Skip to main content
Erschienen in:

06.11.2019

Can Machine Learning Improve Screening for Targeted Delinquency Prevention Programs?

verfasst von: William E. Pelham III, Hanno Petras, Dustin A. Pardini

Erschienen in: Prevention Science | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

The cost-effectiveness of targeted delinquency prevention programs for children depends on the accuracy of the screening process. Screening accuracy is often poor, resulting in wasted resources and missed opportunities to avert negative outcomes. This study examined whether screening approaches based on logistic regression or machine learning algorithms could improve accuracy relative to traditional sum-score approaches when identifying boys in the 5th grade (N = 1012) who would be repeatedly arrested for violent and serious crimes from ages 13 to 30. Screening algorithms were developed that incorporated facets of teacher-reported externalizing problems and other known risk factors (e.g., peer rejection). The predictive performance of these algorithms was evaluated and compared in holdout (i.e., test) data using the area under the receiver operating curve (AUROC) and Brier score. Both the logistic and machine learning methods yielded AUROC superior to traditional sum-score screening approaches when a broad set of risk factors for future delinquency was considered. However, this improvement was modest and was not present when using item-level information from a composite scale assessing externalizing problems. Contrary to expectations, machine learning algorithms performed no better than simple logistic models. There was a large apparent advantage of machine learning that disappeared after appropriate cross-validation, underscoring the importance of careful evaluation of these methods. Results suggest that screening using logistic regression could improve the cost-effectiveness of targeted delinquency prevention programs in some cases, but screening using machine learning would confer no marginal benefit under currently realistic conditions.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Achenbach, T. M. (1991). Manual for the teacher’s report form and 1991 profile. Burlington: University of Vermont, Department of Psychiatry. Achenbach, T. M. (1991). Manual for the teacher’s report form and 1991 profile. Burlington: University of Vermont, Department of Psychiatry.
Zurück zum Zitat Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40–79.CrossRef Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40–79.CrossRef
Zurück zum Zitat Babyak, M. A. (2004). What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosomatic Medicine, 66, 411–421.PubMed Babyak, M. A. (2004). What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosomatic Medicine, 66, 411–421.PubMed
Zurück zum Zitat Bureau of Justice Statistics. (2015). Justice expenditure and exployment extracts, 2012 - Preliminary (no. NCJ 248628). U.S. Department of Justice. Bureau of Justice Statistics. (2015). Justice expenditure and exployment extracts, 2012 - Preliminary (no. NCJ 248628). U.S. Department of Justice.
Zurück zum Zitat Christodoulou, E., Ma, J., Collins, G. S., Steyerberg, E. W., et al. (2019). A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. Journal of Clinical Epidemiology, 110, 12–22.CrossRef Christodoulou, E., Ma, J., Collins, G. S., Steyerberg, E. W., et al. (2019). A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. Journal of Clinical Epidemiology, 110, 12–22.CrossRef
Zurück zum Zitat Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge: Cambridge University Press. Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge: Cambridge University Press.
Zurück zum Zitat Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. American Psychologist, 34, 571–582.CrossRef Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. American Psychologist, 34, 571–582.CrossRef
Zurück zum Zitat DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics, 44, 837–845.CrossRef DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics, 44, 837–845.CrossRef
Zurück zum Zitat Dishion, T. J., Shaw, D., Connell, A., Gardner, F., et al. (2008). The family check-up with high-risk indigent families: Preventing problem behavior by increasing parents’ positive behavior support in early childhood. Child Development, 79, 1395–1414.CrossRef Dishion, T. J., Shaw, D., Connell, A., Gardner, F., et al. (2008). The family check-up with high-risk indigent families: Preventing problem behavior by increasing parents’ positive behavior support in early childhood. Child Development, 79, 1395–1414.CrossRef
Zurück zum Zitat Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology, 14, 91–118.CrossRef Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology, 14, 91–118.CrossRef
Zurück zum Zitat Federal Bureau of Investigation. (2017). Uniform crime report: Crime in the United States, 2016. Department of Justice: Washington D.C.. Federal Bureau of Investigation. (2017). Uniform crime report: Crime in the United States, 2016. Department of Justice: Washington D.C..
Zurück zum Zitat Foster, E. M., & Jones, D. (2006). Can a costly intervention be cost-effective?: An analysis of violence prevention. Archives of General Psychiatry, 63, 1284–1291.CrossRef Foster, E. M., & Jones, D. (2006). Can a costly intervention be cost-effective?: An analysis of violence prevention. Archives of General Psychiatry, 63, 1284–1291.CrossRef
Zurück zum Zitat Hand, D. J. (2006). Classifier technology and the illusion. Statistical Science, 21, 1–14.CrossRef Hand, D. J. (2006). Classifier technology and the illusion. Statistical Science, 21, 1–14.CrossRef
Zurück zum Zitat Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer Science & Business Media.CrossRef Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer Science & Business Media.CrossRef
Zurück zum Zitat Hawes, S. W., Perlman, S. B., Byrd, A. L., Raine, A., Loeber, R., & Pardini, D. A. (2016). Chronic anger as a precursor to adult antisocial personality features: The moderating influence of cognitive control. Journal of Abnormal Psychology, 125, 64–74. Hawes, S. W., Perlman, S. B., Byrd, A. L., Raine, A., Loeber, R., & Pardini, D. A. (2016). Chronic anger as a precursor to adult antisocial personality features: The moderating influence of cognitive control. Journal of Abnormal Psychology, 125, 64–74.
Zurück zum Zitat Hill, L. G., Coie, J. D., Lochman, J. E., & Greenberg, M. T. (2004). Effectiveness of early screening for externalizing problems: Issues of screening accuracy and utility. Journal of Consulting and Clinical Psychology, 72, 809–820.CrossRef Hill, L. G., Coie, J. D., Lochman, J. E., & Greenberg, M. T. (2004). Effectiveness of early screening for externalizing problems: Issues of screening accuracy and utility. Journal of Consulting and Clinical Psychology, 72, 809–820.CrossRef
Zurück zum Zitat Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63–90.CrossRef Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63–90.CrossRef
Zurück zum Zitat Jamain, A., & Hand, D. J. (2008). Mining supervised classification performance studies: A meta-analytic investigation. Journal of Classification, 25, 87–112.CrossRef Jamain, A., & Hand, D. J. (2008). Mining supervised classification performance studies: A meta-analytic investigation. Journal of Classification, 25, 87–112.CrossRef
Zurück zum Zitat James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: With applications in R. New York: Springer Science & Business Media.CrossRef James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: With applications in R. New York: Springer Science & Business Media.CrossRef
Zurück zum Zitat Jo, B., Findling, R. L., Hastie, T. J., Youngstrom, E. A., Wang, C.-P., Arnold, L. E., et al. (2018). Construction of longitudinal prediction targets using semisupervised learning. Statistical Methods in Medical Research, 27, 2674–2693.CrossRef Jo, B., Findling, R. L., Hastie, T. J., Youngstrom, E. A., Wang, C.-P., Arnold, L. E., et al. (2018). Construction of longitudinal prediction targets using semisupervised learning. Statistical Methods in Medical Research, 27, 2674–2693.CrossRef
Zurück zum Zitat Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J., & Mullainathan, S. (2018). Human decisions and machine predictions. The Quarterly Journal of Economics, 133, 237–293.PubMed Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J., & Mullainathan, S. (2018). Human decisions and machine predictions. The Quarterly Journal of Economics, 133, 237–293.PubMed
Zurück zum Zitat Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York: Springer Science & Business Media.CrossRef Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York: Springer Science & Business Media.CrossRef
Zurück zum Zitat Lochman, J. E., & Wells, K. C. (2004). The coping power program for preadolescent aggressive boys and their parents: Outcome effects at the 1-year follow-up. Journal of Consulting and Clinical Psychology, 72, 571–578.CrossRef Lochman, J. E., & Wells, K. C. (2004). The coping power program for preadolescent aggressive boys and their parents: Outcome effects at the 1-year follow-up. Journal of Consulting and Clinical Psychology, 72, 571–578.CrossRef
Zurück zum Zitat Lochman, J. E., Boxmeyer, C. L., Powell, N. P., Barry, T. D., & Pardini, D. A. (2010). Anger control training for aggressive youths. In J. R. Weisz & A. E. Kazdin (Eds.), Evidence based psychotherapies for children and adolescents (2nd ed., pp. 227–242). Lochman, J. E., Boxmeyer, C. L., Powell, N. P., Barry, T. D., & Pardini, D. A. (2010). Anger control training for aggressive youths. In J. R. Weisz & A. E. Kazdin (Eds.), Evidence based psychotherapies for children and adolescents (2nd ed., pp. 227–242).
Zurück zum Zitat Lochman, J. E., Dishion, T. J., Powell, N. P., Boxmeyer, C. L., Qu, L., & Sallee, M. (2015). Evidence-based preventive intervention for preadolescent aggressive children: One-year outcomes following randomization to group versus individual delivery. Journal of Consulting and Clinical Psychology, 83, 728–735. Lochman, J. E., Dishion, T. J., Powell, N. P., Boxmeyer, C. L., Qu, L., & Sallee, M. (2015). Evidence-based preventive intervention for preadolescent aggressive children: One-year outcomes following randomization to group versus individual delivery. Journal of Consulting and Clinical Psychology, 83, 728–735.
Zurück zum Zitat Loeber, R., Farrington, D. P., Stouthamer-Loeber, M., & Van Kammen, W. B. (1998). Antisocial behavior and mental health problems: Explanatory factors in childhood and adolescence. Mahwah: Lawrence Erlbaum Associates.CrossRef Loeber, R., Farrington, D. P., Stouthamer-Loeber, M., & Van Kammen, W. B. (1998). Antisocial behavior and mental health problems: Explanatory factors in childhood and adolescence. Mahwah: Lawrence Erlbaum Associates.CrossRef
Zurück zum Zitat Loeber, R., Pardini, D., Homish, D. L., Wei, E. H., Crawford, A. M., Farrington, D. P., et al. (2005). The prediction of violence and homicide in young men. Journal of Consulting and Clinical Psychology, 73, 1074.CrossRef Loeber, R., Pardini, D., Homish, D. L., Wei, E. H., Crawford, A. M., Farrington, D. P., et al. (2005). The prediction of violence and homicide in young men. Journal of Consulting and Clinical Psychology, 73, 1074.CrossRef
Zurück zum Zitat Loeber, R., Farrington, D. P., Stouthamer-Loeber, M., & White, H. R. (2008). Violence and serious theft: Development and prediction from childhood to adulthood. New York: Routledge.CrossRef Loeber, R., Farrington, D. P., Stouthamer-Loeber, M., & White, H. R. (2008). Violence and serious theft: Development and prediction from childhood to adulthood. New York: Routledge.CrossRef
Zurück zum Zitat Mason, S. J., & Graham, N. E. (2002). Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Quarterly Journal of the Royal Meteorological Society, 128, 2145–2166. Mason, S. J., & Graham, N. E. (2002). Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Quarterly Journal of the Royal Meteorological Society, 128, 2145–2166.
Zurück zum Zitat Neuilly, M.-A., Zgoba, K. M., Tita, G. E., & Lee, S. S. (2011). Predicting recidivism in homicide offenders using classification tree analysis. Homicide Studies, 15, 154–176.CrossRef Neuilly, M.-A., Zgoba, K. M., Tita, G. E., & Lee, S. S. (2011). Predicting recidivism in homicide offenders using classification tree analysis. Homicide Studies, 15, 154–176.CrossRef
Zurück zum Zitat O’Connell, M. E., Boat, T., & Warner, K. E. (Eds.). (2009). Preventing Mental, Emotional, and Behavioral Disorders Among Young People: Progress and Possibilities. Washington: National Academies Press. O’Connell, M. E., Boat, T., & Warner, K. E. (Eds.). (2009). Preventing Mental, Emotional, and Behavioral Disorders Among Young People: Progress and Possibilities. Washington: National Academies Press.
Zurück zum Zitat Pardini, D. A., Byrd, A. L., Hawes, S. W., & Docherty, M. (2018). Unique dispositional precursors to early-onset conduct problems and criminal offending in adulthood. Journal of the American Academy of Child & Adolescent Psychiatry, 57, 583–592.e3.CrossRef Pardini, D. A., Byrd, A. L., Hawes, S. W., & Docherty, M. (2018). Unique dispositional precursors to early-onset conduct problems and criminal offending in adulthood. Journal of the American Academy of Child & Adolescent Psychiatry, 57, 583–592.e3.CrossRef
Zurück zum Zitat Peduzzi, P., Concato, J., Kemper, E., Holford, T. R., & Feinstein, A. R. (1996). A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology, 49, 1373–1379.CrossRef Peduzzi, P., Concato, J., Kemper, E., Holford, T. R., & Feinstein, A. R. (1996). A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology, 49, 1373–1379.CrossRef
Zurück zum Zitat Petras, H., Chilcoat, H. D., Leaf, P. J., Ialongo, N. S., & Kellam, S. G. (2004). Utility of TOCA-R scores during the elementary school years in identifying later violence among adolescent males. Journal of the American Academy of Child & Adolescent Psychiatry, 43, 88–96. Petras, H., Chilcoat, H. D., Leaf, P. J., Ialongo, N. S., & Kellam, S. G. (2004). Utility of TOCA-R scores during the elementary school years in identifying later violence among adolescent males. Journal of the American Academy of Child & Adolescent Psychiatry, 43, 88–96.
Zurück zum Zitat Petras, H., Buckley, J. A., Leoutsakos, J.-M. S., Stuart, E. A., & Ialongo, N. S. (2013). The use of multiple versus single assessment time points to improve screening accuracy in identifying children at risk for later serious antisocial behavior. Prevention Science, 14, 423–436.CrossRef Petras, H., Buckley, J. A., Leoutsakos, J.-M. S., Stuart, E. A., & Ialongo, N. S. (2013). The use of multiple versus single assessment time points to improve screening accuracy in identifying children at risk for later serious antisocial behavior. Prevention Science, 14, 423–436.CrossRef
Zurück zum Zitat R Core Team (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundating for Statistical Computing. R Core Team (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundating for Statistical Computing.
Zurück zum Zitat van der Ploeg, T., Austin, P. C., & Steyerberg, E. W. (2014). Modern modelling techniques are data hungry: A simulation study for predicting dichotomous endpoints. BMC Medical Research Methodology, 14, 137.CrossRef van der Ploeg, T., Austin, P. C., & Steyerberg, E. W. (2014). Modern modelling techniques are data hungry: A simulation study for predicting dichotomous endpoints. BMC Medical Research Methodology, 14, 137.CrossRef
Zurück zum Zitat van der Ploeg, T., Nieboer, D., & Steyerberg, E. W. (2016). Modern modeling techniques had limited external validity in predicting mortality from traumatic brain injury. Journal of Clinical Epidemiology, 78, 83–89.CrossRef van der Ploeg, T., Nieboer, D., & Steyerberg, E. W. (2016). Modern modeling techniques had limited external validity in predicting mortality from traumatic brain injury. Journal of Clinical Epidemiology, 78, 83–89.CrossRef
Zurück zum Zitat Verhulst, F. C., Koot, H. M., & Van der Ende, J. (1994). Differential predictive value of parents’ and teachers’ reports of children’s problem behaviors: A longitudinal study. Journal of Abnormal Child Psychology, 22, 531–546.CrossRef Verhulst, F. C., Koot, H. M., & Van der Ende, J. (1994). Differential predictive value of parents’ and teachers’ reports of children’s problem behaviors: A longitudinal study. Journal of Abnormal Child Psychology, 22, 531–546.CrossRef
Zurück zum Zitat Wainer, H. (1976). Estimating coefficients in linear models: It don’t make no nevermind. Psychological Bulletin, 83, 213–217.CrossRef Wainer, H. (1976). Estimating coefficients in linear models: It don’t make no nevermind. Psychological Bulletin, 83, 213–217.CrossRef
Zurück zum Zitat Wilson, S. J., & Lipsey, M. W. (2007). School-based interventions for aggressive and disruptive behavior: Update of a meta-analysis. American Journal of Preventive Medicine, 33, S130–S143.CrossRef Wilson, S. J., & Lipsey, M. W. (2007). School-based interventions for aggressive and disruptive behavior: Update of a meta-analysis. American Journal of Preventive Medicine, 33, S130–S143.CrossRef
Metadaten
Titel
Can Machine Learning Improve Screening for Targeted Delinquency Prevention Programs?
verfasst von
William E. Pelham III
Hanno Petras
Dustin A. Pardini
Publikationsdatum
06.11.2019
Verlag
Springer US
Erschienen in
Prevention Science / Ausgabe 2/2020
Print ISSN: 1389-4986
Elektronische ISSN: 1573-6695
DOI
https://doi.org/10.1007/s11121-019-01040-2