Skip to main content
Erschienen in: Japanese Journal of Radiology 3/2019

20.10.2018 | Technical Note

Can the spherical gold standards be used as an alternative to painted gold standards for the computerized detection of lesions using voxel-based classification?

verfasst von: Yukihiro Nomura, Naoto Hayashi, Shouhei Hanaoka, Tomomi Takenaga, Mitsutaka Nemoto, Soichiro Miki, Takeharu Yoshikawa, Osamu Abe

Erschienen in: Japanese Journal of Radiology | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

For the development of computer-assisted detection (CAD) software using voxel-based classification, gold standards defined by pixel-by-pixel painting, called painted gold standards, are desirable. However, for radiologists who define gold standards, a simplified method of definition is desirable. One of the simplest methods of defining gold standards is a spherical region, called a spherical gold standard. In this study, we investigated whether spherical gold standards can be used as an alternative to painted gold standards for computerized detection using voxel-based classification.

Materials and methods

The spherical gold standards were determined by the center of gravity and the maximum diameter. We compared two types of gold standard, painted gold standards and spherical gold standards, by two types of CAD software using voxel-based classification.

Results

The time required to paint the area of one lesion was 4.7–6.5 times longer than the time required to define a spherical gold standard. For the same performance of the CAD software, the number of training cases required for the spherical gold standard was 1.6–7.6 times that for the painted gold standards.

Conclusion

Spherical gold standards can be used as an alternative to painted gold standards for the computerized detection of lesions with simple shapes.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The parameters of the DoG, shape index, dot enhancement filter, line enhancement filter, and vessel enhancement filter are the same as those in the voxel-based classification.
 
Literatur
1.
Zurück zum Zitat Masutani Y, Nemoto M, Nomura Y, Hayashi N. Clinical machine learning in action: CAD system design, development, tuning, and long-term experience. In: Suzuki K, editor. Machine learning in computer-aided diagnosis: medical imaging intelligence and analysis. Hershey: IGI Global; 2012. p. 159–76.CrossRef Masutani Y, Nemoto M, Nomura Y, Hayashi N. Clinical machine learning in action: CAD system design, development, tuning, and long-term experience. In: Suzuki K, editor. Machine learning in computer-aided diagnosis: medical imaging intelligence and analysis. Hershey: IGI Global; 2012. p. 159–76.CrossRef
2.
Zurück zum Zitat Suzuki K. A supervised ‘lesion-enhancement’ filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD). Phys Med Biol. 2009;54:S31–45.CrossRefPubMedPubMedCentral Suzuki K. A supervised ‘lesion-enhancement’ filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD). Phys Med Biol. 2009;54:S31–45.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Nomura Y, Masutani Y, Miki S, et al. Performance improvement in computerized detection of cerebral aneurysms by retraining classifier using feedback data collected in routine reading environment. J Biomed Graph Comput. 2014;4(4):12–21. Nomura Y, Masutani Y, Miki S, et al. Performance improvement in computerized detection of cerebral aneurysms by retraining classifier using feedback data collected in routine reading environment. J Biomed Graph Comput. 2014;4(4):12–21.
4.
Zurück zum Zitat Dou Q, Chen H, Yu L, et al. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging. 2016;35:1182–95.CrossRef Dou Q, Chen H, Yu L, et al. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging. 2016;35:1182–95.CrossRef
5.
Zurück zum Zitat Debats OA, Meijs M, Litjens GJ, Huisman HJ. Automated multistructure atlas-assisted detection of lymph nodes using pelvic MR lymphography in prostate cancer patients. Med Phys. 2016;43:3132–42.CrossRefPubMed Debats OA, Meijs M, Litjens GJ, Huisman HJ. Automated multistructure atlas-assisted detection of lymph nodes using pelvic MR lymphography in prostate cancer patients. Med Phys. 2016;43:3132–42.CrossRefPubMed
6.
Zurück zum Zitat Hamidian S, Sahiner B, Petrick N, Pezeshk A. 3D convolutional neural network for automatic detection of lung nodules in chest CT. Proc SPIE (Med Imaging). 2017;10134:1013409.CrossRef Hamidian S, Sahiner B, Petrick N, Pezeshk A. 3D convolutional neural network for automatic detection of lung nodules in chest CT. Proc SPIE (Med Imaging). 2017;10134:1013409.CrossRef
7.
Zurück zum Zitat Nemoto M, Hayashi N, Hanaoka S, Nomura Y, Miki S, Yoshikawa T. Feasibility study of a generalized framework for developing computer-aided detection systems-a new paradigm. J Digit Imaging. 2017;30:629–39.CrossRefPubMedPubMedCentral Nemoto M, Hayashi N, Hanaoka S, Nomura Y, Miki S, Yoshikawa T. Feasibility study of a generalized framework for developing computer-aided detection systems-a new paradigm. J Digit Imaging. 2017;30:629–39.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Armato SG 3rd, McLennan G, Bidaut L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38:915–31.CrossRefPubMedPubMedCentral Armato SG 3rd, McLennan G, Bidaut L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38:915–31.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat van Ginneken B, Armato SG 3rd, de Hoop B, et al. Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study. Med Image Anal. 2010;14:707–22.CrossRefPubMed van Ginneken B, Armato SG 3rd, de Hoop B, et al. Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study. Med Image Anal. 2010;14:707–22.CrossRefPubMed
10.
Zurück zum Zitat Kuhnigk JM, Dicken V, Bornemann L, et al. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging. 2006;25(4):417–34.CrossRefPubMed Kuhnigk JM, Dicken V, Bornemann L, et al. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging. 2006;25(4):417–34.CrossRefPubMed
11.
Zurück zum Zitat Diciotti S, Picozzi G, Falchini M, Mascalchi M, Villari N, Valli G. 3-D segmentation algorithm of small lung nodules in spiral CT images. IEEE Trans Inf Technol Biomed. 2008;12(1):7–19.CrossRefPubMed Diciotti S, Picozzi G, Falchini M, Mascalchi M, Villari N, Valli G. 3-D segmentation algorithm of small lung nodules in spiral CT images. IEEE Trans Inf Technol Biomed. 2008;12(1):7–19.CrossRefPubMed
12.
Zurück zum Zitat Lassen BC, Jacobs C, Kuhnigk JM, van Ginneken B, van Rikxoort EM. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans. Phys Med Biol. 2015;60(3):1307–23.CrossRefPubMed Lassen BC, Jacobs C, Kuhnigk JM, van Ginneken B, van Rikxoort EM. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans. Phys Med Biol. 2015;60(3):1307–23.CrossRefPubMed
13.
Zurück zum Zitat Schapire RE, Freund Y, Bartlett P, Lee WS. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat. 1998;26:1651–86.CrossRef Schapire RE, Freund Y, Bartlett P, Lee WS. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat. 1998;26:1651–86.CrossRef
14.
Zurück zum Zitat Iba W, Langley P. Induction of one-level decision trees. In: Proceedings of international conference on machine learning (ICML 1992). 1992. pp. 233–240. Iba W, Langley P. Induction of one-level decision trees. In: Proceedings of international conference on machine learning (ICML 1992). 1992. pp. 233–240.
15.
Zurück zum Zitat Dorai C, Jain AK. COSMOS-a representation scheme for 3D free-form objects. IEEE Trans Pattern Anal Mach Intell. 1997;19:1115–30.CrossRef Dorai C, Jain AK. COSMOS-a representation scheme for 3D free-form objects. IEEE Trans Pattern Anal Mach Intell. 1997;19:1115–30.CrossRef
16.
Zurück zum Zitat Li Q, Sone S, Doi K. Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Med Phys. 2003;30:2040–51.CrossRefPubMed Li Q, Sone S, Doi K. Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Med Phys. 2003;30:2040–51.CrossRefPubMed
17.
Zurück zum Zitat Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. MICCAI’98 LNCS. 1998;1496:130–137. Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. MICCAI’98 LNCS. 1998;1496:130–137.
18.
Zurück zum Zitat Nomura Y, Nemoto M, Masutani Y, et al. Reduction of false positives at vessel bifurcations in computerized detection of lung nodules. J Biomed Graph Comput. 2014;4(3):36–46. Nomura Y, Nemoto M, Masutani Y, et al. Reduction of false positives at vessel bifurcations in computerized detection of lung nodules. J Biomed Graph Comput. 2014;4(3):36–46.
19.
Zurück zum Zitat te Brake GM, Karssemeijer N, Hendriks JHCL. An automatic method to discriminate malignant masses from normal tissue in digital mammograms. Phys Med Biol. 2000;45:2843–57.CrossRef te Brake GM, Karssemeijer N, Hendriks JHCL. An automatic method to discriminate malignant masses from normal tissue in digital mammograms. Phys Med Biol. 2000;45:2843–57.CrossRef
20.
Zurück zum Zitat Hanaoka S, Nomura Y, Nemoto M, et al. HoTPiG: a novel geometrical feature for vessel morphometry and its application to cerebral aneurysm detection. MICCAI Part II LNCS. 2015;2015(9350):103–10. Hanaoka S, Nomura Y, Nemoto M, et al. HoTPiG: a novel geometrical feature for vessel morphometry and its application to cerebral aneurysm detection. MICCAI Part II LNCS. 2015;2015(9350):103–10.
21.
22.
Zurück zum Zitat Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9:62–6.CrossRef Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9:62–6.CrossRef
23.
Zurück zum Zitat Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;PAMI-8:679–98.CrossRef Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;PAMI-8:679–98.CrossRef
24.
Zurück zum Zitat Gu L, Peters T. 3D segmentation of medical images using a fast multistage hybrid algorithm. Int J Comput Assist Radiol Surg. 2006;1:23–31.CrossRef Gu L, Peters T. 3D segmentation of medical images using a fast multistage hybrid algorithm. Int J Comput Assist Radiol Surg. 2006;1:23–31.CrossRef
Metadaten
Titel
Can the spherical gold standards be used as an alternative to painted gold standards for the computerized detection of lesions using voxel-based classification?
verfasst von
Yukihiro Nomura
Naoto Hayashi
Shouhei Hanaoka
Tomomi Takenaga
Mitsutaka Nemoto
Soichiro Miki
Takeharu Yoshikawa
Osamu Abe
Publikationsdatum
20.10.2018
Verlag
Springer Japan
Erschienen in
Japanese Journal of Radiology / Ausgabe 3/2019
Print ISSN: 1867-1071
Elektronische ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-018-0784-6

Weitere Artikel der Ausgabe 3/2019

Japanese Journal of Radiology 3/2019 Zur Ausgabe

Acknowledgment

Acknowledgment

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.