notch signaling: from the outside in. Developmental Biology, 228, 151–65.PubMedCrossRef
14.
Zurück zum Zitat Bray, S. J. (2006). Notch signalling: a simple pathway becomes complex. Nature Reviews. Molecular Cell Biology, 7, 678–89.PubMedCrossRef Bray, S. J. (2006). Notch signalling: a simple pathway becomes complex. Nature Reviews. Molecular Cell Biology, 7, 678–89.PubMedCrossRef
16.
Zurück zum Zitat Elmadhun, N. Y., Sabe, A. A., Lassaletta, A. D., et al. (2014). Metabolic syndrome impairs notch signaling and promotes apoptosis in chronically ischemic myocardium. Journal of Thoracic and Cardiovascular Surgery, 148, 1048–55.PubMedPubMedCentralCrossRef Elmadhun, N. Y., Sabe, A. A., Lassaletta, A. D., et al. (2014). Metabolic syndrome impairs notch signaling and promotes apoptosis in chronically ischemic myocardium. Journal of Thoracic and Cardiovascular Surgery, 148, 1048–55.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Nemir, M., & Pedrazzini, T. (2008). Functional role of Notch signaling in the developing and postnatal heart. Journal of Molecular and Cellular Cardiology, 45, 495–504.PubMedCrossRef Nemir, M., & Pedrazzini, T. (2008). Functional role of Notch signaling in the developing and postnatal heart. Journal of Molecular and Cellular Cardiology, 45, 495–504.PubMedCrossRef
18.
Zurück zum Zitat Barry, S. P., Davidson, S. M., & Townsend, P. A. (2008). Molecular regulation of cardiac hypertrophy. International Journal of Biochemistry and Cell Biology, 40, 2023–39.PubMedCrossRef Barry, S. P., Davidson, S. M., & Townsend, P. A. (2008). Molecular regulation of cardiac hypertrophy. International Journal of Biochemistry and Cell Biology, 40, 2023–39.PubMedCrossRef
19.
Zurück zum Zitat Pilegaard, H., Saltin, B., & Neufer, P. D. (2003). Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. Journal of Physiology, 546(3), 851–8.PubMedPubMedCentralCrossRef Pilegaard, H., Saltin, B., & Neufer, P. D. (2003). Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. Journal of Physiology, 546(3), 851–8.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Keeling, P.J., & Archibald, J.M. Organelle evolution: what’s in a name? Current Biology, 18, 345–347. Keeling, P.J., & Archibald, J.M. Organelle evolution: what’s in a name? Current Biology, 18, 345–347.
21.
Zurück zum Zitat Blackstone, N. W. (2013). Evolution and cell physiology. 2. The evolution of cell signaling: from mitochondria to Metazoa. American Journal of Physiology. Cell Physiology, 305, C909–15.PubMedCrossRef Blackstone, N. W. (2013). Evolution and cell physiology. 2. The evolution of cell signaling: from mitochondria to Metazoa. American Journal of Physiology. Cell Physiology, 305, C909–15.PubMedCrossRef
22.
Zurück zum Zitat Vega, R. B., Horton, J. L., & Kelly, D. P. (2015). Maintaining ancient organelles: mitochondrial biogenesis and maturation. Circulation Research, 116, 1820–34.PubMedPubMedCentralCrossRef Vega, R. B., Horton, J. L., & Kelly, D. P. (2015). Maintaining ancient organelles: mitochondrial biogenesis and maturation. Circulation Research, 116, 1820–34.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T., & Pfanner, N. (2009). Importing mitochondrial proteins: machineries and mechanisms. Cell, 138, 628–44.PubMedPubMedCentralCrossRef Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T., & Pfanner, N. (2009). Importing mitochondrial proteins: machineries and mechanisms. Cell, 138, 628–44.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Shokolenko, I., Venediktova, N., Bochkareva, A., Wilson, G. L., & Alexeyev, M. F. (2009). Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Research, 37, 2539–48.PubMedPubMedCentralCrossRef Shokolenko, I., Venediktova, N., Bochkareva, A., Wilson, G. L., & Alexeyev, M. F. (2009). Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Research, 37, 2539–48.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Maulik, S. K., & Kumar, S. (2012). Oxidative stress and cardiac hypertrophy: a review. Toxicology Mechanisms and Methods, 22, 359–66.PubMedCrossRef Maulik, S. K., & Kumar, S. (2012). Oxidative stress and cardiac hypertrophy: a review. Toxicology Mechanisms and Methods, 22, 359–66.PubMedCrossRef
26.
Zurück zum Zitat van der Bliek, A. M., Shen, Q., & Kawajiri, S. (2013). Mechanisms of mitochondrial fission and fusion. Cold Spring Harbor Perspectives in Biology, 5, a011072.PubMedPubMedCentral van der Bliek, A. M., Shen, Q., & Kawajiri, S. (2013). Mechanisms of mitochondrial fission and fusion. Cold Spring Harbor Perspectives in Biology, 5, a011072.PubMedPubMedCentral
27.
Zurück zum Zitat Twig, G., Elorza, A., Molina, A. J. A., et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. The EMBO Journal, 27, 433–46.PubMedPubMedCentralCrossRef Twig, G., Elorza, A., Molina, A. J. A., et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. The EMBO Journal, 27, 433–46.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Sciarretta, S., Zhai, P., Volpe, M., & Sadoshima, J. (2012). Pharmacological modulation of autophagy during cardiac stress. Journal of Cardiovascular Pharmacology, 60, 235–41.PubMedPubMedCentralCrossRef Sciarretta, S., Zhai, P., Volpe, M., & Sadoshima, J. (2012). Pharmacological modulation of autophagy during cardiac stress. Journal of Cardiovascular Pharmacology, 60, 235–41.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Carafoli, E. (1797). The fateful encounter of mitochondria with calcium: how did it happen? Biochimica et Biophysica Acta, 2010, 595–606. Carafoli, E. (1797). The fateful encounter of mitochondria with calcium: how did it happen? Biochimica et Biophysica Acta, 2010, 595–606.
30.
Zurück zum Zitat Winslow, R. L., Walker, M. A., & Greenstein, J. L. (2016). Modeling calcium regulation of contraction, energetics, signaling, and transcription in the cardiac myocyte. WIREs Systems Biology and Medicine, 8, 37–67.PubMedCrossRef Winslow, R. L., Walker, M. A., & Greenstein, J. L. (2016). Modeling calcium regulation of contraction, energetics, signaling, and transcription in the cardiac myocyte. WIREs Systems Biology and Medicine, 8, 37–67.PubMedCrossRef
31.
Zurück zum Zitat Abel, E. D., & Doenst, T. (2011). Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy. Cardiovascular Research, 90, 234–42.PubMedPubMedCentralCrossRef Abel, E. D., & Doenst, T. (2011). Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy. Cardiovascular Research, 90, 234–42.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.PubMedCrossRef Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.PubMedCrossRef
33.
Zurück zum Zitat Lee, H. C., & Wei, Y. H. (2000). Mitochondrial role in life and death of the cell. Journal of Biomedical Science, 7, 2–15.PubMedCrossRef Lee, H. C., & Wei, Y. H. (2000). Mitochondrial role in life and death of the cell. Journal of Biomedical Science, 7, 2–15.PubMedCrossRef
34.
Zurück zum Zitat Levy, D., Salomon, M., D’Agostino, R. B., Belanger, A. J., & Kannel, W. B. (1994). Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy. Circulation, 90, 1786–93.PubMedCrossRef Levy, D., Salomon, M., D’Agostino, R. B., Belanger, A. J., & Kannel, W. B. (1994). Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy. Circulation, 90, 1786–93.PubMedCrossRef
35.
Zurück zum Zitat Condorelli, G., Morisco, C., Stassi, G., et al. (1999). Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation, 99, 3071–8.PubMedCrossRef Condorelli, G., Morisco, C., Stassi, G., et al. (1999). Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation, 99, 3071–8.PubMedCrossRef
36.
Zurück zum Zitat Spence, A. L., Naylor, L. H., Carter, H. H., et al. (2011). A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans. Journal of Physiology, 589, 5443–52.PubMedPubMedCentralCrossRef Spence, A. L., Naylor, L. H., Carter, H. H., et al. (2011). A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans. Journal of Physiology, 589, 5443–52.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Komamura, K., Shannon, R. P., Pasipoularides, A., Ihara, T., Lader, A. S., Patrick, T. A., Bishop, S. P., & Vatner, S. F. (1992). Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure. Journal of Clinical Investigation, 89, 1825–38.PubMedPubMedCentralCrossRef Komamura, K., Shannon, R. P., Pasipoularides, A., Ihara, T., Lader, A. S., Patrick, T. A., Bishop, S. P., & Vatner, S. F. (1992). Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure. Journal of Clinical Investigation, 89, 1825–38.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat DeBosch, B., Treskov, I., Lupu, T. S., et al. (2006). Akt1 is required for physiological cardiac growth. Circulation, 113, 2097–104.PubMedCrossRef DeBosch, B., Treskov, I., Lupu, T. S., et al. (2006). Akt1 is required for physiological cardiac growth. Circulation, 113, 2097–104.PubMedCrossRef
39.
Zurück zum Zitat Dom, G. W., II, & Force, T. (2005). Protein kinase cascades in the regulation of cardiac hypertrophy. Journal of Clinical Investigation, 115, 527–37.CrossRef Dom, G. W., II, & Force, T. (2005). Protein kinase cascades in the regulation of cardiac hypertrophy. Journal of Clinical Investigation, 115, 527–37.CrossRef
40.
Zurück zum Zitat Molkentin, J. D. (2004). Calcineurin–NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovascular Research, 63, 467–75.PubMedCrossRef Molkentin, J. D. (2004). Calcineurin–NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovascular Research, 63, 467–75.PubMedCrossRef
41.
42.
Zurück zum Zitat Maillet, M., van Berlo, J. H., & Molkentin, J. D. (2013). Molecular basis of physiological heart growth: fundamental concepts and new players. Nature Reviews. Molecular Cell Biology, 14, 38–48.PubMedPubMedCentralCrossRef Maillet, M., van Berlo, J. H., & Molkentin, J. D. (2013). Molecular basis of physiological heart growth: fundamental concepts and new players. Nature Reviews. Molecular Cell Biology, 14, 38–48.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Martin, D. E., Soulard, A., & Hall, M. N. (2004). TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell, 119, 969–79.PubMedCrossRef Martin, D. E., Soulard, A., & Hall, M. N. (2004). TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell, 119, 969–79.PubMedCrossRef
44.
Zurück zum Zitat Leri, A., Claudio, P. P., Li, Q., et al. (1998). Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl- 2-to-Bax protein ratio in the cell. Journal of Clinical Investigation, 101, 1326–42.PubMedPubMedCentralCrossRef Leri, A., Claudio, P. P., Li, Q., et al. (1998). Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl- 2-to-Bax protein ratio in the cell. Journal of Clinical Investigation, 101, 1326–42.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Dweck, M. R., Boon, N. A., & Newby, D. E. (2012). Calcific aortic stenosis: a disease of the valve and the myocardium. Journal of the American College of Cardiology, 60, 1854–63.PubMedCrossRef Dweck, M. R., Boon, N. A., & Newby, D. E. (2012). Calcific aortic stenosis: a disease of the valve and the myocardium. Journal of the American College of Cardiology, 60, 1854–63.PubMedCrossRef
46.
Zurück zum Zitat Ricci, J. E., Munoz-Pinedo, C., Fitzgerald, P., et al. (2004). Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell, 117, 773–86.CrossRefPubMed Ricci, J. E., Munoz-Pinedo, C., Fitzgerald, P., et al. (2004). Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell, 117, 773–86.CrossRefPubMed
47.
Zurück zum Zitat Porrello, E. R., D’Amore, A., Curl, C. L., et al. (2009). Angiotensin II type 2 receptor antagonizes angiotensin II type 1 receptor-mediated cardiomyocyte autophagy. Hypertension, 53, 1032–40.PubMedCrossRef Porrello, E. R., D’Amore, A., Curl, C. L., et al. (2009). Angiotensin II type 2 receptor antagonizes angiotensin II type 1 receptor-mediated cardiomyocyte autophagy. Hypertension, 53, 1032–40.PubMedCrossRef
48.
Zurück zum Zitat Dai, D. F., & Rabinovitch, P. (2011). Mitochondrial oxidative stress mediates induction of autophagy and hypertrophy in angiotensin-II treated mouse hearts. Autophagy, 7, 917–8.PubMedPubMedCentralCrossRef Dai, D. F., & Rabinovitch, P. (2011). Mitochondrial oxidative stress mediates induction of autophagy and hypertrophy in angiotensin-II treated mouse hearts. Autophagy, 7, 917–8.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Liu, S., Chen, S., Li, M., et al. (2016). Autophagy activation attenuates angiotensin II-induced cardiac fibrosis. Archives of Biochemistry and Biophysics, 590, 37–47.PubMedCrossRef Liu, S., Chen, S., Li, M., et al. (2016). Autophagy activation attenuates angiotensin II-induced cardiac fibrosis. Archives of Biochemistry and Biophysics, 590, 37–47.PubMedCrossRef
50.
Zurück zum Zitat Soonpaa, M. H., Kim, K. K., Pajak, L., Franklin, M., & Field, L. J. (1996). Cardiomyocyte DNA synthesis and binucleation during murine development. American Journal of Physiology. Heart and Circulatory Physiology, 271, H2183–9. Soonpaa, M. H., Kim, K. K., Pajak, L., Franklin, M., & Field, L. J. (1996). Cardiomyocyte DNA synthesis and binucleation during murine development. American Journal of Physiology. Heart and Circulatory Physiology, 271, H2183–9.
51.
Zurück zum Zitat Woodcock, E. A., & Matkovich, S. J. (2005). Cardiomyocytes structure, function and associated pathologies. International Journal of Biochemistry and Cell Biology, 37, 1746–51.PubMedCrossRef Woodcock, E. A., & Matkovich, S. J. (2005). Cardiomyocytes structure, function and associated pathologies. International Journal of Biochemistry and Cell Biology, 37, 1746–51.PubMedCrossRef
52.
Zurück zum Zitat Miyata, S., Minobe, W., Bristow, M. R., & Leinwand, L. A. (2000). Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circulation Research, 86, 386–90.PubMedCrossRef Miyata, S., Minobe, W., Bristow, M. R., & Leinwand, L. A. (2000). Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circulation Research, 86, 386–90.PubMedCrossRef
53.
Zurück zum Zitat Backs, J., & Olson, E. N. (2006). Control of cardiac growth by histone acetylation/deacetylation. Circulation Research, 98, 15–24.PubMedCrossRef Backs, J., & Olson, E. N. (2006). Control of cardiac growth by histone acetylation/deacetylation. Circulation Research, 98, 15–24.PubMedCrossRef
54.
Zurück zum Zitat Pasipoularides, A. (2012). Diastolic filling vortex forces and cardiac adaptations: probing the epigenetic nexus. Hellenic Journal of Cardiology, 53, 458–69.PubMed Pasipoularides, A. (2012). Diastolic filling vortex forces and cardiac adaptations: probing the epigenetic nexus. Hellenic Journal of Cardiology, 53, 458–69.PubMed
55.
Zurück zum Zitat Pasipoularides, A. (2015). Linking genes to cardiovascular diseases: gene action and gene–environment interactions. Journal of Cardiovascular Translational Research, 8, 506–27.PubMedCrossRef Pasipoularides, A. (2015). Linking genes to cardiovascular diseases: gene action and gene–environment interactions. Journal of Cardiovascular Translational Research, 8, 506–27.PubMedCrossRef
56.
Zurück zum Zitat Pasipoularides, A. (2013). Right and left ventricular diastolic pressure–volume relations: a comprehensive review. Journal of Cardiovascular Translational Research, 6, 239–52.PubMedCrossRef Pasipoularides, A. (2013). Right and left ventricular diastolic pressure–volume relations: a comprehensive review. Journal of Cardiovascular Translational Research, 6, 239–52.PubMedCrossRef
57.
Zurück zum Zitat Pasipoularides, A., Palacios, I., Frist, W., Rosenthal, S., Newell, J. B., & Powell, W. J., Jr. (1985). Contribution of activation-inactivation dynamics to the impairment of relaxation in hypoxic cat papillary muscle. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 248, R54–62. Pasipoularides, A., Palacios, I., Frist, W., Rosenthal, S., Newell, J. B., & Powell, W. J., Jr. (1985). Contribution of activation-inactivation dynamics to the impairment of relaxation in hypoxic cat papillary muscle. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 248, R54–62.
58.
Zurück zum Zitat Pasipoularides, A., Mirsky, I., Hess, O. M., Grimm, J., & Krayenbuehl, H. P. (1986). Muscle relaxation and passive diastolic properties in man. Circulation, 74, 991–1001.PubMedCrossRef Pasipoularides, A., Mirsky, I., Hess, O. M., Grimm, J., & Krayenbuehl, H. P. (1986). Muscle relaxation and passive diastolic properties in man. Circulation, 74, 991–1001.PubMedCrossRef
59.
Zurück zum Zitat Mirsky, I., & Pasipoularides, A. (1990). Clinical assessment of diastolic function. Progress in Cardiovascular Diseases, 32, 291–318.PubMedCrossRef Mirsky, I., & Pasipoularides, A. (1990). Clinical assessment of diastolic function. Progress in Cardiovascular Diseases, 32, 291–318.PubMedCrossRef
60.
Zurück zum Zitat Mirsky, I., & Pasipoularides, A. (1980). Elastic properties of normal and hypertrophied cardiac muscle. Federation Proceeding, 39, 156–61. Mirsky, I., & Pasipoularides, A. (1980). Elastic properties of normal and hypertrophied cardiac muscle. Federation Proceeding, 39, 156–61.
61.
Zurück zum Zitat Rader, F., Sachdev, E., Arsanjani, R., et al. (2015). Left ventricular hypertrophy in valvular aortic stenosis: mechanisms and clinical implications. American Journal of Medicine, 128, 344–52.PubMedCrossRef Rader, F., Sachdev, E., Arsanjani, R., et al. (2015). Left ventricular hypertrophy in valvular aortic stenosis: mechanisms and clinical implications. American Journal of Medicine, 128, 344–52.PubMedCrossRef
62.
Zurück zum Zitat Cramariuc, D., Gerdts, E., Davidsen, E. S., Segadal, L., & Matre, K. (2010). Myocardial deformation in aortic valve stenosis: relation to left ventricular geometry. Heart, 96, 106–12.PubMedCrossRef Cramariuc, D., Gerdts, E., Davidsen, E. S., Segadal, L., & Matre, K. (2010). Myocardial deformation in aortic valve stenosis: relation to left ventricular geometry. Heart, 96, 106–12.PubMedCrossRef
63.
Zurück zum Zitat Fielitz, J., Hein, S., Mitrovic, V., et al. (2001). Activation of the cardiac renin-angiotensin system and increased myocardial collagen expression in human aortic valve disease. Journal of the American College of Cardiology, 37, 1443–9.PubMedCrossRef Fielitz, J., Hein, S., Mitrovic, V., et al. (2001). Activation of the cardiac renin-angiotensin system and increased myocardial collagen expression in human aortic valve disease. Journal of the American College of Cardiology, 37, 1443–9.PubMedCrossRef
64.
Zurück zum Zitat Sebag, F. A., Lellouche, N., Chaachoui, N., et al. (2014). Prevalence and clinical impact of QRS duration in patients with lowflow/ low-gradient aortic stenosis due to left ventricular systolic dysfunction. European Journal of Heart Failure, 16, 639–47.PubMedCrossRef Sebag, F. A., Lellouche, N., Chaachoui, N., et al. (2014). Prevalence and clinical impact of QRS duration in patients with lowflow/ low-gradient aortic stenosis due to left ventricular systolic dysfunction. European Journal of Heart Failure, 16, 639–47.PubMedCrossRef
65.
66.
Zurück zum Zitat Lipskaia, L., Chemaly, E. R., Hadri, L., Lompre, A., & Hajjar, R. J. (2010). Sarcoplasmic reticulum Ca2+ ATPase as a therapeutic target for heart failure. Expert Opinion on Biological Therapy, 10, 29–41.PubMedPubMedCentralCrossRef Lipskaia, L., Chemaly, E. R., Hadri, L., Lompre, A., & Hajjar, R. J. (2010). Sarcoplasmic reticulum Ca2+ ATPase as a therapeutic target for heart failure. Expert Opinion on Biological Therapy, 10, 29–41.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Gelpi, R. J., Pasipoularides, A., Lader, A. S., et al. (1991). Changes in diastolic cardiac function in developing and stable perinephritic hypertension in conscious dogs. Circulation Research, 68, 555–67.PubMedCrossRef Gelpi, R. J., Pasipoularides, A., Lader, A. S., et al. (1991). Changes in diastolic cardiac function in developing and stable perinephritic hypertension in conscious dogs. Circulation Research, 68, 555–67.PubMedCrossRef
68.
Zurück zum Zitat Vatner, S. F., Pagani, M., Manders, W. T., & Pasipoularides, A. (1980). Alpha adrenergic vasoconstriction and nitroglycerin vasodilation of large coronary arteries in the conscious dog. Journal of Clinical Investigation, 65, 5–14.PubMedPubMedCentralCrossRef Vatner, S. F., Pagani, M., Manders, W. T., & Pasipoularides, A. (1980). Alpha adrenergic vasoconstriction and nitroglycerin vasodilation of large coronary arteries in the conscious dog. Journal of Clinical Investigation, 65, 5–14.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Vatner, S. F., Pasipoularides, A., & Mirsky, I. (1984). Measurement of arterial pressure-dimension relationships in conscious animals. Annals of Biomedical Engineering, 12, 521–34.PubMedCrossRef Vatner, S. F., Pasipoularides, A., & Mirsky, I. (1984). Measurement of arterial pressure-dimension relationships in conscious animals. Annals of Biomedical Engineering, 12, 521–34.PubMedCrossRef
70.
Zurück zum Zitat Marcus, M. L., Koyanagi, S., Harrison, D. G., Doty, D. B., Hiratzka, L. F., & Eastham, C. L. (1983). Abnormalities in the coronary circulation that occur as a consequence of cardiac hypertrophy. American Journal of Medicine, 75, 62–6.PubMedCrossRef Marcus, M. L., Koyanagi, S., Harrison, D. G., Doty, D. B., Hiratzka, L. F., & Eastham, C. L. (1983). Abnormalities in the coronary circulation that occur as a consequence of cardiac hypertrophy. American Journal of Medicine, 75, 62–6.PubMedCrossRef
71.
Zurück zum Zitat Hittinger, L., Shannon, R. P., Bishop, S. P., Gelpi, R. J., & Vatner, S. F. (1989). Subendomyocardial exhaustion of blood flow reserve and increased fibrosis in conscious dogs with heart failure. Circulation Research, 65, 971–80.PubMedCrossRef Hittinger, L., Shannon, R. P., Bishop, S. P., Gelpi, R. J., & Vatner, S. F. (1989). Subendomyocardial exhaustion of blood flow reserve and increased fibrosis in conscious dogs with heart failure. Circulation Research, 65, 971–80.PubMedCrossRef
72.
Zurück zum Zitat Craig, W. E., Murgo, J. P., & Pasipoularides, A. (1987). Calculation of the time constant of relaxation. In W. Grossman & B. Lorell (Eds.), Diastolic relaxation of the heart (pp. 125–32). The Hague: Martinus Nijhoff.CrossRef Craig, W. E., Murgo, J. P., & Pasipoularides, A. (1987). Calculation of the time constant of relaxation. In W. Grossman & B. Lorell (Eds.), Diastolic relaxation of the heart (pp. 125–32). The Hague: Martinus Nijhoff.CrossRef
73.
Zurück zum Zitat Pasipoularides, A. (2015). Fluid dynamics of ventricular filling in heart failure: overlooked problems of RV/LV chamber dilatation. Hellenic Journal of Cardiology, 56, 85–95.PubMedPubMedCentral Pasipoularides, A. (2015). Fluid dynamics of ventricular filling in heart failure: overlooked problems of RV/LV chamber dilatation. Hellenic Journal of Cardiology, 56, 85–95.PubMedPubMedCentral
74.
Zurück zum Zitat Galiuto, L., Lotrionte, M., Crea, F., et al. (2006). Impaired coronary and myocardial flow in severe aortic stenosis is associated with increased apoptosis: a transthoracic Doppler and myocardial contrast echocardiography study. Heart, 92, 208–12.PubMedCrossRef Galiuto, L., Lotrionte, M., Crea, F., et al. (2006). Impaired coronary and myocardial flow in severe aortic stenosis is associated with increased apoptosis: a transthoracic Doppler and myocardial contrast echocardiography study. Heart, 92, 208–12.PubMedCrossRef
75.
Zurück zum Zitat Ihara, T., Shannon, R. P., Komamura, K., Pasipoularides, A., Patrick, T., Shen, Y. T., & Vatner, S. F. (1994). Effects of anaesthesia and recent surgery on diastolic function. Cardiovascular Research, 28, 325–36.PubMedCrossRef Ihara, T., Shannon, R. P., Komamura, K., Pasipoularides, A., Patrick, T., Shen, Y. T., & Vatner, S. F. (1994). Effects of anaesthesia and recent surgery on diastolic function. Cardiovascular Research, 28, 325–36.PubMedCrossRef
76.
77.
Zurück zum Zitat Green, D. R. (2011). Means to an end: apoptosis and other cell death mechanisms. NY: Cold Spring Harbor, Cold Spring Harbor Laboratory Press. Green, D. R. (2011). Means to an end: apoptosis and other cell death mechanisms. NY: Cold Spring Harbor, Cold Spring Harbor Laboratory Press.
78.
Zurück zum Zitat Weber, K. T., Sun, Y., Bhattacharya, S. K., Ahokas, R. A., & Gerling, I. C. (2012). Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nature Reviews. Cardiology, 10, 15–26.PubMedCrossRef Weber, K. T., Sun, Y., Bhattacharya, S. K., Ahokas, R. A., & Gerling, I. C. (2012). Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nature Reviews. Cardiology, 10, 15–26.PubMedCrossRef
79.
Zurück zum Zitat Huusko, J., Lottonen, L., Merentie, M., et al. (2012). AAV9-mediated VEGF-B gene transfer improves systolic function in progressive left ventricular hypertrophy. Molecular Therapy, 20, 2212–21.PubMedPubMedCentralCrossRef Huusko, J., Lottonen, L., Merentie, M., et al. (2012). AAV9-mediated VEGF-B gene transfer improves systolic function in progressive left ventricular hypertrophy. Molecular Therapy, 20, 2212–21.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Olson, E. N., & Schneider, M. D. (2003). Sizing up the heart: development redux in disease. Genes and Development, 17, 1937–56.PubMedCrossRef Olson, E. N., & Schneider, M. D. (2003). Sizing up the heart: development redux in disease. Genes and Development, 17, 1937–56.PubMedCrossRef
81.
Zurück zum Zitat Huss, J. M., & Kelly, D. P. (2005). Mitochondrial energy metabolism in heart failure: a question of balance. Journal of Clinical Investigation, 115, 547–55.PubMedPubMedCentralCrossRef Huss, J. M., & Kelly, D. P. (2005). Mitochondrial energy metabolism in heart failure: a question of balance. Journal of Clinical Investigation, 115, 547–55.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Paulus, W. J., Grossman, W., Serizawa, T., Bourdillon, P. D., Pasipoularides, A., & Mirsky, I. (1985). Different effects of two types of ischemia on myocardial systolic and diastolic function. American Journal of Physiology. Heart and Circulatory Physiology, 248, H719–28. Paulus, W. J., Grossman, W., Serizawa, T., Bourdillon, P. D., Pasipoularides, A., & Mirsky, I. (1985). Different effects of two types of ischemia on myocardial systolic and diastolic function. American Journal of Physiology. Heart and Circulatory Physiology, 248, H719–28.
83.
Zurück zum Zitat Pasipoularides, A. (1988). On mechanisms of improved ejection fraction by early reperfusion in acute myocardial infarction: myocardial salvage or infarct stiffening? [Editorial]. Journal of the American College of Cardiology, 12, 1037–8.PubMedCrossRef Pasipoularides, A. (1988). On mechanisms of improved ejection fraction by early reperfusion in acute myocardial infarction: myocardial salvage or infarct stiffening? [Editorial]. Journal of the American College of Cardiology, 12, 1037–8.PubMedCrossRef
84.
Zurück zum Zitat Spinale, F. G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiological Reviews, 87, 1285–342.PubMedCrossRef Spinale, F. G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiological Reviews, 87, 1285–342.PubMedCrossRef
85.
Zurück zum Zitat Weber, K. T., Janicki, J. S., Shroff, S. G., Pick, R., Chen, R. M., & Bashey, R. I. (1988). Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circulation Research, 62, 757–65.PubMedCrossRef Weber, K. T., Janicki, J. S., Shroff, S. G., Pick, R., Chen, R. M., & Bashey, R. I. (1988). Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circulation Research, 62, 757–65.PubMedCrossRef
86.
Zurück zum Zitat Kassiri, Z., & Khokha, R. (2005). Myocardial extra-cellular matrix and its regulation by metalloproteinases and their inhibitors. Thrombosis and Haemostasis, 93, 212–9.PubMed Kassiri, Z., & Khokha, R. (2005). Myocardial extra-cellular matrix and its regulation by metalloproteinases and their inhibitors. Thrombosis and Haemostasis, 93, 212–9.PubMed
87.
Zurück zum Zitat Chen, W., & Frangogiannis, N. G. (1833). Fibroblasts in post-infarction inflammation and cardiac repair. Biochimica et Biophysica Acta, 2013, 945–53. Chen, W., & Frangogiannis, N. G. (1833). Fibroblasts in post-infarction inflammation and cardiac repair. Biochimica et Biophysica Acta, 2013, 945–53.
88.
Zurück zum Zitat Jugdutt, B. I. (2008). Aging and defective healing, adverse remodeling and blunted postconditioning in the wounded heart with aging. Journal of the American College of Cardiology, 51, 1399–403.PubMedCrossRef Jugdutt, B. I. (2008). Aging and defective healing, adverse remodeling and blunted postconditioning in the wounded heart with aging. Journal of the American College of Cardiology, 51, 1399–403.PubMedCrossRef
89.
90.
Zurück zum Zitat Grossman, W., Jones, D., & Mc Laurin, L. P. (1975). Wall stress and patterns of hypertrophy in the human left ventricle. Journal of Clinical Investigation, 56, 56–64.PubMedPubMedCentralCrossRef Grossman, W., Jones, D., & Mc Laurin, L. P. (1975). Wall stress and patterns of hypertrophy in the human left ventricle. Journal of Clinical Investigation, 56, 56–64.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Pasipoularides, A. (1990). Clinical assessment of ventricular ejection dynamics with and without outflow obstruction. Journal of the American College of Cardiology, 15, 859–82.PubMedCrossRef Pasipoularides, A. (1990). Clinical assessment of ventricular ejection dynamics with and without outflow obstruction. Journal of the American College of Cardiology, 15, 859–82.PubMedCrossRef
92.
Zurück zum Zitat Pasipoularides, A., Murgo, J. P., Bird, J. J., & Craig, W. E. (1984). Fluid dynamics of aortic stenosis: mechanisms for the presence of subvalvular pressure gradients. American Journal of Physiology. Heart and Circulatory Physiology, 246, H542–H550. Pasipoularides, A., Murgo, J. P., Bird, J. J., & Craig, W. E. (1984). Fluid dynamics of aortic stenosis: mechanisms for the presence of subvalvular pressure gradients. American Journal of Physiology. Heart and Circulatory Physiology, 246, H542–H550.
93.
Zurück zum Zitat Shim, Y., Hampton, T. G., Straley, C. A., Harrison, J. K., Spero, L. A., Bashore, T. M., & Pasipoularides, A. D. (1992). Ejection load changes in aortic stenosis: observations made following balloon aortic valvuloplasty. Circulation Research, 71, 1174–84.PubMedCrossRef Shim, Y., Hampton, T. G., Straley, C. A., Harrison, J. K., Spero, L. A., Bashore, T. M., & Pasipoularides, A. D. (1992). Ejection load changes in aortic stenosis: observations made following balloon aortic valvuloplasty. Circulation Research, 71, 1174–84.PubMedCrossRef
94.
Zurück zum Zitat Kupari, M., Laine, M., Turto, H., et al. (2013). Circulating collagen metabolites, myocardial fibrosis and heart failure in aortic valve stenosis. Journal of Heart Valve Disease, 22, 166–76.PubMed Kupari, M., Laine, M., Turto, H., et al. (2013). Circulating collagen metabolites, myocardial fibrosis and heart failure in aortic valve stenosis. Journal of Heart Valve Disease, 22, 166–76.PubMed
95.
Zurück zum Zitat Pasipoularides, A. D., Shu, M., Shah, A., & Glower, D. D. (2002). Right ventricular diastolic relaxation in conscious dog models of pressure overload, volume overload and ischemia. Journal of Thoracic and Cardiovascular Surgery, 124, 964–72.PubMedCrossRef Pasipoularides, A. D., Shu, M., Shah, A., & Glower, D. D. (2002). Right ventricular diastolic relaxation in conscious dog models of pressure overload, volume overload and ischemia. Journal of Thoracic and Cardiovascular Surgery, 124, 964–72.PubMedCrossRef
96.
Zurück zum Zitat Pasipoularides, A. D., Shu, M., Shah, A., Silvestry, S., & Glower, D. D. (2002). Right ventricular diastolic function in canine models of pressure overload, volume overload and ischemia. American Journal of Physiology. Heart and Circulatory Physiology, 283, H2140–H2150.PubMedCrossRef Pasipoularides, A. D., Shu, M., Shah, A., Silvestry, S., & Glower, D. D. (2002). Right ventricular diastolic function in canine models of pressure overload, volume overload and ischemia. American Journal of Physiology. Heart and Circulatory Physiology, 283, H2140–H2150.PubMedCrossRef
97.
Zurück zum Zitat Flett, A. S., Sado, D. M., Quarta, G., et al. (2012). Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. European Heart Journal Cardiovascular Imaging, 13, 819–26.PubMedCrossRef Flett, A. S., Sado, D. M., Quarta, G., et al. (2012). Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. European Heart Journal Cardiovascular Imaging, 13, 819–26.PubMedCrossRef
98.
Zurück zum Zitat Sadoshima, J., & Izumo, S. (1997). The cellular and molecular response of cardiac myocytes to mechanical stress. Annual Review of Physiology, 59, 551–71.PubMedCrossRef Sadoshima, J., & Izumo, S. (1997). The cellular and molecular response of cardiac myocytes to mechanical stress. Annual Review of Physiology, 59, 551–71.PubMedCrossRef
99.
Zurück zum Zitat Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. The New England Journal of Medicine, 358, 1370–80.PubMedCrossRef Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. The New England Journal of Medicine, 358, 1370–80.PubMedCrossRef
100.
Zurück zum Zitat Chang, H. W., Kim, K. H., Kim, J. S., et al. (2013). Relationship between morphologic features of myocardial tissue and left ventricular function in patients with aortic valve disease and left ventricular hypertrophy. Journal of Heart Valve Disease, 22, 476–83.PubMed Chang, H. W., Kim, K. H., Kim, J. S., et al. (2013). Relationship between morphologic features of myocardial tissue and left ventricular function in patients with aortic valve disease and left ventricular hypertrophy. Journal of Heart Valve Disease, 22, 476–83.PubMed
101.
Zurück zum Zitat Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B., & Castelli, W. P. (1990). Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. The New England Journal of Medicine, 322, 1561–6.PubMedCrossRef Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B., & Castelli, W. P. (1990). Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. The New England Journal of Medicine, 322, 1561–6.PubMedCrossRef
102.
Zurück zum Zitat Kupari, M., Turto, H., & Lommi, J. (2005). Left ventricular hypertrophy in aortic valve stenosis: preventive or promotive of systolic dysfunction and heart failure? European Heart Journal, 26, 1790–6.PubMedCrossRef Kupari, M., Turto, H., & Lommi, J. (2005). Left ventricular hypertrophy in aortic valve stenosis: preventive or promotive of systolic dysfunction and heart failure? European Heart Journal, 26, 1790–6.PubMedCrossRef
103.
Zurück zum Zitat Buermans, H. P. J., & Paulus, W. J. (2005). Iconoclasts topple adaptive myocardial hypertrophy in aortic stenosis. European Heart Journal, 26, 1697–9.PubMedCrossRef Buermans, H. P. J., & Paulus, W. J. (2005). Iconoclasts topple adaptive myocardial hypertrophy in aortic stenosis. European Heart Journal, 26, 1697–9.PubMedCrossRef
104.
Zurück zum Zitat Hirt, M. N., Sörensen, N. A., Bartholdt, L. M., et al. (2012). Increased afterload induces pathological cardiac hypertrophy: a new in vitro model. Basic Research in Cardiology, 107, 1–16.CrossRef Hirt, M. N., Sörensen, N. A., Bartholdt, L. M., et al. (2012). Increased afterload induces pathological cardiac hypertrophy: a new in vitro model. Basic Research in Cardiology, 107, 1–16.CrossRef
105.
Zurück zum Zitat Cioffi, G., Faggiano, P., Vizzardi, E., et al. (2011). Prognostic effect of inappropriately high left ventricular mass in asymptomatic severe aortic stenosis. Heart, 97, 301–7.PubMedCrossRef Cioffi, G., Faggiano, P., Vizzardi, E., et al. (2011). Prognostic effect of inappropriately high left ventricular mass in asymptomatic severe aortic stenosis. Heart, 97, 301–7.PubMedCrossRef
106.
Zurück zum Zitat Hosseini, M. W. (2005). Molecular tectonics: from simple tectons to complex molecular networks. Accounts of Chemical Research, 38, 313–23.PubMedCrossRef Hosseini, M. W. (2005). Molecular tectonics: from simple tectons to complex molecular networks. Accounts of Chemical Research, 38, 313–23.PubMedCrossRef
107.
Zurück zum Zitat Cooper, G., Kent, R. L., Uboh, C. E., Thompson, E. W., & Marino, T. A. (1985). Hemodynamic versus adrenergic control of cat right ventricular hypertrophy. Journal of Clinical Investigation, 75, 1403–14.PubMedPubMedCentralCrossRef Cooper, G., Kent, R. L., Uboh, C. E., Thompson, E. W., & Marino, T. A. (1985). Hemodynamic versus adrenergic control of cat right ventricular hypertrophy. Journal of Clinical Investigation, 75, 1403–14.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Kehat, I., & Molkentin, J. D. (2010). Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation, 122, 2727–35.PubMedCrossRef Kehat, I., & Molkentin, J. D. (2010). Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation, 122, 2727–35.PubMedCrossRef
109.
Zurück zum Zitat Heyn, H., & Esteller, M. (2012). DNA methylation profiling in the clinic: applications and challenges. Nature Reviews. Genetics, 13, 679–92.PubMedCrossRef Heyn, H., & Esteller, M. (2012). DNA methylation profiling in the clinic: applications and challenges. Nature Reviews. Genetics, 13, 679–92.PubMedCrossRef
110.
Zurück zum Zitat Kuwahara, K., Nishikimi, T., & Nakao, K. (2012). Transcriptional regulation of the fetal cardiac gene program. Journal of Pharmacological Sciences, 119, 198–203.PubMedCrossRef Kuwahara, K., Nishikimi, T., & Nakao, K. (2012). Transcriptional regulation of the fetal cardiac gene program. Journal of Pharmacological Sciences, 119, 198–203.PubMedCrossRef
111.
Zurück zum Zitat Ames, E. G., Lawson, M. J., Mackey, A. J., & Holmes, J. W. (2013). Sequencing of mRNA identifies re-expression of fetal splice variants in cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 62, 99–107.PubMedPubMedCentralCrossRef Ames, E. G., Lawson, M. J., Mackey, A. J., & Holmes, J. W. (2013). Sequencing of mRNA identifies re-expression of fetal splice variants in cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 62, 99–107.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Hu, C. L., Chandra, R., Ge, H., et al. (2009). Adenylyl cyclase type 5 protein expression during cardiac development and stress. American Journal of Physiology. Heart and Circulatory Physiology, 297, H1776–82.PubMedPubMedCentralCrossRef Hu, C. L., Chandra, R., Ge, H., et al. (2009). Adenylyl cyclase type 5 protein expression during cardiac development and stress. American Journal of Physiology. Heart and Circulatory Physiology, 297, H1776–82.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Vatner, S. F., Park, M., Yan, L., Lee, G. J., Lai, L., Iwatsubo, K., Ishikawa, Y., Pessin, J., & Vatner, D. E. (2013). Adenylyl cyclase type 5 in cardiac disease, metabolism, and aging. American Journal of Physiology. Heart and Circulatory Physiology, 305, H1–8.PubMedPubMedCentralCrossRef Vatner, S. F., Park, M., Yan, L., Lee, G. J., Lai, L., Iwatsubo, K., Ishikawa, Y., Pessin, J., & Vatner, D. E. (2013). Adenylyl cyclase type 5 in cardiac disease, metabolism, and aging. American Journal of Physiology. Heart and Circulatory Physiology, 305, H1–8.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Izumo, S., Nadal-Ginard, B., & Mahdavi, V. (1988). Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proceedings of the National Academy of Sciences of the United States of America, 85, 339–43.PubMedPubMedCentralCrossRef Izumo, S., Nadal-Ginard, B., & Mahdavi, V. (1988). Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proceedings of the National Academy of Sciences of the United States of America, 85, 339–43.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Pandya, K., Kim, H. S., & Smithies, O. (2006). Fibrosis, not cell size, delineates β-myosin heavy chain reexpression during cardiac hypertrophy and normal aging in vivo. Proceedings of the National Academy of Sciences of the United States of America, 103, 16864–9.PubMedPubMedCentralCrossRef Pandya, K., Kim, H. S., & Smithies, O. (2006). Fibrosis, not cell size, delineates β-myosin heavy chain reexpression during cardiac hypertrophy and normal aging in vivo. Proceedings of the National Academy of Sciences of the United States of America, 103, 16864–9.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Lopez, J. E., Myagmar, B., Swigart, P. M., et al. (2011). β-Myosin heavy chain is induced by pressure overload in a minor subpopulation of smaller mouse cardiac myocytes. Circulation Research, 109, 629–38.PubMedPubMedCentralCrossRef Lopez, J. E., Myagmar, B., Swigart, P. M., et al. (2011). β-Myosin heavy chain is induced by pressure overload in a minor subpopulation of smaller mouse cardiac myocytes. Circulation Research, 109, 629–38.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Pandya, K., & Smithies, O. (2011). β-MyHC and cardiac hypertrophy: size does matter. Circulation Research, 109, 609–10.PubMedCrossRef Pandya, K., & Smithies, O. (2011). β-MyHC and cardiac hypertrophy: size does matter. Circulation Research, 109, 609–10.PubMedCrossRef
118.
Zurück zum Zitat Isenberg, G., Kazanski, V., Kondratev, D., Gallitelli, M. F., Kiseleva, I., & Kamkin, A. (2003). Differential effects of stretch and compression on membrane currents and [Na+] c in ventricular myocytes. Progress in Biophysics and Molecular Biology, 82, 43–56.PubMedCrossRef Isenberg, G., Kazanski, V., Kondratev, D., Gallitelli, M. F., Kiseleva, I., & Kamkin, A. (2003). Differential effects of stretch and compression on membrane currents and [Na+] c in ventricular myocytes. Progress in Biophysics and Molecular Biology, 82, 43–56.PubMedCrossRef
119.
Zurück zum Zitat Brancaccio, M., Fratta, L., Notte, A., et al. (2003). Melusin, a muscle-specific integrin β1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nature Medicine, 9, 68–75.PubMedCrossRef Brancaccio, M., Fratta, L., Notte, A., et al. (2003). Melusin, a muscle-specific integrin β1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nature Medicine, 9, 68–75.PubMedCrossRef
120.
Zurück zum Zitat Sugden, P. H., & Clerk, A. (1998). ‘Stress-responsive’ mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circulation Research, 83, 345–52.PubMedCrossRef Sugden, P. H., & Clerk, A. (1998). ‘Stress-responsive’ mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circulation Research, 83, 345–52.PubMedCrossRef
121.
Zurück zum Zitat Duerr, R. L., Huang, S., Miraliakbar, H. R., Clark, R., Chien, K. R., & Ross, J., Jr. (1995). Insulin-like growth factor-1 enhances ventricular hypertrophy and function during the onset of experimental cardiac failure. Journal of Clinical Investigation, 95, 619–27.PubMedPubMedCentralCrossRef Duerr, R. L., Huang, S., Miraliakbar, H. R., Clark, R., Chien, K. R., & Ross, J., Jr. (1995). Insulin-like growth factor-1 enhances ventricular hypertrophy and function during the onset of experimental cardiac failure. Journal of Clinical Investigation, 95, 619–27.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Yamazaki, T., Komuro, I., Kudoh, S., et al. (1996). Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. Journal of Biological Chemistry, 271, 3221–8.PubMedCrossRef Yamazaki, T., Komuro, I., Kudoh, S., et al. (1996). Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. Journal of Biological Chemistry, 271, 3221–8.PubMedCrossRef
123.
Zurück zum Zitat Sheng, Z., Knowlton, K., Chen, J., Hoshijima, M., Brown, J. H., & Chien, K. R. (1997). Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen- activated protein kinase-dependent pathway: divergence from downstream CT-1 signals for myocardial cell hypertrophy. Journal of Biological Chemistry, 272, 5783–91.PubMedCrossRef Sheng, Z., Knowlton, K., Chen, J., Hoshijima, M., Brown, J. H., & Chien, K. R. (1997). Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen- activated protein kinase-dependent pathway: divergence from downstream CT-1 signals for myocardial cell hypertrophy. Journal of Biological Chemistry, 272, 5783–91.PubMedCrossRef
124.
Zurück zum Zitat Barnea, G., Strapps, W., Herrada, G., et al. (2008). The genetic design of signaling cascades to record receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 105, 64–9.PubMedCrossRef Barnea, G., Strapps, W., Herrada, G., et al. (2008). The genetic design of signaling cascades to record receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 105, 64–9.PubMedCrossRef
125.
Zurück zum Zitat van Berlo, J. H., Maillet, M., & Molkentin, J. D. (2013). Signaling effectors underlying pathologic growth and remodeling of the heart. Journal of Clinical Investigation, 123, 37–45.PubMedPubMedCentralCrossRef van Berlo, J. H., Maillet, M., & Molkentin, J. D. (2013). Signaling effectors underlying pathologic growth and remodeling of the heart. Journal of Clinical Investigation, 123, 37–45.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Adams, J. W., Sakata, Y., Davis, M. G., et al. (1998). Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 95, 10140–5.PubMedPubMedCentralCrossRef Adams, J. W., Sakata, Y., Davis, M. G., et al. (1998). Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 95, 10140–5.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Sakata, Y., Hoit, B. D., Liggett, S. B., Walsh, R. A., & Dorn, G. W., II. (1998). Decompensation of pressure-overload hypertrophy in G alpha q-overexpressing mice. Circulation, 97, 1488–95.PubMedCrossRef Sakata, Y., Hoit, B. D., Liggett, S. B., Walsh, R. A., & Dorn, G. W., II. (1998). Decompensation of pressure-overload hypertrophy in G alpha q-overexpressing mice. Circulation, 97, 1488–95.PubMedCrossRef
128.
Zurück zum Zitat Belmonte, S. L., & Blaxall, B. C. (2011). G protein coupled receptor kinases as therapeutic targets in cardiovascular disease. Circulation Research, 109, 309–19.PubMedPubMedCentralCrossRef Belmonte, S. L., & Blaxall, B. C. (2011). G protein coupled receptor kinases as therapeutic targets in cardiovascular disease. Circulation Research, 109, 309–19.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat DeWire, S. M., Ahn, S., Lefkowitz, R. J., & Shenoy, S. K. (2007). Beta-arrestins and cell signaling. Annual Review of Physiology, 69, 483–510.PubMedCrossRef DeWire, S. M., Ahn, S., Lefkowitz, R. J., & Shenoy, S. K. (2007). Beta-arrestins and cell signaling. Annual Review of Physiology, 69, 483–510.PubMedCrossRef
130.
Zurück zum Zitat Waters, C., Pyne, S., & Pyne, N. J. (2004). The role of G-protein coupled receptors and associated proteins in receptor tyrosine kinase signal transduction. Seminars in Cell and Developmental Biology, 15, 309–23.PubMedCrossRef Waters, C., Pyne, S., & Pyne, N. J. (2004). The role of G-protein coupled receptors and associated proteins in receptor tyrosine kinase signal transduction. Seminars in Cell and Developmental Biology, 15, 309–23.PubMedCrossRef
131.
Zurück zum Zitat van Biesen, T., Hawes, B. E., Luttrell, D. K., et al. (1995). Receptor-tyrosine-kinase- and G beta gamma-mediated MAP kinase activation by a common signalling pathway. Nature, 376, 781–4.PubMedCrossRef van Biesen, T., Hawes, B. E., Luttrell, D. K., et al. (1995). Receptor-tyrosine-kinase- and G beta gamma-mediated MAP kinase activation by a common signalling pathway. Nature, 376, 781–4.PubMedCrossRef
132.
Zurück zum Zitat Luttrell, L. M., Daaka, Y., & Lefkowitz, R. J. (1999). Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Current Opinion in Cell Biology, 11, 177–83.PubMedCrossRef Luttrell, L. M., Daaka, Y., & Lefkowitz, R. J. (1999). Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Current Opinion in Cell Biology, 11, 177–83.PubMedCrossRef
133.
Zurück zum Zitat Rockman, H. A., Koch, W. J., & Lefkowitz, R. J. (2002). Seven-transmembrane-spanning receptors and heart function. Nature, 415, 206–12.PubMedCrossRef Rockman, H. A., Koch, W. J., & Lefkowitz, R. J. (2002). Seven-transmembrane-spanning receptors and heart function. Nature, 415, 206–12.PubMedCrossRef
134.
Zurück zum Zitat Noor, N., Patel, C. B., & Rockman, H. A. (2011). Beta-arrestin: a signaling molecule and potential therapeutic target for heart failure. Journal of Molecular and Cellular Cardiology, 51, 534–41.PubMedCrossRef Noor, N., Patel, C. B., & Rockman, H. A. (2011). Beta-arrestin: a signaling molecule and potential therapeutic target for heart failure. Journal of Molecular and Cellular Cardiology, 51, 534–41.PubMedCrossRef
135.
Zurück zum Zitat Port, J. D., & Bristow, M. R. (2001). Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. Journal of Molecular and Cellular Cardiology, 33, 887–905.PubMedCrossRef Port, J. D., & Bristow, M. R. (2001). Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. Journal of Molecular and Cellular Cardiology, 33, 887–905.PubMedCrossRef
136.
Zurück zum Zitat Packer, M., Bristow, M. R., Cohn, J. N., et al. (1996). The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. The New England Journal of Medicine, 334, 1349–55.PubMedCrossRef Packer, M., Bristow, M. R., Cohn, J. N., et al. (1996). The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. The New England Journal of Medicine, 334, 1349–55.PubMedCrossRef
137.
Zurück zum Zitat Cohn, J. N., & Tognoni, G. (2001). Valsartan Heart Failure Trial I. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. The New England Journal of Medicine, 345, 1667–75.PubMedCrossRef Cohn, J. N., & Tognoni, G. (2001). Valsartan Heart Failure Trial I. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. The New England Journal of Medicine, 345, 1667–75.PubMedCrossRef
138.
Zurück zum Zitat Paul, M., Poyan Mehr, A., & Kreutz, R. (2006). Physiology of local renin-angiotensin systems. Physiological Reviews, 86, 747–803.PubMedCrossRef Paul, M., Poyan Mehr, A., & Kreutz, R. (2006). Physiology of local renin-angiotensin systems. Physiological Reviews, 86, 747–803.PubMedCrossRef
139.
Zurück zum Zitat Li, Y., Li, X. H., & Yuan, H. (2012). Angiotensin II type-2 receptor-specific effects on the cardiovascular system. Cardiovascular Diagnostic and Therapy, 2, 56–62. Li, Y., Li, X. H., & Yuan, H. (2012). Angiotensin II type-2 receptor-specific effects on the cardiovascular system. Cardiovascular Diagnostic and Therapy, 2, 56–62.
140.
Zurück zum Zitat Reiter, E., Ahn, S., Shukla, A. K., & Lefkowitz, R. J. (2012). Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annual Review of Pharmacology and Toxicology, 52, 179–97.PubMedCrossRef Reiter, E., Ahn, S., Shukla, A. K., & Lefkowitz, R. J. (2012). Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annual Review of Pharmacology and Toxicology, 52, 179–97.PubMedCrossRef
141.
Zurück zum Zitat Bylund, D. B., Eikenberg, D. C., Hieble, J. P., et al. (1994). International Union of Pharmacology nomenclature of adrenoceptors. Pharmacological Reviews, 46, 121–36.PubMed Bylund, D. B., Eikenberg, D. C., Hieble, J. P., et al. (1994). International Union of Pharmacology nomenclature of adrenoceptors. Pharmacological Reviews, 46, 121–36.PubMed
142.
Zurück zum Zitat Triposkiadis, F., Karayannis, G., Giamouzis, G., et al. (2009). The sympathetic nervous system in heart failure. Journal of the American College of Cardiology, 54, 1747–62.PubMedCrossRef Triposkiadis, F., Karayannis, G., Giamouzis, G., et al. (2009). The sympathetic nervous system in heart failure. Journal of the American College of Cardiology, 54, 1747–62.PubMedCrossRef
143.
Zurück zum Zitat Feldman, D. S., Carnes, C. A., Abraham, W. T., & Bristow, M. R. (2005). Mechanisms of disease: beta-adrenergic receptors—alterations in signal transduction and pharmacogenomics in heart failure. Nature Clinical Practice. Cardiovascular Medicine, 2, 475–83.PubMedCrossRef Feldman, D. S., Carnes, C. A., Abraham, W. T., & Bristow, M. R. (2005). Mechanisms of disease: beta-adrenergic receptors—alterations in signal transduction and pharmacogenomics in heart failure. Nature Clinical Practice. Cardiovascular Medicine, 2, 475–83.PubMedCrossRef
144.
Zurück zum Zitat Molkentin, J. D., & Dorn, G. W., II. (2001). Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annual Review of Physiology, 63, 391–426.PubMedCrossRef Molkentin, J. D., & Dorn, G. W., II. (2001). Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annual Review of Physiology, 63, 391–426.PubMedCrossRef
145.
Zurück zum Zitat Charron, F., Paradis, P., Bronchain, O., Nemer, G., & Nemer, M. (1999). Cooperative interaction between GATA-4 and GATA-6 regulates myocardial gene expression. Molecular and Cellular Biology, 19, 4355–65.PubMedPubMedCentralCrossRef Charron, F., Paradis, P., Bronchain, O., Nemer, G., & Nemer, M. (1999). Cooperative interaction between GATA-4 and GATA-6 regulates myocardial gene expression. Molecular and Cellular Biology, 19, 4355–65.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Zhou, P., He, A., & Pu, W. T. (2012). Regulation of GATA4 transcriptional activity in cardiovascular development and disease. Current Topics in Developmental Biology, 100, 143–69.PubMedCrossRef Zhou, P., He, A., & Pu, W. T. (2012). Regulation of GATA4 transcriptional activity in cardiovascular development and disease. Current Topics in Developmental Biology, 100, 143–69.PubMedCrossRef
147.
Zurück zum Zitat Peterkin, T., Gibson, A., Loose, M., & Patient, R. (2005). The roles of GATA-4, -5 and -6 in vertebrate heart development. Seminars in Cell and Developmental Biology, 16, 83–94.PubMedCrossRef Peterkin, T., Gibson, A., Loose, M., & Patient, R. (2005). The roles of GATA-4, -5 and -6 in vertebrate heart development. Seminars in Cell and Developmental Biology, 16, 83–94.PubMedCrossRef
148.
Zurück zum Zitat Pikkarainen, S., Tokola, H., Kerkela, R., & Ruskoaho, H. (2004). GATA transcription factors in the developing and adult heart. Cardiovascular Research, 63, 196–207.PubMedCrossRef Pikkarainen, S., Tokola, H., Kerkela, R., & Ruskoaho, H. (2004). GATA transcription factors in the developing and adult heart. Cardiovascular Research, 63, 196–207.PubMedCrossRef
149.
Zurück zum Zitat Liang, Q., & Molkentin, J. D. (2002). Divergent signaling pathways converge on GATA4 to regulate cardiac hypertrophic gene expression. Journal of Molecular and Cellular Cardiology, 34, 611–6.PubMedCrossRef Liang, Q., & Molkentin, J. D. (2002). Divergent signaling pathways converge on GATA4 to regulate cardiac hypertrophic gene expression. Journal of Molecular and Cellular Cardiology, 34, 611–6.PubMedCrossRef
150.
Zurück zum Zitat van Berlo, J. H., Elrod, J. W., van den Hoogenhof, M. M., et al. (2010). The transcription factor GATA-6 regulates pathological cardiac hypertrophy. Circulation Research, 107, 1032–40.PubMedCrossRef van Berlo, J. H., Elrod, J. W., van den Hoogenhof, M. M., et al. (2010). The transcription factor GATA-6 regulates pathological cardiac hypertrophy. Circulation Research, 107, 1032–40.PubMedCrossRef
151.
Zurück zum Zitat Akazawa, H., & Komuro, I. (2003). Roles of cardiac transcription factors in cardiac hypertrophy. Circulation Research, 92, 1079–88.PubMedCrossRef Akazawa, H., & Komuro, I. (2003). Roles of cardiac transcription factors in cardiac hypertrophy. Circulation Research, 92, 1079–88.PubMedCrossRef
152.
Zurück zum Zitat Oka, T., Maillet, M., Watt, A. J., Schwartz, R. J., Aronow, B. J., Duncan, S. A., & Molkentin, J. D. (2006). Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circulation Research, 98, 837–45.PubMedCrossRef Oka, T., Maillet, M., Watt, A. J., Schwartz, R. J., Aronow, B. J., Duncan, S. A., & Molkentin, J. D. (2006). Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circulation Research, 98, 837–45.PubMedCrossRef
153.
Zurück zum Zitat Oka, T., Xu, J., & Molkentin, J. D. (2007). Re-employment of developmental transcription factors in adult heart disease. Seminars in Cell and Developmental Biology, 18, 117–31.PubMedCrossRef Oka, T., Xu, J., & Molkentin, J. D. (2007). Re-employment of developmental transcription factors in adult heart disease. Seminars in Cell and Developmental Biology, 18, 117–31.PubMedCrossRef
154.
Zurück zum Zitat Papait, R., Kunderfranco, P., Stirparo, G. G., Latronico, M. V., & Condorelli, G. (2013). Long noncoding RNA: a new player of heart failure? Journal of Cardiovascular Translational Research, 6, 876–83.PubMedPubMedCentralCrossRef Papait, R., Kunderfranco, P., Stirparo, G. G., Latronico, M. V., & Condorelli, G. (2013). Long noncoding RNA: a new player of heart failure? Journal of Cardiovascular Translational Research, 6, 876–83.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Peters, T., & Schroen, B. (2014). Missing links in cardiology: long non-coding RNAs enter the arena. Pflügers Archiv, 466, 1177–87.PubMedCrossRef Peters, T., & Schroen, B. (2014). Missing links in cardiology: long non-coding RNAs enter the arena. Pflügers Archiv, 466, 1177–87.PubMedCrossRef
156.
Zurück zum Zitat Barbato, E., Lara-Pezzi, E., Stolen, C., Taylor, A., Barton, P. J., Bartunek, J., Iaizzo, P., Judge, D. P., Kirshenbaum, L., Blaxall, B. C., Terzic, A., & Hall, J. L. (2014). Advances in induced pluripotent stem cells, genomics, biomarkers, and antiplatelet therapy highlights of the year in JCTR 2013. Journal of Cardiovascular Translational Research, 7, 518–25.PubMedPubMedCentralCrossRef Barbato, E., Lara-Pezzi, E., Stolen, C., Taylor, A., Barton, P. J., Bartunek, J., Iaizzo, P., Judge, D. P., Kirshenbaum, L., Blaxall, B. C., Terzic, A., & Hall, J. L. (2014). Advances in induced pluripotent stem cells, genomics, biomarkers, and antiplatelet therapy highlights of the year in JCTR 2013. Journal of Cardiovascular Translational Research, 7, 518–25.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Chen, L., Qin, F., Ge, M., Shu, Q., & Xu, J. (2014). Application of adipose-derived stem cells in heart disease. Journal of Cardiovascular Translational Research, 7, 651–63.PubMedCrossRef Chen, L., Qin, F., Ge, M., Shu, Q., & Xu, J. (2014). Application of adipose-derived stem cells in heart disease. Journal of Cardiovascular Translational Research, 7, 651–63.PubMedCrossRef
158.
Zurück zum Zitat Bernal, J. A. (2013). RNA-based tools for nuclear reprogramming and lineage-conversion: towards clinical applications. Journal of Cardiovascular Translational Research, 6, 956–68.PubMedPubMedCentralCrossRef Bernal, J. A. (2013). RNA-based tools for nuclear reprogramming and lineage-conversion: towards clinical applications. Journal of Cardiovascular Translational Research, 6, 956–68.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Inagawa, K., & Ieda, M. (2013). Direct reprogramming of mouse fibroblasts into cardiac myocytes. Journal of Cardiovascular Translational Research, 6, 37–45.PubMedCrossRef Inagawa, K., & Ieda, M. (2013). Direct reprogramming of mouse fibroblasts into cardiac myocytes. Journal of Cardiovascular Translational Research, 6, 37–45.PubMedCrossRef
160.
Zurück zum Zitat Hudson, J. E., & Porrello, E. R. (2013). The non-coding road towards cardiac regeneration. Journal of Cardiovascular Translational Research, 6, 909–23.PubMedCrossRef Hudson, J. E., & Porrello, E. R. (2013). The non-coding road towards cardiac regeneration. Journal of Cardiovascular Translational Research, 6, 909–23.PubMedCrossRef
161.
Zurück zum Zitat Wang, K., Liu, F., Zhou, L. Y., et al. (2014). The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circulation Research, 114, 1377–88.PubMedCrossRef Wang, K., Liu, F., Zhou, L. Y., et al. (2014). The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circulation Research, 114, 1377–88.PubMedCrossRef
162.
Zurück zum Zitat Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–97.PubMedCrossRef Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–97.PubMedCrossRef
163.
Zurück zum Zitat Lim, L. P., Lau, N. C., Garrett-Engele, P., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–73.PubMedCrossRef Lim, L. P., Lau, N. C., Garrett-Engele, P., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–73.PubMedCrossRef
165.
Zurück zum Zitat Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–54.PubMedCrossRef Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–54.PubMedCrossRef
166.
Zurück zum Zitat Sevignani, C., Calin, G. A., Siracusa, L. D., & Croce, C. M. (2006). Mammalian microRNAs: a small world for fine-tuning gene expression. Mammalian Genome, 17, 189–202.PubMedPubMedCentralCrossRef Sevignani, C., Calin, G. A., Siracusa, L. D., & Croce, C. M. (2006). Mammalian microRNAs: a small world for fine-tuning gene expression. Mammalian Genome, 17, 189–202.PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., & Olson, E. N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316, 575–9.PubMedCrossRef van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., & Olson, E. N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316, 575–9.PubMedCrossRef
168.
Zurück zum Zitat Catalucci, D., Gallo, P., & Condorelli, G. (2009). MicroRNAs in cardiovascular biology and heart disease. Circulation. Cardiovascular Genetics, 2, 402–8.PubMedCrossRef Catalucci, D., Gallo, P., & Condorelli, G. (2009). MicroRNAs in cardiovascular biology and heart disease. Circulation. Cardiovascular Genetics, 2, 402–8.PubMedCrossRef
169.
Zurück zum Zitat Latronico, M. V. G., Condorelli, G., & Dorn, G. W., II. (2010). MicroRNAs in heart disease: putative novel therapeutic targets? European Heart Journal, 31, 649–58.PubMedPubMedCentralCrossRef Latronico, M. V. G., Condorelli, G., & Dorn, G. W., II. (2010). MicroRNAs in heart disease: putative novel therapeutic targets? European Heart Journal, 31, 649–58.PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Papoutsidakis, N., Deftereos, S., Kaoukis, A., et al. (2013). MicroRNAs and the heart: small things do matter. Current Topics in Medicinal Chemistry, 13, 216–30.PubMedCrossRef Papoutsidakis, N., Deftereos, S., Kaoukis, A., et al. (2013). MicroRNAs and the heart: small things do matter. Current Topics in Medicinal Chemistry, 13, 216–30.PubMedCrossRef
172.
Zurück zum Zitat Polacek, D. C., Passerini, A. G., Shi, C., et al. (2003). Fidelity and enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA. Physiological Genomics, 13, 147–156.PubMedCrossRef Polacek, D. C., Passerini, A. G., Shi, C., et al. (2003). Fidelity and enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA. Physiological Genomics, 13, 147–156.PubMedCrossRef
173.
Zurück zum Zitat Puskás, L. G., Zvara, A., Hackler, L., Jr., & Van Hummelen, P. (2002). RNA amplification results in reproducible microarray data with slight ratio bias. BioTechniques, 32, 1330–40.PubMed Puskás, L. G., Zvara, A., Hackler, L., Jr., & Van Hummelen, P. (2002). RNA amplification results in reproducible microarray data with slight ratio bias. BioTechniques, 32, 1330–40.PubMed
174.
Zurück zum Zitat Yu, L. M., & Xu, Y. (2015). Epigenetic regulation in cardiac fibrosis. World Journal Cardiology, 7, 784–91.CrossRef Yu, L. M., & Xu, Y. (2015). Epigenetic regulation in cardiac fibrosis. World Journal Cardiology, 7, 784–91.CrossRef
175.
Zurück zum Zitat Villar, A. V., Garcia, R., Merino, D., et al. (2013). Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. International Journal of Cardiology, 167, 2875–81.PubMedCrossRef Villar, A. V., Garcia, R., Merino, D., et al. (2013). Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. International Journal of Cardiology, 167, 2875–81.PubMedCrossRef
176.
Zurück zum Zitat Haghikia, A., & Hilfiker-Kleiner, D. (2009). MiRNA-21: a key to controlling the cardiac fibroblast compartment? Cardiovascular Research, 82, 1–3.PubMedCrossRef Haghikia, A., & Hilfiker-Kleiner, D. (2009). MiRNA-21: a key to controlling the cardiac fibroblast compartment? Cardiovascular Research, 82, 1–3.PubMedCrossRef
177.
Zurück zum Zitat Cheng, Y., Ji, R., Yue, J., et al. (2007). MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? American Journal of Pathology, 170, 1831–40.PubMedPubMedCentralCrossRef Cheng, Y., Ji, R., Yue, J., et al. (2007). MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? American Journal of Pathology, 170, 1831–40.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Chen, Z., Li, C., Xu, Y., et al. (2014). Circulating level of miR-378 predicts left ventricular hypertrophy in patients with aortic stenosis. PLoS One, 9(8), e105702.PubMedPubMedCentralCrossRef Chen, Z., Li, C., Xu, Y., et al. (2014). Circulating level of miR-378 predicts left ventricular hypertrophy in patients with aortic stenosis. PLoS One, 9(8), e105702.PubMedPubMedCentralCrossRef
179.
Zurück zum Zitat Carè, A., Catalucci, D., Felicetti, F., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–8.PubMedCrossRef Carè, A., Catalucci, D., Felicetti, F., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–8.PubMedCrossRef
180.
Zurück zum Zitat Araque, J. C., Greason, K. L., Suri, R. M., et al. (2016). The role of balloon aortic valvuloplasty in patients with aortic valve stenosis and society of thoracic surgeons risk of 15% or higher. Annals of Thoracic Surgery, 101, 592–8.PubMedCrossRef Araque, J. C., Greason, K. L., Suri, R. M., et al. (2016). The role of balloon aortic valvuloplasty in patients with aortic valve stenosis and society of thoracic surgeons risk of 15% or higher. Annals of Thoracic Surgery, 101, 592–8.PubMedCrossRef
181.
Zurück zum Zitat Khawaja, M. Z., Sohal, M., Valli, H., et al. (2013). Standalone balloon aortic valvuloplasty: indications and outcomes from the UK in the transcatheter valve era. Catheterization and Cardiovascular Interventions, 81, 366–73.PubMedCrossRef Khawaja, M. Z., Sohal, M., Valli, H., et al. (2013). Standalone balloon aortic valvuloplasty: indications and outcomes from the UK in the transcatheter valve era. Catheterization and Cardiovascular Interventions, 81, 366–73.PubMedCrossRef
182.
Zurück zum Zitat Nishimura, R. A., Otto, C. M., Bonow, R. O., et al. (2014). AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology, 63, 2438–88.PubMedCrossRef Nishimura, R. A., Otto, C. M., Bonow, R. O., et al. (2014). AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology, 63, 2438–88.PubMedCrossRef
183.
Zurück zum Zitat Cribier, A., Eltchaninoff, H., & Tron, C. (2006). Percutaneous implantation of aortic valve prosthesis in patients with calcific aortic stenosis: technical advances, clinical results and future strategies. Journal of Interventional Cardiology, 19, S87–S96.CrossRef Cribier, A., Eltchaninoff, H., & Tron, C. (2006). Percutaneous implantation of aortic valve prosthesis in patients with calcific aortic stenosis: technical advances, clinical results and future strategies. Journal of Interventional Cardiology, 19, S87–S96.CrossRef
184.
Zurück zum Zitat Clavel, M. A., Webb, J. G., Rodés-Cabau, J., et al. (2010). Comparison between transcatheter and surgical prosthetic valve implantation in patients with severe aortic stenosis and reduced left ventricular ejection fraction. Circulation, 122, 1928–36.PubMedCrossRef Clavel, M. A., Webb, J. G., Rodés-Cabau, J., et al. (2010). Comparison between transcatheter and surgical prosthetic valve implantation in patients with severe aortic stenosis and reduced left ventricular ejection fraction. Circulation, 122, 1928–36.PubMedCrossRef
185.
Zurück zum Zitat Smith, C. R., Leon, M. B., Mack, M. J., et al. (2011). Transcatheter versus surgical aortic-valve replacement in high-risk patients. The New England Journal of Medicine, 364, 2187–98.PubMedCrossRef Smith, C. R., Leon, M. B., Mack, M. J., et al. (2011). Transcatheter versus surgical aortic-valve replacement in high-risk patients. The New England Journal of Medicine, 364, 2187–98.PubMedCrossRef
186.
Zurück zum Zitat Vizzardi, E., D'Aloia, A., Fiorina, C., et al. (2012). Early regression of left ventricular mass associated with diastolic improvement after transcatheter aortic valve implantation. Journal of the American Society of Echocardiography, 25, 1091–8.PubMedCrossRef Vizzardi, E., D'Aloia, A., Fiorina, C., et al. (2012). Early regression of left ventricular mass associated with diastolic improvement after transcatheter aortic valve implantation. Journal of the American Society of Echocardiography, 25, 1091–8.PubMedCrossRef
187.
Zurück zum Zitat Nagaraja, V., Raval, J., Eslick, G. D., & Ong, A. T. (2014). Transcatheter versus surgical aortic valve replacement: a systematic review and meta-analysis of randomised and non-randomised trials. Open Heart, 1, e000013.PubMedPubMedCentralCrossRef Nagaraja, V., Raval, J., Eslick, G. D., & Ong, A. T. (2014). Transcatheter versus surgical aortic valve replacement: a systematic review and meta-analysis of randomised and non-randomised trials. Open Heart, 1, e000013.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Taniguchi, T., Morimoto, T., Shiomi, H., et al. (2015). Initial surgical versus conservative strategies in patients with asymptomatic severe aortic stenosis. Journal of the American College of Cardiology. doi:10.1016/j.jacc.2015.10.001.PubMed Taniguchi, T., Morimoto, T., Shiomi, H., et al. (2015). Initial surgical versus conservative strategies in patients with asymptomatic severe aortic stenosis. Journal of the American College of Cardiology. doi:10.​1016/​j.​jacc.​2015.​10.​001.PubMed
189.
Zurück zum Zitat Leon, M. B., Smith, C. R., Mack, M., et al. (2010). Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. The New England Journal of Medicine, 363, 1597–607.PubMedCrossRef Leon, M. B., Smith, C. R., Mack, M., et al. (2010). Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. The New England Journal of Medicine, 363, 1597–607.PubMedCrossRef
190.
Zurück zum Zitat Beach, J. M., Mihaljevic, T., Rajeswaran, J., et al. (2014). Ventricular hypertrophy and left atrial dilatation persist and are associated with reduced survival after valve replacement for aortic stenosis. Journal of Thoracic and Cardiovascular Surgery, 147, 362–9.PubMedCrossRef Beach, J. M., Mihaljevic, T., Rajeswaran, J., et al. (2014). Ventricular hypertrophy and left atrial dilatation persist and are associated with reduced survival after valve replacement for aortic stenosis. Journal of Thoracic and Cardiovascular Surgery, 147, 362–9.PubMedCrossRef
191.
Zurück zum Zitat Friddle, C. J., Koga, T., Rubin, E. M., & Bristow, J. (2000). Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 97, 6745–50.PubMedPubMedCentralCrossRef Friddle, C. J., Koga, T., Rubin, E. M., & Bristow, J. (2000). Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 97, 6745–50.PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Stansfield, W. E., Charles, P. C., Tang, R. H., et al. (2009). Regression of pressure-induced left ventricular hypertrophy is characterized by a distinct gene expression profile. Journal of Thoracic and Cardiovascular Surgery, 137, 232–8.PubMedPubMedCentralCrossRef Stansfield, W. E., Charles, P. C., Tang, R. H., et al. (2009). Regression of pressure-induced left ventricular hypertrophy is characterized by a distinct gene expression profile. Journal of Thoracic and Cardiovascular Surgery, 137, 232–8.PubMedPubMedCentralCrossRef
193.
Zurück zum Zitat Bjornstad, J. L., Skrbic, B., Sjaastad, I., et al. (2012). A mouse model of reverse cardiac remodelling following banding-debanding of the ascending aorta. Acta Physiologica, 205, 92–102.PubMedCrossRef Bjornstad, J. L., Skrbic, B., Sjaastad, I., et al. (2012). A mouse model of reverse cardiac remodelling following banding-debanding of the ascending aorta. Acta Physiologica, 205, 92–102.PubMedCrossRef
194.
Zurück zum Zitat Pasipoularides, A., Murgo, J. P., Miller, J. W., & Craig, W. E. (1987). Nonobstructive left ventricular ejection pressure gradients in man. Circulation Research, 61, 220–7.PubMedCrossRef Pasipoularides, A., Murgo, J. P., Miller, J. W., & Craig, W. E. (1987). Nonobstructive left ventricular ejection pressure gradients in man. Circulation Research, 61, 220–7.PubMedCrossRef
195.
Zurück zum Zitat Sharma, U. C., Barenbrug, P., Pokharel, S., Dassen, W. R., Pinto, Y. M., & Maessen, J. G. (2004). Systematic review of the outcome of aortic valve replacement in patients with aortic stenosis. Annals of Thoracic Surgery, 78, 90–5.PubMedCrossRef Sharma, U. C., Barenbrug, P., Pokharel, S., Dassen, W. R., Pinto, Y. M., & Maessen, J. G. (2004). Systematic review of the outcome of aortic valve replacement in patients with aortic stenosis. Annals of Thoracic Surgery, 78, 90–5.PubMedCrossRef
196.
Zurück zum Zitat Bauer, F., Coutant, V., Bernard, M., et al. (2013). Patients with severe aortic stenosis and reduced ejection fraction: earlier recovery of left ventricular systolic function after transcatheter aortic valve implantation compared with surgical valve replacement. Echocardiography, 30, 865–70.PubMedCrossRef Bauer, F., Coutant, V., Bernard, M., et al. (2013). Patients with severe aortic stenosis and reduced ejection fraction: earlier recovery of left ventricular systolic function after transcatheter aortic valve implantation compared with surgical valve replacement. Echocardiography, 30, 865–70.PubMedCrossRef
197.
Zurück zum Zitat Adams, D. H., Popma, J. J., Reardon, M. J., et al. (2014). Transcatheter aortic-valve replacement with a self-expanding prosthesis. The New England Journal of Medicine, 370, 1790–8.PubMedCrossRef Adams, D. H., Popma, J. J., Reardon, M. J., et al. (2014). Transcatheter aortic-valve replacement with a self-expanding prosthesis. The New England Journal of Medicine, 370, 1790–8.PubMedCrossRef
198.
Zurück zum Zitat Reardon, M. J., Adams, D. H., Kleiman, N. S., et al. (2015). 2-year outcomes in patients undergoing surgical or self-expanding transcatheter aortic valve replacement. Journal of the American College of Cardiology, 66, 113–21.PubMedCrossRef Reardon, M. J., Adams, D. H., Kleiman, N. S., et al. (2015). 2-year outcomes in patients undergoing surgical or self-expanding transcatheter aortic valve replacement. Journal of the American College of Cardiology, 66, 113–21.PubMedCrossRef
199.
Zurück zum Zitat Kim, S. J., Samad, Z., Bloomfield, G. S., & Douglas, P. S. (2014). A critical review of hemodynamic changes and left ventricular remodeling after surgical aortic valve replacement and percutaneous aortic valve replacement. American Heart Journal, 168, 150–9.PubMedCrossRef Kim, S. J., Samad, Z., Bloomfield, G. S., & Douglas, P. S. (2014). A critical review of hemodynamic changes and left ventricular remodeling after surgical aortic valve replacement and percutaneous aortic valve replacement. American Heart Journal, 168, 150–9.PubMedCrossRef
200.
Zurück zum Zitat Hahn, R. T., Pibarot, P., Stewart, W. J., et al. (2013). Comparison of transcatheter and surgical aortic valve replacement in severe aortic stenosis: a longitudinal study of echocardiography parameters in cohort A of the PARTNER trial (placement of aortic transcatheter valves). Journal of the American College of Cardiology, 61, 2514–21.PubMedPubMedCentralCrossRef Hahn, R. T., Pibarot, P., Stewart, W. J., et al. (2013). Comparison of transcatheter and surgical aortic valve replacement in severe aortic stenosis: a longitudinal study of echocardiography parameters in cohort A of the PARTNER trial (placement of aortic transcatheter valves). Journal of the American College of Cardiology, 61, 2514–21.PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Zajarias, A., & Cribier, A. G. (2009). Outcomes and safety of percutaneous aortic valve replacement. Journal of the American College of Cardiology, 53, 1829–36.PubMedCrossRef Zajarias, A., & Cribier, A. G. (2009). Outcomes and safety of percutaneous aortic valve replacement. Journal of the American College of Cardiology, 53, 1829–36.PubMedCrossRef
202.
Zurück zum Zitat Milano, A. D., Faggian, G., Dodonov, M., et al. (2012). Prognostic value of myocardial fibrosis in patients with severe aortic valve stenosis. Journal of Thoracic and Cardiovascular Surgery, 144, 830–7.PubMedCrossRef Milano, A. D., Faggian, G., Dodonov, M., et al. (2012). Prognostic value of myocardial fibrosis in patients with severe aortic valve stenosis. Journal of Thoracic and Cardiovascular Surgery, 144, 830–7.PubMedCrossRef
203.
Zurück zum Zitat Regitz-Zagrosek, V., Brokat, S., & Tschope, C. (2007). Role of gender in heart failure with normal left ventricular ejection fraction. Progress in Cardiovascular Diseases, 49, 241–51.PubMedCrossRef Regitz-Zagrosek, V., Brokat, S., & Tschope, C. (2007). Role of gender in heart failure with normal left ventricular ejection fraction. Progress in Cardiovascular Diseases, 49, 241–51.PubMedCrossRef
204.
Zurück zum Zitat Devereux, R. B., Roman, M. J., Liu, J. E., et al. (2000). Congestive heart failure despite normal left ventricular systolic function in a population-based sample: the strong heart study. American Journal of Cardiology, 86, 1090–6.PubMedCrossRef Devereux, R. B., Roman, M. J., Liu, J. E., et al. (2000). Congestive heart failure despite normal left ventricular systolic function in a population-based sample: the strong heart study. American Journal of Cardiology, 86, 1090–6.PubMedCrossRef
205.
Zurück zum Zitat Carroll, J. D., Carroll, E. P., Feldman, T., et al. (1992). Sex associated differences in left ventricular function in aortic stenosis of the elderly. Circulation, 86, 1099–107.PubMedCrossRef Carroll, J. D., Carroll, E. P., Feldman, T., et al. (1992). Sex associated differences in left ventricular function in aortic stenosis of the elderly. Circulation, 86, 1099–107.PubMedCrossRef
206.
Zurück zum Zitat Aurigemma, G. P., Silver, K. H., McLaughlin, M., Mauser, J., & Gaasch, W. H. (1994). Impact of chamber geometry and gender on left ventricular systolic function in patients > 60 years of age with aortic stenosis. American Journal of Cardiology, 74, 794–8.PubMedCrossRef Aurigemma, G. P., Silver, K. H., McLaughlin, M., Mauser, J., & Gaasch, W. H. (1994). Impact of chamber geometry and gender on left ventricular systolic function in patients > 60 years of age with aortic stenosis. American Journal of Cardiology, 74, 794–8.PubMedCrossRef
207.
Zurück zum Zitat Aurigemma, G. P., & Gaasch, W. H. (1995). Gender differences in older patients with pressure-overload hypertrophy of the left ventricle. Cardiology, 86, 310–7.PubMedCrossRef Aurigemma, G. P., & Gaasch, W. H. (1995). Gender differences in older patients with pressure-overload hypertrophy of the left ventricle. Cardiology, 86, 310–7.PubMedCrossRef
208.
Zurück zum Zitat Douglas, P. S., Katz, S. E., Weinberg, E. O., Chen, M. H., Bishop, S. P., & Lorell, B. H. (1998). Hypertrophic remodeling: gender differences in the early response to left ventricular pressure overload. Journal of the American College of Cardiology, 32, 1118–25.PubMedCrossRef Douglas, P. S., Katz, S. E., Weinberg, E. O., Chen, M. H., Bishop, S. P., & Lorell, B. H. (1998). Hypertrophic remodeling: gender differences in the early response to left ventricular pressure overload. Journal of the American College of Cardiology, 32, 1118–25.PubMedCrossRef
209.
Zurück zum Zitat Douglas, P. S., Otto, C. M., Mickel, M. C., Labovitz, A., Reid, C. L., & Davis, K. B. (1995). Gender differences in left ventricle geometry and function in patients undergoing balloon dilatation of the aortic valve for isolated aortic stenosis. NHLBI Balloon Valvuloplasty Registry. British Heart Journal, 73, 548–54.PubMedPubMedCentralCrossRef Douglas, P. S., Otto, C. M., Mickel, M. C., Labovitz, A., Reid, C. L., & Davis, K. B. (1995). Gender differences in left ventricle geometry and function in patients undergoing balloon dilatation of the aortic valve for isolated aortic stenosis. NHLBI Balloon Valvuloplasty Registry. British Heart Journal, 73, 548–54.PubMedPubMedCentralCrossRef
210.
Zurück zum Zitat Villari, B., Campbell, S. E., Schneider, J., Vassalli, G., Chiariello, M., & Hess, O. M. (1995). Sex-dependent differences in left ventricular function and structure in chronic pressure overload. European Heart Journal, 16, 1410–9.PubMed Villari, B., Campbell, S. E., Schneider, J., Vassalli, G., Chiariello, M., & Hess, O. M. (1995). Sex-dependent differences in left ventricular function and structure in chronic pressure overload. European Heart Journal, 16, 1410–9.PubMed
211.
Zurück zum Zitat Regitz-Zagrosek, V. (2006). Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nature Reviews. Drug Discovery, 5, 425–38.PubMedCrossRef Regitz-Zagrosek, V. (2006). Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nature Reviews. Drug Discovery, 5, 425–38.PubMedCrossRef
212.
Zurück zum Zitat Petrov, G., Dworatzek, E., Schulze, T. M., et al. (2014). Maladaptive remodeling is associated with impaired survival in women but not in men after aortic valve replacement. Journal of the American College of Cardiology: Cardiovascular Imaging, 7, 1073–80.CrossRef Petrov, G., Dworatzek, E., Schulze, T. M., et al. (2014). Maladaptive remodeling is associated with impaired survival in women but not in men after aortic valve replacement. Journal of the American College of Cardiology: Cardiovascular Imaging, 7, 1073–80.CrossRef
213.
Zurück zum Zitat Dworatzek, E., Mahmoodzadeh, S., Schubert, C., et al. (2014). Sex differences in exercise-induced physiological myocardial hypertrophy are modulated by oestrogen receptor beta. Cardiovascular Research, 102, 418–28.PubMedCrossRef Dworatzek, E., Mahmoodzadeh, S., Schubert, C., et al. (2014). Sex differences in exercise-induced physiological myocardial hypertrophy are modulated by oestrogen receptor beta. Cardiovascular Research, 102, 418–28.PubMedCrossRef
214.
Zurück zum Zitat Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S., & Gustafsson, J. A. (1996). Cloning of a novel receptor expressed in rat prostate and ovary. Proceedings of the National Academy of Sciences of the United States of America, 93, 5925–30.PubMedPubMedCentralCrossRef Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S., & Gustafsson, J. A. (1996). Cloning of a novel receptor expressed in rat prostate and ovary. Proceedings of the National Academy of Sciences of the United States of America, 93, 5925–30.PubMedPubMedCentralCrossRef
215.
Zurück zum Zitat Mosselman, S., Polman, J., & Dijkema, R. (1996). ER beta: identification and characterization of a novel human estrogen receptor. FEBS Letters, 392, 49–53.PubMedCrossRef Mosselman, S., Polman, J., & Dijkema, R. (1996). ER beta: identification and characterization of a novel human estrogen receptor. FEBS Letters, 392, 49–53.PubMedCrossRef
216.
Zurück zum Zitat Levy, D., Larson, M. G., Vasan, R. S., Kannel, W. B., & Ho, K. K. (1996). The progression from hypertension to congestive heart failure. JAMA, 275, 1557–62.PubMedCrossRef Levy, D., Larson, M. G., Vasan, R. S., Kannel, W. B., & Ho, K. K. (1996). The progression from hypertension to congestive heart failure. JAMA, 275, 1557–62.PubMedCrossRef
217.
Zurück zum Zitat Petrov, G., Regitz-Zagrosek, V., Lehmkuhl, E., et al. (2010). Regression of myocardial hypertrophy after aortic valve replacement: faster in women? Circulation, 122, S23–S28.PubMedCrossRef Petrov, G., Regitz-Zagrosek, V., Lehmkuhl, E., et al. (2010). Regression of myocardial hypertrophy after aortic valve replacement: faster in women? Circulation, 122, S23–S28.PubMedCrossRef
218.
Zurück zum Zitat Alberts, I. L., Wess, T. J., Cameron, G. J., & Laing, J. H. (2002). Structure of type I and type III heterotypic collagen fibrils: an x-ray diffraction study. Journal of Structural Biology, 137, 15–22.PubMedCrossRef Alberts, I. L., Wess, T. J., Cameron, G. J., & Laing, J. H. (2002). Structure of type I and type III heterotypic collagen fibrils: an x-ray diffraction study. Journal of Structural Biology, 137, 15–22.PubMedCrossRef
219.
Zurück zum Zitat Turner, N. A., & Porter, K. E. (2012). Regulation of myocardial matrix metalloproteinase expression and activity by cardiac fibroblasts. Life, 64(2), 143–50.PubMed Turner, N. A., & Porter, K. E. (2012). Regulation of myocardial matrix metalloproteinase expression and activity by cardiac fibroblasts. Life, 64(2), 143–50.PubMed
220.
Zurück zum Zitat Fliegner, D., Schubert, C., Penkalla, A., et al. (2010). Female sex and estrogen receptor-b attenuate cardiac remodeling and apoptosis in pressure overload. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 298, 1597–1606.CrossRef Fliegner, D., Schubert, C., Penkalla, A., et al. (2010). Female sex and estrogen receptor-b attenuate cardiac remodeling and apoptosis in pressure overload. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 298, 1597–1606.CrossRef
221.
Zurück zum Zitat Legget, M. E., Kuusisto, J., Healy, N. L., Fujioka, M., Schwaegler, R. G., & Otto, C. M. (1996). Gender differences in left ventricular function at rest and with exercise in asymptomatic aortic stenosis. American Heart Journal, 131, 94–100.PubMedCrossRef Legget, M. E., Kuusisto, J., Healy, N. L., Fujioka, M., Schwaegler, R. G., & Otto, C. M. (1996). Gender differences in left ventricular function at rest and with exercise in asymptomatic aortic stenosis. American Heart Journal, 131, 94–100.PubMedCrossRef
222.
Zurück zum Zitat Fielitz, J., Leuschner, M., Zurbrugg, H. R., et al. (2004). Regulation of matrix metalloproteinases and their inhibitors in the left ventricular myocardium of patients with aortic stenosis. Journal of Molecular Medicine, 12, 809–20.CrossRef Fielitz, J., Leuschner, M., Zurbrugg, H. R., et al. (2004). Regulation of matrix metalloproteinases and their inhibitors in the left ventricular myocardium of patients with aortic stenosis. Journal of Molecular Medicine, 12, 809–20.CrossRef
223.
Zurück zum Zitat Mahmoodzadeh, S., Dworatzek, E., Fritschka, S., Pham, T. H., & Regitz-Zagrosek, V. (2010). 17beta-Estradiol inhibits matrix metalloproteinase-2 transcription via MAP kinase in fibroblasts. Cardiovascular Research, 85, 719–28.PubMedCrossRef Mahmoodzadeh, S., Dworatzek, E., Fritschka, S., Pham, T. H., & Regitz-Zagrosek, V. (2010). 17beta-Estradiol inhibits matrix metalloproteinase-2 transcription via MAP kinase in fibroblasts. Cardiovascular Research, 85, 719–28.PubMedCrossRef
224.
Zurück zum Zitat Fliegner, D., Schubert, C., Penkalla, A., et al. (2010). Female sex and estrogen receptor-β attenuate cardiac remodeling and apoptosis in pressure overload. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 298, R1597–606.PubMedCrossRef Fliegner, D., Schubert, C., Penkalla, A., et al. (2010). Female sex and estrogen receptor-β attenuate cardiac remodeling and apoptosis in pressure overload. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 298, R1597–606.PubMedCrossRef
225.
Zurück zum Zitat Hayashida, K., Morice, M. C., Chevalier, B., et al. (2012). Sex-related differences in clinical presentation and outcome of transcatheter aortic valve implantation for severe aortic stenosis. Journal of the American College of Cardiology, 59, 566–71.PubMedCrossRef Hayashida, K., Morice, M. C., Chevalier, B., et al. (2012). Sex-related differences in clinical presentation and outcome of transcatheter aortic valve implantation for severe aortic stenosis. Journal of the American College of Cardiology, 59, 566–71.PubMedCrossRef
226.
Zurück zum Zitat Hamed, O., Persson, P. J., Engel, A. M., McDonough, S., & Smith, J. M. (2009). Gender differences in outcomes following aortic valve replacement surgery. International Journal of Surgery, 7, 214–7.PubMedCrossRef Hamed, O., Persson, P. J., Engel, A. M., McDonough, S., & Smith, J. M. (2009). Gender differences in outcomes following aortic valve replacement surgery. International Journal of Surgery, 7, 214–7.PubMedCrossRef
227.
Zurück zum Zitat Stangl, V., Baldenhofer, G., Knebel, F., et al. (2012). Impact of gender on three-month outcome and left ventricular remodeling after transfemoral transcatheter aortic valve implantation. American Journal of Cardiology, 110, 884–90.PubMedCrossRef Stangl, V., Baldenhofer, G., Knebel, F., et al. (2012). Impact of gender on three-month outcome and left ventricular remodeling after transfemoral transcatheter aortic valve implantation. American Journal of Cardiology, 110, 884–90.PubMedCrossRef
Metadaten
Titel
Calcific Aortic Valve Disease: Part 2—Morphomechanical Abnormalities, Gene Reexpression, and Gender Effects on Ventricular Hypertrophy and Its Reversibility
verfasst von
Ares Pasipoularides
Publikationsdatum
16.05.2016
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 4/2016
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-016-9695-z

Weitere Artikel der Ausgabe 4/2016

Journal of Cardiovascular Translational Research 4/2016 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.