Skip to main content
Erschienen in: BMC Musculoskeletal Disorders 1/2018

Open Access 01.12.2018 | Case report

Calcification of the intervertebral disc and ossification of posterior longitudinal ligament in children

verfasst von: Jun-Jie Du, Yu-Fei Chen, Ye Peng, Xiao-jie Li, Wei Ma

Erschienen in: BMC Musculoskeletal Disorders | Ausgabe 1/2018

Abstract

Background

IDC in children, first reported by Baron in 1924, is very rare. OPLL of the cervical spine mainly affect people ages 50–70 years. The coexistence of IDC and OPLL in children is very rare, only six cases with 3 to 24 months’ follow-up were reported to date.

Case presentation

A 6-year-old boy presented with complains of neck pain at July 2007. The boy was treated by conservative treatment and observed up for 9 years. Neck pain greatly improved after a one-month conservative treatment and never recur. Laboratory tests revealed elevated ESR and CRP at admission and found nothing abnormal at 19-month and 9-year follow-up. Computed tomography and magnetic resonance imaging revealed IDC at C2/3, C3/4 and OPLL at C3/4 at admission and found minor calcification at C2/3 remained but calcification at C3/4 and OPLL at C3/4 completely disappeared at 19-month and 9-year follow-up. Nineteen months after initial diagnosis, restoration of T2-weighted signal intensity of C2/3 and C3/4 discs was observed through MRI. Loss of T2-weighted signal intensity of C2/3 disc and decrease of T2-weighted signal intensity of C3/4 disc was observed at 9-year follow-up.

Conclusions

IDC with OPLL in children is very rare. Conservative treatments are recommended with affirmative short-term and long-term clinical effects. More intensive observation with long-term follow-ups may be needed to warrant the clinical effects.
Abkürzungen
CRP
C-reactive protein
CT
Computed tomography
ESR
Erythrocyte sedimentation rate
IDC
Intervertebral disc calcification
MRI
Magnetic resonance imaging
OPLL
Ossification of the posterior longitudinal ligament
WBC
White blood cells

Background

Calcification of intervertebral disc in children is rare. Since firstly reported by Baron in 1924, approximately 400 cases were reported [1]. Although traumatic, infectious, inflammatory, and nutritional mechanisms were thought to contribute to calcification of intervertebral disc in children, the detailed etiology remain not defined. Ossification of the posterior longitudinal ligament (OPLL) mainly affect people ages 50–70 years, also with unclear etiology. Calcification of intervertebral disc in children is usually thought to be self-limiting with favorable prognosis, while OPLL in adults usually aggravates gradually and needs surgery when present with myelopathy or radiculopathy. The coexistence of calcification of intervertebral disc and OPLL is very rare, only six cases with 3 to 24 months’ follow-up were reported to date [26]. We reported the first two cases of cervical intervertebral disc calcification combined with OPLL in children in 2012 [3] and followed one case for more than nine years. The purpose of this case report is to describe the 9-year follow-up result. To our knowledge, long-term follow-up for cervical intervertebral disc calcification combined with OPLL is firstly reported here.

Case presentation

A 6-year-old boy presented with right-sided neck pain for 6 months was admitted in our institution on July 2007, with no history of recent trauma, fever or infection. The pain localized in the right side of neck, without radiating pain. The pain exacerbated for several days and not alleviated by using analgesics. Visual Analogue Scale (VAS) for cervical pain was 7.0. Physical examination revealed no palpable masses or torticollis. Neurological examination revealed nothing abnormal. Laboratory tests revealed normal white blood cell count (6170/mm3, normal range: 5000–12,000/mm3) and elevated ESR (69 mm/h, normal range: 0 to 20 mm/h) and CRP (11.80 mg/L, normal range: 0 to 5 mg/L). Radiograph and CT showed calcification of intervertebral disc at C2/3 and C3/4 levels, accompanied by C3/4 level OPLL (Fig. 1a, c and d). MRI revealed decreased signal intensity of C2–4 discs and C3/4 posterior longitudinal ligament on T2-weighted images, with slight dura compression (Fig. 1b). The patient was treated with analgesics for 2 weeks, interrupted cervical traction for 2 weeks and cervical collar for 1 month. After a one-month conservative treatment, the patient’s symptoms greatly improved. VAS for cervical pain decreased to 1.0.
Nineteen months later, in March 2009, the boy complained no discomfort. Laboratory tests (including white blood cell count, ESR and CRP) revealed nothing abnormal. C3/4 intervertebral disc calcification and OPLL had disappeared, only minor calcification at C2/3 intervertebral disc left (Fig. 2a, c and d). MRI demonstrated restoration of T2-weighted signal intensity of C2/3 and C3/4 discs (Fig. 2b).
When last seen in October 2016, there was still no discomfort. Laboratory tests revealed nothing abnormal. No sign of C3/4 intervertebral disc calcification and OPLL was observed (Fig. 3a, c and d). Minor calcification at C2/3 intervertebral disc remained (Fig. 3a, c and d). MRI demonstrated loss of T2-weighted signal intensity of C2/3 disc and decrease of T2-weighted signal intensity of C3/4 disc (Fig. 3b). Narrowing of C2/3 intervertebral space, flatting of C3 body, widening of posterior edge of C3/4 disc were observed in CT scan (Fig. 3c and d).

Discussion and conclusions

The incidence of intervertebral disc calcification (IDC) in children is low, with only approximately 400 cases reported since 1924. Intervertebral disc calcifications in children were divided in symptomatic and asymptomatic groups by Beluffi [7], who believed the number of asymptomatic patients could be larger than symptomatic patients. Blomquist et al. [8] reported 15 cases of IDC in children, of which 11 were symptomatic. Given that calcification of disc in children may be only an incidental finding without symptoms [912], the exact incidence may be underestimated [13, 14]. IDC mainly affect 5-to 12-year-old children [15], although newborn infant involvement was reported [7]. Males are more susceptible to IDC than females, with male-to-female ratio 13:6 [15, 16]. IDC mostly occurs in lower cervical spine and upper thoracic spine [17], with the most common level at C6/7 [18, 19]. First reported in 1838, OPLL has been widely reported since the 1960s [20]. OPLL usually affect people ages 50–70, the average onset age is 51.2 years in men and 48.9 years in women [21], with male-to-female ratio roughly 2:1 [22].OPLL is relatively more common in East Asian populations than Caucasian. The prevalence of OPLL was reported to be 1.5% to 3.7% in Japan and 0.1–1.7%in Europe and United States [21, 2325]. The most commonly involved levels are C4–6 [26]. IDC with OPLL in children is an extremely rare situation, only six cases reported to date (Table 1) [26]. We reported the first two cases of cervical IDC with OPLL in children in 2012, while Fu et al. [2] reported the first thoracic case. Given that most reported cases occurred in East Asia, like OPLL in adult, IDC with OPLL in children may also have racial susceptibility.
Table 1
Reported cases of IDC combined with OPLL in children
Author
Reported year
Age/sex
Location
Pre-existing trauma
Clinical presentation
WBC (/mm3)/CRP (mg/L)/ESR (mm/h)
Radiographic changes/follow-up
Du et al. [3]
2012
8/F
IDC at C6/7
OPLL at C6/7
Yes
NP& ND
5860/16.5/55
IDC& OPLL disappeared/2 years
Fu et al. [2]
2011
11/M
IDC at T6/7,T7/8
OPLL atT6/7, T7
No
BP
Normal
IDC aggravated, OPLL alleviated/3 months
Wang et al. [4]
2016
11/F
IDC at C5/6
OPLL at C5/6, C6
No
NP
Normal
Mild IDC remained, OPLL disappeared/6 months
Mizukawa et al [5]
2017
6/F
IDC at C4/5
OPLL at C4/5
No
NP
8600/15/−
IDC& OPLL disappeared/6 months
O’Dell et al [6]
2016
9/M
IDC at C2/3
OPLL at C2/3
Yes
NP & stiffness torticollis;
IDC disappeared, mild OPLL remained/2 years
Current case
2012
6/M
IDC at C2/3, C3/4
OPLL atC3/4
No
NP
6170/11.8/69
Mild IDC remained, OPLL disappeared, /9 years
– not mentioned
IDC intervertebral disc calcification, OPLL ossification of posterior longitudinal ligament, WBC white blood cells, CRP C-reactive protein, ESR erythrocyte sedimentation rate, NP neck pain, ND neurological deficit, BP back pain
The etiology of IDC in children is still unclear. Trauma, infection, nutritional supply, vitamin D disorder, hereditary deficit may contribute to IDC in children [9, 13, 2729]. Elevated ESR was reported to be the most sensitive indicator [15]. Coordinate with previous reports, elevated ESR and CRP are observed in our case, which suggested that infection may play a role in etiology of IDC in children. OPLL in adults is also considered to be multifactorial. Trauma [21], inflammation [30], genetics [31], environment [23], diet [32], glucose intolerance [33], obesity [33] and hypoparathyroidism [34] may contribute to the onset and progress of OPLL in adults. Trauma was seen in 2 cases of 6 reported cases of IDC with OPLL in children (incidence: 33.33%). Elevated inflammation indicators were seen in 3 cases (incidence: 50%, with one case didn’t give out inflammation indicators [6]). These results suggested that trauma and inflammation may play a role in the etiology of IDC with OPLL in children.
The most common clinical symptom of IDC in children is neck pain, affecting 80–90% cases [35]. Torticollis occurred in 40% of cases [11]. Other symptoms and signs include: perivertebral muscle spasms, low-grade fever, radicular pain, tenderness, and dysphagia (in anterior herniation cases). Only 5% patients of OPLL in adults were free of symptoms, 95% patients had clinical symptoms [21]. Different from IDC in children, varying degrees radiculopathy and myelopathy can be present in OPLL in adults [22], including balance dysfunction, muscular weakness, stagger, radicular pain, numbness and dysdiadochokinesia. Neck pain or back pain was seen in all the 6 reported cases of IDC with OPLL in children (incidence: 100%), neurological deficit (radicular pain), cervical stiffness, and torticollis was present in 1 case (incidence: 16.67%), respectively.
Conservative treatment, including analgesics, NSAIDS, muscle relaxants, cervical collar, traction and limited physical activity, is the mainstay treatment for IDC in children. Vast majority of children with IDC can be cure by conservative treatment. 66.7% patients got a complete relief of symptoms within 3 weeks and 95% patients would complete relieve within 6 months [19]. Recurrence of symptoms rarely occurs [36], but Hoffman [37] reported a child with IDC who suffered from neck pain and neurological deficit requiring surgery 6 years after initial diagnosis. Cases of IDC with symptom relapse 1 year after the initial onset were also reported [36]. Surgical treatment is controversial in cases with neurological deficit. Some authors suggested that conservative therapy could produce satisfactory results even when neurological deficit was present [9, 10]. Conservative treatment was proven effective even for the patient with neurological impairment due to large posterior protrusion [10]. Different from IDC with OPLL in children, surgery is more common for patients with OPLL in adults because of the progressive nature and poor prognosis [38]. Due to the extremely stenosis of cervical canal of the OPLL patients in adult, spinal cord injury (SCI) can occur even with minor trauma. Concerning that conservative treatments were adopted for all the 6 reported cases of IDC with OPLL in children with good effect, we suggest conservative treatment should be the first choice for these patients. Surgery should only be under consideration for cases with rapid progressive neurologic deterioration and high risk of paraplegia.
Coordinate with previous reports [16, 3942], narrowing of the involved intervertebral space, flatting and wedging of adjacent vertebral body were observed in the current case at 9-year follow-up. IDC with OPLL in children seemed benign and self-limiting. Only mild IDC of C2/3remained but IDC of C3/4 and OPLL at C3/4 totally disappeared in the current case at 9-year follow-up. For all the 6 reported cases of IDC with OPLL in children, IDC disappeared in 3 cases (50%), aggravated in 1 case (16.67%), relieved but remained in 2 cases (33.33%). OPLL disappeared in 4 cases (66.67%), relieved but remained in 2 cases (33.33%). The only aggravated IDC case was treated by a 2-week lumbar belt immobilization [2]. Aggravation of IDC but relief of OPLL result in a reduction in spinal canal stenosis for the patient at 3-month follow-up, which made the conservative treatment still a promising choice. Given that this only reported aggravated IDC case was in thoracic disc, we can infer that thoracic IDC in children may have a different nature history with cervical IDC in children.
Through the 9-year follow-up, the changes of T2-weighted signal intensity for the involved discs drew our attention. Dehydration of intervertebral discs, which led to hypointense of T2-weighted signal intensity in MRI, was considered as a typical imaging manifestation of disc degeneration [4345]. Restorations of T2-weighted signal intensity in MRI of degenerated discs were reported in several researches after dynamic stabilization systems implantation for low back pain patients, which were considered as decelerations of the degeneration process and regenerations of degenerated discs [4649]. Nineteen months after initial diagnosis, restoration of T2-weighted signal intensity of C2/3 and C3/4 discs was observed in the current case through MRI. Similar change was reported by Liu [16], who reported a calcified disc restored to normal T2-weighted signal intensity at 2-year follow-up for a 10-year-old girl. The mechanisms of “rehydration” of the calcified discs are still unclear. Given that the spontaneous “rehydration” phenomenon is only seen in children but seldom adults, we can infer that this might be attribute to differences between discs of children and adults. The biggest differences between discs in children and in adults are the presence of microvascular blood supply for cartilage endplate and annulus fibrosus, as well as notochord cells, in children. Intervertebral discs appear vascularized more well in children than in adults [50]. Blood vessels penetrate into the anulus in infants but disappear by late childhood apart from some small capillaries [5052]. The capillaries penetrate in the subchondral plate of intervertebral discs by regularly spaced nutrient canals in fetus and infants but disappear in childhood [52, 53]. The thickness of cartilaginous endplates of intervertebral discs diminishes with age [52, 54]. The notochordal cells exist in the intervertebral discs of fetus and infants but disappear by 10 years of age in humans, just as the time morphological signs of degeneration can be seen [55]. So, we speculated that these may contribute to the spontaneous “rehydration” phenomenon. Interestingly, similar “rehydration” phenomenon is seen in adult low back pain patients after dynamic stabilization systems implantation [4649]. We can infer that the change of load distribution may also play a role in the “rehydration” phenomenon.
IDC with OPLL in children is very rare. Conservative treatments are recommended with affirmative short-term and long-term clinical effects. But given that such cases were so rare and radiographic changes in more than 30% cases didn’t improve, more intensive observation with long-term follow-ups may be needed to warrant the clinical effects.

Acknowledgements

We would like to thank Guan-Nan Luan for her technical support on Literature searching.

Funding

This study was supported by Chinese National Natural Science Foundation Project (No. 81501929) and Beijing Municipal Science & Technology Commission (No. Z161100000116057).

Availability of data and materials

All the data supporting our findings is contained within the manuscript.
The institutional Ethics Review Board of Air Force General Hospital of PLA approved the study.
We obtained written informed consent for the publication of this case by the boy and his custodians.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Lam SK, Niedzwecki CM, Daniels B, Mayer RR, Vakharia MM, Jea A. Acute spinal cord injury associated with multilevel pediatric idiopathic intervertebral disc calcification: case report. J Neurosurg Pediatr. 2016;17(2):182–6.CrossRefPubMed Lam SK, Niedzwecki CM, Daniels B, Mayer RR, Vakharia MM, Jea A. Acute spinal cord injury associated with multilevel pediatric idiopathic intervertebral disc calcification: case report. J Neurosurg Pediatr. 2016;17(2):182–6.CrossRefPubMed
2.
Zurück zum Zitat Fu Z, Shi J, Jia L Jr, Yuan W Jr, Guan Z. Intervertebral thoracic disc calcification associated with ossification of posterior longitudinal ligament in an eleven-year-old child. Spine (Phila Pa 1976). 2011;36(12):E808–10.CrossRef Fu Z, Shi J, Jia L Jr, Yuan W Jr, Guan Z. Intervertebral thoracic disc calcification associated with ossification of posterior longitudinal ligament in an eleven-year-old child. Spine (Phila Pa 1976). 2011;36(12):E808–10.CrossRef
3.
Zurück zum Zitat Du JJ, Meng H, Cao YJ, Li FQ, Luo ZJ. Calcification of the intervertebral disc and posterior longitudinal ligament in children. J Spinal Disord Tech. 2012;25(1):59–63.CrossRefPubMed Du JJ, Meng H, Cao YJ, Li FQ, Luo ZJ. Calcification of the intervertebral disc and posterior longitudinal ligament in children. J Spinal Disord Tech. 2012;25(1):59–63.CrossRefPubMed
4.
Zurück zum Zitat Wang G, Kang Y, Chen F, Wang B. Cervical intervertebral disc calcification combined with ossification of posterior longitudinal ligament in an-11-year old girl: case report and review of literature. Childs Nerv Syst. 2016;32(2):381–6.CrossRefPubMed Wang G, Kang Y, Chen F, Wang B. Cervical intervertebral disc calcification combined with ossification of posterior longitudinal ligament in an-11-year old girl: case report and review of literature. Childs Nerv Syst. 2016;32(2):381–6.CrossRefPubMed
5.
Zurück zum Zitat Mizukawa K, Kobayashi T, Yamada N, Hirota T. Intervertebral disc calcification with ossification of the posterior longitudinal ligament. Pediatr Int. 2017;59(5):622–4.CrossRefPubMed Mizukawa K, Kobayashi T, Yamada N, Hirota T. Intervertebral disc calcification with ossification of the posterior longitudinal ligament. Pediatr Int. 2017;59(5):622–4.CrossRefPubMed
6.
Zurück zum Zitat O’Dell MC, Flores M, Murray JV Jr. Pediatric idiopathic intervertebral disc calcification. Pediatr Neurol. 2016;61:115–6.CrossRefPubMed O’Dell MC, Flores M, Murray JV Jr. Pediatric idiopathic intervertebral disc calcification. Pediatr Neurol. 2016;61:115–6.CrossRefPubMed
7.
Zurück zum Zitat Beluffi G, Fiori P, Sileo C. Intervertebral disc calcifications in children. Radiol Med. 2009;114(2):331–41.CrossRefPubMed Beluffi G, Fiori P, Sileo C. Intervertebral disc calcifications in children. Radiol Med. 2009;114(2):331–41.CrossRefPubMed
8.
Zurück zum Zitat Blomquist HK, Lindqvist M, Mattsson S. Calcification of intervertebral discs in childhood. Pediatr Radiol. 1979;8(1):23–6.CrossRefPubMed Blomquist HK, Lindqvist M, Mattsson S. Calcification of intervertebral discs in childhood. Pediatr Radiol. 1979;8(1):23–6.CrossRefPubMed
9.
Zurück zum Zitat Dai LY, Ye H, Qian QR. The natural history of cervical disc calcification in children. J Bone Joint Surg Am. 2004;86-A(7):1467–72.CrossRefPubMed Dai LY, Ye H, Qian QR. The natural history of cervical disc calcification in children. J Bone Joint Surg Am. 2004;86-A(7):1467–72.CrossRefPubMed
10.
Zurück zum Zitat Bajard X, Renault F, Benharrats T, Mary P, Madi F, Vialle R. Intervertebral disc calcification with neurological symptoms in children: report of conservative treatment in two cases. Childs Nerv Syst. 2010;26(7):973–8.CrossRefPubMed Bajard X, Renault F, Benharrats T, Mary P, Madi F, Vialle R. Intervertebral disc calcification with neurological symptoms in children: report of conservative treatment in two cases. Childs Nerv Syst. 2010;26(7):973–8.CrossRefPubMed
11.
Zurück zum Zitat Yang HS, Chen DY, Yuan W, Yang LL, Tsai N, Lin QS. Paresis associated with aconuresis caused by intervertebral disc calcification at c7-t1: a case report and review of the literature. Spine (Phila Pa 1976). 2010;35(10):E434–9.CrossRef Yang HS, Chen DY, Yuan W, Yang LL, Tsai N, Lin QS. Paresis associated with aconuresis caused by intervertebral disc calcification at c7-t1: a case report and review of the literature. Spine (Phila Pa 1976). 2010;35(10):E434–9.CrossRef
12.
Zurück zum Zitat El Demellawy D, Robison JG, Pollack IF, Green MD, Alper CM, Reyes-Mugica M. Idiopathic intervertebral disc calcification in childhood: an atypical case of an uncommon entity for pediatric pathologists. Pediatr Dev Pathol. 2013;16(6):432–7.CrossRefPubMed El Demellawy D, Robison JG, Pollack IF, Green MD, Alper CM, Reyes-Mugica M. Idiopathic intervertebral disc calcification in childhood: an atypical case of an uncommon entity for pediatric pathologists. Pediatr Dev Pathol. 2013;16(6):432–7.CrossRefPubMed
13.
Zurück zum Zitat Lernout C, Haas H, Rubio A, Griffet J. Pediatric intervertebral disk calcification in childhood: three case reports and review of literature. Childs Nerv Syst. 2009;25(8):1019–23.CrossRefPubMed Lernout C, Haas H, Rubio A, Griffet J. Pediatric intervertebral disk calcification in childhood: three case reports and review of literature. Childs Nerv Syst. 2009;25(8):1019–23.CrossRefPubMed
14.
Zurück zum Zitat Ho C, Chang S, Fulkerson D, Smith J. Children presenting with calcified disc herniation: a self-limiting process. J Radiol Case Rep. 2012;6(10):11–9.PubMedPubMedCentral Ho C, Chang S, Fulkerson D, Smith J. Children presenting with calcified disc herniation: a self-limiting process. J Radiol Case Rep. 2012;6(10):11–9.PubMedPubMedCentral
15.
Zurück zum Zitat Tsutsumi S, Yasumoto Y, Ito M. Idiopathic intervertebral disk calcification in childhood: a case report and review of literature. Childs Nerv Syst. 2011;27(7):1045–51.CrossRefPubMed Tsutsumi S, Yasumoto Y, Ito M. Idiopathic intervertebral disk calcification in childhood: a case report and review of literature. Childs Nerv Syst. 2011;27(7):1045–51.CrossRefPubMed
16.
Zurück zum Zitat Liu W, Tang C, Liu L, Zhu QS, Huang LF. Cervical intervertebral disc calcification with extreme lateral herniation in a child: T2-weighted signal intensity of the involved disc can be restored to normal. Childs Nerv Syst. 2016;32(4):749–52.CrossRefPubMed Liu W, Tang C, Liu L, Zhu QS, Huang LF. Cervical intervertebral disc calcification with extreme lateral herniation in a child: T2-weighted signal intensity of the involved disc can be restored to normal. Childs Nerv Syst. 2016;32(4):749–52.CrossRefPubMed
17.
Zurück zum Zitat Swischuk LE, Jubang M, Jadhav SP. Calcific discitis in children: vertebral body involvement (possible insight into etiology). Emerg Radiol. 2008;15(6):427–30.CrossRefPubMed Swischuk LE, Jubang M, Jadhav SP. Calcific discitis in children: vertebral body involvement (possible insight into etiology). Emerg Radiol. 2008;15(6):427–30.CrossRefPubMed
18.
Zurück zum Zitat Rutges J, Creemers LB, Dhert W, Milz S, Sakai D, Mochida J, Alini M, Grad S. Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: potential associations with aging and degeneration. Osteoarthr Cartil. 2010;18(3):416–23.CrossRefPubMed Rutges J, Creemers LB, Dhert W, Milz S, Sakai D, Mochida J, Alini M, Grad S. Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: potential associations with aging and degeneration. Osteoarthr Cartil. 2010;18(3):416–23.CrossRefPubMed
19.
Zurück zum Zitat Sonnabend DH, Taylor TK, Chapman GK. Intervertebral disc calcification syndromes in children. J Bone Joint Surg Br. 1982;64(1):25–31.CrossRefPubMed Sonnabend DH, Taylor TK, Chapman GK. Intervertebral disc calcification syndromes in children. J Bone Joint Surg Br. 1982;64(1):25–31.CrossRefPubMed
20.
Zurück zum Zitat Fargen KM, Cox JB, Hoh DJ. Does ossification of the posterior longitudinal ligament progress after laminoplasty? Radiographic and clinical evidence of ossification of the posterior longitudinal ligament lesion growth and the risk factors for late neurologic deterioration. J Neurosurg Spine. 2012;17(6):512–24.CrossRefPubMed Fargen KM, Cox JB, Hoh DJ. Does ossification of the posterior longitudinal ligament progress after laminoplasty? Radiographic and clinical evidence of ossification of the posterior longitudinal ligament lesion growth and the risk factors for late neurologic deterioration. J Neurosurg Spine. 2012;17(6):512–24.CrossRefPubMed
21.
Zurück zum Zitat Matsunaga S, Sakou T. Ossification of the posterior longitudinal ligament of the cervical spine: etiology and natural history. Spine (Phila Pa 1976). 2012;37(5):E309–14.CrossRef Matsunaga S, Sakou T. Ossification of the posterior longitudinal ligament of the cervical spine: etiology and natural history. Spine (Phila Pa 1976). 2012;37(5):E309–14.CrossRef
22.
Zurück zum Zitat Abiola R, Rubery P, Mesfin A. Ossification of the posterior longitudinal ligament: etiology, diagnosis, and outcomes of nonoperative and operative management. Global Spine J. 2016;6(2):195–204.CrossRefPubMed Abiola R, Rubery P, Mesfin A. Ossification of the posterior longitudinal ligament: etiology, diagnosis, and outcomes of nonoperative and operative management. Global Spine J. 2016;6(2):195–204.CrossRefPubMed
23.
Zurück zum Zitat Stapleton CJ, Pham MH, Attenello FJ, Hsieh PC. Ossification of the posterior longitudinal ligament: genetics and pathophysiology. Neurosurg Focus. 2011;30(3):E6.CrossRefPubMed Stapleton CJ, Pham MH, Attenello FJ, Hsieh PC. Ossification of the posterior longitudinal ligament: genetics and pathophysiology. Neurosurg Focus. 2011;30(3):E6.CrossRefPubMed
24.
Zurück zum Zitat Iwasaki M, Okuda S, Miyauchi A, Sakaura H, Mukai Y, Yonenobu K, Yoshikawa H. Surgical strategy for cervical myelopathy due to ossification of the posterior longitudinal ligament: part 2: advantages of anterior decompression and fusion over laminoplasty. Spine (Phila Pa 1976). 2007;32(6):654–60.CrossRef Iwasaki M, Okuda S, Miyauchi A, Sakaura H, Mukai Y, Yonenobu K, Yoshikawa H. Surgical strategy for cervical myelopathy due to ossification of the posterior longitudinal ligament: part 2: advantages of anterior decompression and fusion over laminoplasty. Spine (Phila Pa 1976). 2007;32(6):654–60.CrossRef
25.
Zurück zum Zitat Sasaki E, Ono A, Yokoyama T, Wada K, Tanaka T, Kumagai G, Iwasaki H, Takahashi I, Umeda T, Nakaji S, et al. Prevalence and symptom of ossification of posterior longitudinal ligaments in the Japanese general population. J Orthop Sci. 2014;19(3):405–11.CrossRefPubMed Sasaki E, Ono A, Yokoyama T, Wada K, Tanaka T, Kumagai G, Iwasaki H, Takahashi I, Umeda T, Nakaji S, et al. Prevalence and symptom of ossification of posterior longitudinal ligaments in the Japanese general population. J Orthop Sci. 2014;19(3):405–11.CrossRefPubMed
26.
Zurück zum Zitat Sohn S, Chung CK, Yun TJ, Sohn CH. Epidemiological survey of ossification of the posterior longitudinal ligament in an adult Korean population: three-dimensional computed tomographic observation of 3,240 cases. Calcif Tissue Int. 2014;94(6):613–20.CrossRefPubMed Sohn S, Chung CK, Yun TJ, Sohn CH. Epidemiological survey of ossification of the posterior longitudinal ligament in an adult Korean population: three-dimensional computed tomographic observation of 3,240 cases. Calcif Tissue Int. 2014;94(6):613–20.CrossRefPubMed
27.
Zurück zum Zitat Kusabiraki S, Tsubata S. Two karate kids with pediatric idiopathic intervertebral disc calcification. Spine J. 2014;14(12):3048.CrossRefPubMed Kusabiraki S, Tsubata S. Two karate kids with pediatric idiopathic intervertebral disc calcification. Spine J. 2014;14(12):3048.CrossRefPubMed
28.
Zurück zum Zitat Kim HR, Ha DH, Lee SM, Kim SH, Wenokor C. Acute symptomatic intervertebral disk calcification in a child with retropharyngeal edema: computed tomography and magnetic resonance findings. J Clin Rheumatol. 2011;17(7):365–7.CrossRefPubMed Kim HR, Ha DH, Lee SM, Kim SH, Wenokor C. Acute symptomatic intervertebral disk calcification in a child with retropharyngeal edema: computed tomography and magnetic resonance findings. J Clin Rheumatol. 2011;17(7):365–7.CrossRefPubMed
29.
Zurück zum Zitat Chu J, Wang T, Pei S, Yin Z. Surgical treatment for idiopathic intervertebral disc calcification in a child: case report and review of the literature. Childs Nerv Syst. 2015;31(1):123–7.CrossRefPubMed Chu J, Wang T, Pei S, Yin Z. Surgical treatment for idiopathic intervertebral disc calcification in a child: case report and review of the literature. Childs Nerv Syst. 2015;31(1):123–7.CrossRefPubMed
30.
Zurück zum Zitat Kawaguchi Y, Nakano M, Yasuda T, Seki S, Suzuki K, Yahara Y, Makino H, Kitajima I, Kimura T. Serum biomarkers in patients with ossification of the posterior longitudinal ligament (OPLL): inflammation in OPLL. PLoS One. 2017;12(5):e0174881.CrossRefPubMedPubMedCentral Kawaguchi Y, Nakano M, Yasuda T, Seki S, Suzuki K, Yahara Y, Makino H, Kitajima I, Kimura T. Serum biomarkers in patients with ossification of the posterior longitudinal ligament (OPLL): inflammation in OPLL. PLoS One. 2017;12(5):e0174881.CrossRefPubMedPubMedCentral
31.
32.
Zurück zum Zitat Okamoto K, Kobashi G, Washio M, Sasaki S, Yokoyama T, Miyake Y, Sakamoto N, Ohta K, Inaba Y, Tanaka H, et al. Dietary habits and risk of ossification of the posterior longitudinal ligaments of the spine (OPLL); findings from a case-control study in Japan. J Bone Miner Metab. 2004;22(6):612–7.CrossRefPubMed Okamoto K, Kobashi G, Washio M, Sasaki S, Yokoyama T, Miyake Y, Sakamoto N, Ohta K, Inaba Y, Tanaka H, et al. Dietary habits and risk of ossification of the posterior longitudinal ligaments of the spine (OPLL); findings from a case-control study in Japan. J Bone Miner Metab. 2004;22(6):612–7.CrossRefPubMed
33.
Zurück zum Zitat Akune T, Ogata N, Seichi A, Ohnishi I, Nakamura K, Kawaguchi H. Insulin secretory response is positively associated with the extent of ossification of the posterior longitudinal ligament of the spine. J Bone Joint Surg Am. 2001;83-A(10):1537–44.CrossRefPubMed Akune T, Ogata N, Seichi A, Ohnishi I, Nakamura K, Kawaguchi H. Insulin secretory response is positively associated with the extent of ossification of the posterior longitudinal ligament of the spine. J Bone Joint Surg Am. 2001;83-A(10):1537–44.CrossRefPubMed
34.
Zurück zum Zitat Ono K, Yonenobu K, Miyamoto S, Okada K. Pathology of ossification of the posterior longitudinal ligament and ligamentum flavum. Clin Orthop Relat Res. 1999;359:18–26.CrossRef Ono K, Yonenobu K, Miyamoto S, Okada K. Pathology of ossification of the posterior longitudinal ligament and ligamentum flavum. Clin Orthop Relat Res. 1999;359:18–26.CrossRef
35.
Zurück zum Zitat Mahapatra SK, Sud A, Mehtani A. Pediatric cervical disc calcification simulating tubercular spondylitis - a case report. J Clin Orthop Trauma. 2013;4(1):46–8.CrossRefPubMedPubMedCentral Mahapatra SK, Sud A, Mehtani A. Pediatric cervical disc calcification simulating tubercular spondylitis - a case report. J Clin Orthop Trauma. 2013;4(1):46–8.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Sasagawa T, Hashimoto F, Nakamura T, Maruhasi Y, Matsumoto N, Segawa T, Yamamoto D, Goshima K, Murakami H, Tsuchiya H. A pediatric case of single-level idiopathic cervical intervertebral disk calcification with symptom relapse 1 year after initial onset. J Pediatr Orthop. 2014;34(3):282–6.CrossRefPubMed Sasagawa T, Hashimoto F, Nakamura T, Maruhasi Y, Matsumoto N, Segawa T, Yamamoto D, Goshima K, Murakami H, Tsuchiya H. A pediatric case of single-level idiopathic cervical intervertebral disk calcification with symptom relapse 1 year after initial onset. J Pediatr Orthop. 2014;34(3):282–6.CrossRefPubMed
37.
Zurück zum Zitat Hoffman AI, Lambiase RE, Levine SM. Intervertebral cervical disk calcification requiring operative management in a child. AJR Am J Roentgenol. 1998;171(3):898–9.CrossRefPubMed Hoffman AI, Lambiase RE, Levine SM. Intervertebral cervical disk calcification requiring operative management in a child. AJR Am J Roentgenol. 1998;171(3):898–9.CrossRefPubMed
38.
Zurück zum Zitat Pham MH, Attenello FJ, Lucas J, He S, Stapleton CJ, Hsieh PC. Conservative management of ossification of the posterior longitudinal ligament. A review. Neurosurg Focus. 2011;30(3):E2.CrossRefPubMed Pham MH, Attenello FJ, Lucas J, He S, Stapleton CJ, Hsieh PC. Conservative management of ossification of the posterior longitudinal ligament. A review. Neurosurg Focus. 2011;30(3):E2.CrossRefPubMed
39.
Zurück zum Zitat Wong CC, Pereira B, Pho RW. Cervical disc calcification in children. A long-term review. Spine (Phila Pa 1976). 1992;17(2):139–44.CrossRef Wong CC, Pereira B, Pho RW. Cervical disc calcification in children. A long-term review. Spine (Phila Pa 1976). 1992;17(2):139–44.CrossRef
40.
Zurück zum Zitat Sieron D, Gruszczynska K, Machnikowska-Sokolowska M, Olczak Z, Knap D, Baron J. Intervertebral disc calcification in children: case description and review of relevant literature. Pol J Radiol. 2013;78(1):78–80.CrossRefPubMedPubMedCentral Sieron D, Gruszczynska K, Machnikowska-Sokolowska M, Olczak Z, Knap D, Baron J. Intervertebral disc calcification in children: case description and review of relevant literature. Pol J Radiol. 2013;78(1):78–80.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Bagatur AE, Zorer G, Centel T. Natural history of paediatric intervertebral disc calcification. Arch Orthop Trauma Surg. 2001;121(10):601–3.CrossRefPubMed Bagatur AE, Zorer G, Centel T. Natural history of paediatric intervertebral disc calcification. Arch Orthop Trauma Surg. 2001;121(10):601–3.CrossRefPubMed
42.
Zurück zum Zitat Spapens N, Wouters C, Moens P. Thoracolumbar intervertebral disc calcifications in an 8-year-old boy: case report and review of the literature. Eur J Pediatr. 2010;169(5):577–80.CrossRefPubMed Spapens N, Wouters C, Moens P. Thoracolumbar intervertebral disc calcifications in an 8-year-old boy: case report and review of the literature. Eur J Pediatr. 2010;169(5):577–80.CrossRefPubMed
44.
Zurück zum Zitat Hadjipavlou AG, Tzermiadianos MN, Bogduk N, Zindrick MR. The pathophysiology of disc degeneration: a critical review. J Bone Joint Surg Br. 2008;90(10):1261–70.CrossRefPubMed Hadjipavlou AG, Tzermiadianos MN, Bogduk N, Zindrick MR. The pathophysiology of disc degeneration: a critical review. J Bone Joint Surg Br. 2008;90(10):1261–70.CrossRefPubMed
45.
Zurück zum Zitat Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001;26(17):1873–8.CrossRef Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001;26(17):1873–8.CrossRef
46.
Zurück zum Zitat Yilmaz A, Senturk S, Sasani M, Oktenoglu T, Yaman O, Yildirim H, Suzer T, Ozer AF. Disc rehydration after dynamic stabilization: a report of 59 cases. Asian Spine J. 2017;11(3):348–55.CrossRefPubMedPubMedCentral Yilmaz A, Senturk S, Sasani M, Oktenoglu T, Yaman O, Yildirim H, Suzer T, Ozer AF. Disc rehydration after dynamic stabilization: a report of 59 cases. Asian Spine J. 2017;11(3):348–55.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Fay LY, Wu JC, Tsai TY, Tu TH, Wu CL, Huang WC, Cheng H. Intervertebral disc rehydration after lumbar dynamic stabilization: magnetic resonance image evaluation with a mean followup of four years. Adv Orthop. 2013;2013:437570.CrossRefPubMedPubMedCentral Fay LY, Wu JC, Tsai TY, Tu TH, Wu CL, Huang WC, Cheng H. Intervertebral disc rehydration after lumbar dynamic stabilization: magnetic resonance image evaluation with a mean followup of four years. Adv Orthop. 2013;2013:437570.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Cho BY, Murovic J, Park KW, Park J. Lumbar disc rehydration postimplantation of a posterior dynamic stabilization system. J Neurosurg Spine. 2010;13(5):576–80.CrossRefPubMed Cho BY, Murovic J, Park KW, Park J. Lumbar disc rehydration postimplantation of a posterior dynamic stabilization system. J Neurosurg Spine. 2010;13(5):576–80.CrossRefPubMed
49.
Zurück zum Zitat Luo L, Zhang C, Zhou Q, Zhao C, Wang L, Liang L, Tu B, Ouyang B, Gan Y. Effectiveness of transpedicular dynamic stabilization in treating discogenic low back pain. World Neurosurg. 2018;111:e192–e8.CrossRefPubMed Luo L, Zhang C, Zhou Q, Zhao C, Wang L, Liang L, Tu B, Ouyang B, Gan Y. Effectiveness of transpedicular dynamic stabilization in treating discogenic low back pain. World Neurosurg. 2018;111:e192–e8.CrossRefPubMed
50.
Zurück zum Zitat Rudert M, Tillmann B. Detection of lymph and blood vessels in the human intervertebral disc by histochemical and immunohistochemical methods. Ann Anat. 1993;175(3):237–42.CrossRefPubMed Rudert M, Tillmann B. Detection of lymph and blood vessels in the human intervertebral disc by histochemical and immunohistochemical methods. Ann Anat. 1993;175(3):237–42.CrossRefPubMed
51.
Zurück zum Zitat Hassler O. The human intervertebral disc. A micro-angiographical study on its vascular supply at various ages. Acta Orthop Scand. 1969;40(6):765–72.CrossRefPubMed Hassler O. The human intervertebral disc. A micro-angiographical study on its vascular supply at various ages. Acta Orthop Scand. 1969;40(6):765–72.CrossRefPubMed
52.
Zurück zum Zitat Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine (Phila Pa 1976). 2004;29(23):2700–9.CrossRef Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine (Phila Pa 1976). 2004;29(23):2700–9.CrossRef
53.
Zurück zum Zitat Whalen JL, Parke WW, Mazur JM, Stauffer ES. The intrinsic vasculature of developing vertebral end plates and its nutritive significance to the intervertebral discs. J Pediatr Orthop. 1985;5(4):403–10.CrossRefPubMed Whalen JL, Parke WW, Mazur JM, Stauffer ES. The intrinsic vasculature of developing vertebral end plates and its nutritive significance to the intervertebral discs. J Pediatr Orthop. 1985;5(4):403–10.CrossRefPubMed
54.
Zurück zum Zitat Bernick S, Cailliet R. Vertebral end-plate changes with aging of human vertebrae. Spine (Phila Pa 1976). 1982;7(2):97–102.CrossRef Bernick S, Cailliet R. Vertebral end-plate changes with aging of human vertebrae. Spine (Phila Pa 1976). 1982;7(2):97–102.CrossRef
55.
Zurück zum Zitat Aguiar DJ, Johnson SL, Oegema TR. Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res. 1999;246(1):129–37.CrossRefPubMed Aguiar DJ, Johnson SL, Oegema TR. Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res. 1999;246(1):129–37.CrossRefPubMed
Metadaten
Titel
Calcification of the intervertebral disc and ossification of posterior longitudinal ligament in children
verfasst von
Jun-Jie Du
Yu-Fei Chen
Ye Peng
Xiao-jie Li
Wei Ma
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Musculoskeletal Disorders / Ausgabe 1/2018
Elektronische ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-018-2227-z

Weitere Artikel der Ausgabe 1/2018

BMC Musculoskeletal Disorders 1/2018 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.