Skip to main content
Erschienen in: Journal of Cancer Research and Clinical Oncology 5/2015

01.05.2015 | Review – Cancer Research

Cancer active targeting by nanoparticles: a comprehensive review of literature

verfasst von: Remon Bazak, Mohamad Houri, Samar El Achy, Serag Kamel, Tamer Refaat

Erschienen in: Journal of Cancer Research and Clinical Oncology | Ausgabe 5/2015

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Cancer is one of the leading causes of death, and thus, the scientific community has but great efforts to improve cancer management. Among the major challenges in cancer management is development of agents that can be used for early diagnosis and effective therapy. Conventional cancer management frequently lacks accurate tools for detection of early tumors and has an associated risk of serious side effects of chemotherapeutics. The need to optimize therapeutic ratio as the difference with which a treatment affects cancer cells versus healthy tissues lead to idea that it is needful to have a treatment that could act a the “magic bullet”—recognize cancer cells only. Nanoparticle platforms offer a variety of potentially efficient solutions for development of targeted agents that can be exploited for cancer diagnosis and treatment. There are two ways by which targeting of nanoparticles can be achieved, namely passive and active targeting. Passive targeting allows for the efficient localization of nanoparticles within the tumor microenvironment. Active targeting facilitates the active uptake of nanoparticles by the tumor cells themselves.

Methods

Relevant English electronic databases and scientifically published original articles and reviews were systematically searched for the purpose of this review.

Results

In this report, we present a comprehensive review of literatures focusing on the active targeting of nanoparticles to cancer cells, including antibody and antibody fragment-based targeting, antigen-based targeting, aptamer-based targeting, as well as ligand-based targeting.

Conclusion

To date, the optimum targeting strategy has not yet been announced, each has its own advantages and disadvantages even though a number of them have found their way for clinical application. Perhaps, a combination of strategies can be employed to improve the precision of drug delivery, paving the way for a more effective personalized therapy.
Literatur
Zurück zum Zitat Adolphi NL, Butler KS, Lovato DM, Tessier TE, Trujillo JE, Hathaway HJ et al (2012) Imaging of Her2-targeted magnetic nanoparticles for breast cancer detection: comparison of SQUID-detected magnetic relaxometry and MRI. Contrast Media Mol Imaging 7(3):308–319PubMed Adolphi NL, Butler KS, Lovato DM, Tessier TE, Trujillo JE, Hathaway HJ et al (2012) Imaging of Her2-targeted magnetic nanoparticles for breast cancer detection: comparison of SQUID-detected magnetic relaxometry and MRI. Contrast Media Mol Imaging 7(3):308–319PubMed
Zurück zum Zitat Anabousi S, Bakowsky U, Schneider M, Huwer H, Lehr CM, Ehrhardt C (2006) In vitro assessment of transferrin-conjugated liposomes as drug delivery systems for inhalation therapy of lung cancer. Eur J Pharm Sci Off J Eur Fed Pharm Sci 29(5):367–374 Anabousi S, Bakowsky U, Schneider M, Huwer H, Lehr CM, Ehrhardt C (2006) In vitro assessment of transferrin-conjugated liposomes as drug delivery systems for inhalation therapy of lung cancer. Eur J Pharm Sci Off J Eur Fed Pharm Sci 29(5):367–374
Zurück zum Zitat Asadishad B, Vossoughi M, Alamzadeh I (2010) In vitro release behavior and cytotoxicity of doxorubicin-loaded gold nanoparticles in cancerous cells. Biotechnol Lett 32(5):649–654PubMed Asadishad B, Vossoughi M, Alamzadeh I (2010) In vitro release behavior and cytotoxicity of doxorubicin-loaded gold nanoparticles in cancerous cells. Biotechnol Lett 32(5):649–654PubMed
Zurück zum Zitat Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070PubMed Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070PubMed
Zurück zum Zitat Beduneau A, Saulnier P, Benoit JP (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28(33):4947–4967PubMed Beduneau A, Saulnier P, Benoit JP (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28(33):4947–4967PubMed
Zurück zum Zitat Bisker G, Yeheskely-Hayon D, Minai L, Yelin D (2012) Controlled release of Rituximab from gold nanoparticles for phototherapy of malignant cells. J Control Release 162(2):303–309PubMed Bisker G, Yeheskely-Hayon D, Minai L, Yelin D (2012) Controlled release of Rituximab from gold nanoparticles for phototherapy of malignant cells. J Control Release 162(2):303–309PubMed
Zurück zum Zitat Bouras A, Kaluzova M, Hadjipanayis CG (2012) 192 Epidermal growth factor receptor antibody-conjugated iron-oxide nanoparticles: therapeutic targeting and radiosensitivity enhancement of glioblastoma. Neurosurgery 71(2):E574–E575 Bouras A, Kaluzova M, Hadjipanayis CG (2012) 192 Epidermal growth factor receptor antibody-conjugated iron-oxide nanoparticles: therapeutic targeting and radiosensitivity enhancement of glioblastoma. Neurosurgery 71(2):E574–E575
Zurück zum Zitat Brignole C, Marimpietri D, Gambini C, Allen TM, Ponzoni M, Pastorino F (2003) Development of Fab’ fragments of anti-GD(2) immunoliposomes entrapping doxorubicin for experimental therapy of human neuroblastoma. Cancer Lett 197(1–2):199–204PubMed Brignole C, Marimpietri D, Gambini C, Allen TM, Ponzoni M, Pastorino F (2003) Development of Fab’ fragments of anti-GD(2) immunoliposomes entrapping doxorubicin for experimental therapy of human neuroblastoma. Cancer Lett 197(1–2):199–204PubMed
Zurück zum Zitat Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626PubMed Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626PubMed
Zurück zum Zitat Chattopadhyay N, Fonge H, Cai Z, Scollard D, Lechtman E, Done SJ et al (2012) Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo. Mol Pharm 9(8):2168–2179 Chattopadhyay N, Fonge H, Cai Z, Scollard D, Lechtman E, Done SJ et al (2012) Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo. Mol Pharm 9(8):2168–2179
Zurück zum Zitat Chen H, Gao J, Lu Y, Kou G, Zhang H, Fan L et al (2008a) Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy. J Control Release 128(3):209–216PubMed Chen H, Gao J, Lu Y, Kou G, Zhang H, Fan L et al (2008a) Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy. J Control Release 128(3):209–216PubMed
Zurück zum Zitat Chen HW, Medley CD, Sefah K, Shangguan D, Tang Z, Meng L et al (2008b) Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem 3(6):991–1001PubMedCentralPubMed Chen HW, Medley CD, Sefah K, Shangguan D, Tang Z, Meng L et al (2008b) Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem 3(6):991–1001PubMedCentralPubMed
Zurück zum Zitat Chen TJ, Cheng TH, Hung YC, Lin KT, Liu GC, Wang YM (2008c) Targeted folic acid-PEG nanoparticles for noninvasive imaging of folate receptor by MRI. J Biomed Mater Res A 87(1):165–175PubMed Chen TJ, Cheng TH, Hung YC, Lin KT, Liu GC, Wang YM (2008c) Targeted folic acid-PEG nanoparticles for noninvasive imaging of folate receptor by MRI. J Biomed Mater Res A 87(1):165–175PubMed
Zurück zum Zitat Chen T, Shukoor MI, Wang R, Zhao Z, Yuan Q, Bamrungsap S et al (2011) Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS Nano 5(10):7866–7873PubMedCentralPubMed Chen T, Shukoor MI, Wang R, Zhao Z, Yuan Q, Bamrungsap S et al (2011) Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS Nano 5(10):7866–7873PubMedCentralPubMed
Zurück zum Zitat Cherukuri P, Curley SA (2010) Use of nanoparticles for targeted, noninvasive thermal destruction of malignant cells. Methods Mol Biol 624:359–373PubMed Cherukuri P, Curley SA (2010) Use of nanoparticles for targeted, noninvasive thermal destruction of malignant cells. Methods Mol Biol 624:359–373PubMed
Zurück zum Zitat Chiu TC, Huang CC (2009) Aptamer-functionalized nano-biosensors. Sensors (Basel) 9(12):10356–10388 Chiu TC, Huang CC (2009) Aptamer-functionalized nano-biosensors. Sensors (Basel) 9(12):10356–10388
Zurück zum Zitat Cho YS, Yoon TJ, Jang ES, Soo Hong K, Young Lee S, Ran Kim O et al (2010) Cetuximab-conjugated magneto-fluorescent silica nanoparticles for in vivo colon cancer targeting and imaging. Cancer Lett 299(1):63–71PubMed Cho YS, Yoon TJ, Jang ES, Soo Hong K, Young Lee S, Ran Kim O et al (2010) Cetuximab-conjugated magneto-fluorescent silica nanoparticles for in vivo colon cancer targeting and imaging. Cancer Lett 299(1):63–71PubMed
Zurück zum Zitat Choi H, Choi SR, Zhou R, Kung HF, Chen IW (2004) Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol 11(9):996–1004PubMed Choi H, Choi SR, Zhou R, Kung HF, Chen IW (2004) Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol 11(9):996–1004PubMed
Zurück zum Zitat Choi CH, Alabi CA, Webster P, Davis ME (2010) Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A 107(3):1235–1240PubMedCentralPubMed Choi CH, Alabi CA, Webster P, Davis ME (2010) Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A 107(3):1235–1240PubMedCentralPubMed
Zurück zum Zitat Choi J, Yang J, Bang D, Park J, Suh JS, Huh YM et al (2012) Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging. Small 8(5):746–753PubMed Choi J, Yang J, Bang D, Park J, Suh JS, Huh YM et al (2012) Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging. Small 8(5):746–753PubMed
Zurück zum Zitat Cirstoiu-Hapca A, Bossy-Nobs L, Buchegger F, Gurny R, Delie F (2007) Differential tumor cell targeting of anti-HER2 (Herceptin) and anti-CD20 (Mabthera) coupled nanoparticles. Int J Pharm 331(2):190–196PubMed Cirstoiu-Hapca A, Bossy-Nobs L, Buchegger F, Gurny R, Delie F (2007) Differential tumor cell targeting of anti-HER2 (Herceptin) and anti-CD20 (Mabthera) coupled nanoparticles. Int J Pharm 331(2):190–196PubMed
Zurück zum Zitat Corbin IR, Ng KK, Ding L, Jurisicova A, Zheng G (2012) Near-infrared fluorescent imaging of metastatic ovarian cancer using folate receptor-targeted high-density lipoprotein nanocarriers. Nanomedicine (Lond) 8(6):875–890 Corbin IR, Ng KK, Ding L, Jurisicova A, Zheng G (2012) Near-infrared fluorescent imaging of metastatic ovarian cancer using folate receptor-targeted high-density lipoprotein nanocarriers. Nanomedicine (Lond) 8(6):875–890
Zurück zum Zitat Corsi F, Fiandra L, De Palma C, Colombo M, Mazzucchelli S, Verderio P et al (2011) HER2 expression in breast cancer cells is downregulated upon active targeting by antibody-engineered multifunctional nanoparticles in mice. ACS Nano 5(8):6383–6393PubMed Corsi F, Fiandra L, De Palma C, Colombo M, Mazzucchelli S, Verderio P et al (2011) HER2 expression in breast cancer cells is downregulated upon active targeting by antibody-engineered multifunctional nanoparticles in mice. ACS Nano 5(8):6383–6393PubMed
Zurück zum Zitat Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146PubMed Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146PubMed
Zurück zum Zitat Daniels TR, Bernabeu E, Rodriguez JA, Patel S, Kozman M, Chiappetta DA et al (2012) The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 1820(3):291–317PubMedCentralPubMed Daniels TR, Bernabeu E, Rodriguez JA, Patel S, Kozman M, Chiappetta DA et al (2012) The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 1820(3):291–317PubMedCentralPubMed
Zurück zum Zitat Day ES, Bickford LR, Slater JH, Riggall NS, Drezek RA, West JL (2010) Antibody-conjugated gold–gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. Int J Nanomed 5:445–454 Day ES, Bickford LR, Slater JH, Riggall NS, Drezek RA, West JL (2010) Antibody-conjugated gold–gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. Int J Nanomed 5:445–454
Zurück zum Zitat Debbage P (2009) Targeted drugs and nanomedicine: present and future. Curr Pharm Des 15(2):153–172PubMed Debbage P (2009) Targeted drugs and nanomedicine: present and future. Curr Pharm Des 15(2):153–172PubMed
Zurück zum Zitat Deepagan VG, Sarmento B, Menon D, Nascimento A, Jayasree A, Sreeranganathan M et al (2012) In vitro targeted imaging and delivery of camptothecin using cetuximab-conjugated multifunctional PLGA-ZnS nanoparticles. Nanomedicine (Lond) 7(4):507–519 Deepagan VG, Sarmento B, Menon D, Nascimento A, Jayasree A, Sreeranganathan M et al (2012) In vitro targeted imaging and delivery of camptothecin using cetuximab-conjugated multifunctional PLGA-ZnS nanoparticles. Nanomedicine (Lond) 7(4):507–519
Zurück zum Zitat Derycke AS, De Witte PA (2002) Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes. Int J Oncol 20(1):181–187PubMed Derycke AS, De Witte PA (2002) Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes. Int J Oncol 20(1):181–187PubMed
Zurück zum Zitat Destounis SV, DiNitto P, Logan-Young W, Bonaccio E, Zuley ML, Willison KM (2004) Can computer-aided detection with double reading of screening mammograms help decrease the false-negative rate? Initial experience. Radiology 232(2):578–584PubMed Destounis SV, DiNitto P, Logan-Young W, Bonaccio E, Zuley ML, Willison KM (2004) Can computer-aided detection with double reading of screening mammograms help decrease the false-negative rate? Initial experience. Radiology 232(2):578–584PubMed
Zurück zum Zitat Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci U S A 105(45):17356–17361PubMedCentralPubMed Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci U S A 105(45):17356–17361PubMedCentralPubMed
Zurück zum Zitat Dilnawaz F, Singh A, Mohanty C, Sahoo SK (2010) Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31(13):3694–3706PubMed Dilnawaz F, Singh A, Mohanty C, Sahoo SK (2010) Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31(13):3694–3706PubMed
Zurück zum Zitat Eavarone DA, Yu X, Bellamkonda RV (2000) Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J Biomed Mater Res 51(1):10–14PubMed Eavarone DA, Yu X, Bellamkonda RV (2000) Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J Biomed Mater Res 51(1):10–14PubMed
Zurück zum Zitat Elnakat H, Ratnam M (2004) Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev 56(8):1067–1084PubMed Elnakat H, Ratnam M (2004) Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev 56(8):1067–1084PubMed
Zurück zum Zitat Estevez MC, Huang YF, Kang H, O’Donoghue MB, Bamrungsap S, Yan J et al (2010) Nanoparticle-aptamer conjugates for cancer cell targeting and detection. Methods Mol Biol 624:235–248PubMed Estevez MC, Huang YF, Kang H, O’Donoghue MB, Bamrungsap S, Yan J et al (2010) Nanoparticle-aptamer conjugates for cancer cell targeting and detection. Methods Mol Biol 624:235–248PubMed
Zurück zum Zitat Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J et al (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7(7):459–464PubMed Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J et al (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7(7):459–464PubMed
Zurück zum Zitat Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43(1):48–57PubMedCentralPubMed Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43(1):48–57PubMedCentralPubMed
Zurück zum Zitat Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–7672PubMed Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–7672PubMed
Zurück zum Zitat Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW et al (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103:6315–6320PubMedCentralPubMed Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW et al (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103:6315–6320PubMedCentralPubMed
Zurück zum Zitat Fonseca C, Moreira JN, Ciudad CJ (2005) Pedroso de Lima MC, Simoes S. Targeting of sterically stabilised pH-sensitive liposomes to human T-leukaemia cells. Eur J Pharm Biopharm 59(2):359–366PubMed Fonseca C, Moreira JN, Ciudad CJ (2005) Pedroso de Lima MC, Simoes S. Targeting of sterically stabilised pH-sensitive liposomes to human T-leukaemia cells. Eur J Pharm Biopharm 59(2):359–366PubMed
Zurück zum Zitat Gabizon A, Horowitz AT, Goren D, Tzemach D, Shmeeda H, Zalipsky S (2003) In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res 9(17):6551–6559PubMed Gabizon A, Horowitz AT, Goren D, Tzemach D, Shmeeda H, Zalipsky S (2003) In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res 9(17):6551–6559PubMed
Zurück zum Zitat Gabizon A, Tzemach D, Gorin J, Mak L, Amitay Y, Shmeeda H et al (2010) Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemother Pharmacol 66(1):43–52PubMed Gabizon A, Tzemach D, Gorin J, Mak L, Amitay Y, Shmeeda H et al (2010) Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemother Pharmacol 66(1):43–52PubMed
Zurück zum Zitat Gan CW, Feng SS (2010) Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood–brain barrier. Biomaterials 31(30):7748–7757PubMed Gan CW, Feng SS (2010) Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood–brain barrier. Biomaterials 31(30):7748–7757PubMed
Zurück zum Zitat Gao X, Luo Y, Wang Y, Pang J, Liao C, Lu H et al (2012) Prostate stem cell antigen-targeted nanoparticles with dual functional properties: in vivo imaging and cancer chemotherapy. Int J Nanomed 7:4037–4051 Gao X, Luo Y, Wang Y, Pang J, Liao C, Lu H et al (2012) Prostate stem cell antigen-targeted nanoparticles with dual functional properties: in vivo imaging and cancer chemotherapy. Int J Nanomed 7:4037–4051
Zurück zum Zitat Glazer ES, Massey KL, Zhu C, Curley SA (2010a) Pancreatic carcinoma cells are susceptible to noninvasive radio frequency fields after treatment with targeted gold nanoparticles. Surgery 148(2):319–324PubMedCentralPubMed Glazer ES, Massey KL, Zhu C, Curley SA (2010a) Pancreatic carcinoma cells are susceptible to noninvasive radio frequency fields after treatment with targeted gold nanoparticles. Surgery 148(2):319–324PubMedCentralPubMed
Zurück zum Zitat Glazer ES, Zhu C, Massey KL, Thompson CS, Kaluarachchi WD, Hamir AN et al (2010b) Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles. Clin Cancer Res 16(23):5712–5721PubMedCentralPubMed Glazer ES, Zhu C, Massey KL, Thompson CS, Kaluarachchi WD, Hamir AN et al (2010b) Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles. Clin Cancer Res 16(23):5712–5721PubMedCentralPubMed
Zurück zum Zitat Gosk S, Vermehren C, Storm G, Moos T (2004) Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J Cereb Blood Flow Metab 24(11):1193–1204PubMed Gosk S, Vermehren C, Storm G, Moos T (2004) Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J Cereb Blood Flow Metab 24(11):1193–1204PubMed
Zurück zum Zitat Greish K (2007) Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 15(7–8):457–464PubMed Greish K (2007) Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 15(7–8):457–464PubMed
Zurück zum Zitat Greish K (2010) Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol 624:25–37PubMed Greish K (2010) Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol 624:25–37PubMed
Zurück zum Zitat Groothuis DR (2000) The blood–brain and blood–tumor barriers: a review of strategies for increasing drug delivery. Neuro Oncol 2(1):45–59PubMedCentralPubMed Groothuis DR (2000) The blood–brain and blood–tumor barriers: a review of strategies for increasing drug delivery. Neuro Oncol 2(1):45–59PubMedCentralPubMed
Zurück zum Zitat Harding J, Burtness B (2005) Cetuximab: an epidermal growth factor receptor chemeric human-murine monoclonal antibody. Drugs Today (Barc) 41(2):107–127 Harding J, Burtness B (2005) Cetuximab: an epidermal growth factor receptor chemeric human-murine monoclonal antibody. Drugs Today (Barc) 41(2):107–127
Zurück zum Zitat Hathaway HJ, Butler KS, Adolphi NL, Lovato DM, Belfon R, Fegan D et al (2011) Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors. Breast Cancer Res 13(5):R108PubMedCentralPubMed Hathaway HJ, Butler KS, Adolphi NL, Lovato DM, Belfon R, Fegan D et al (2011) Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors. Breast Cancer Res 13(5):R108PubMedCentralPubMed
Zurück zum Zitat Herr JK, Smith JE, Medley CD, Shangguan D, Tan W (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78(9):2918–2924PubMed Herr JK, Smith JE, Medley CD, Shangguan D, Tan W (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78(9):2918–2924PubMed
Zurück zum Zitat Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94(10):2135–2146PubMed Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94(10):2135–2146PubMed
Zurück zum Zitat Hong M, Zhu S, Jiang Y, Tang G, Sun C, Fang C et al (2010) Novel anti-tumor strategy: pEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles. J Control Release 141(1):22–29PubMed Hong M, Zhu S, Jiang Y, Tang G, Sun C, Fang C et al (2010) Novel anti-tumor strategy: pEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles. J Control Release 141(1):22–29PubMed
Zurück zum Zitat Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T et al (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4(128):128ra39PubMed Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T et al (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4(128):128ra39PubMed
Zurück zum Zitat Huang YF, Chang HT, Tan W (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80(3):567–572PubMed Huang YF, Chang HT, Tan W (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80(3):567–572PubMed
Zurück zum Zitat Huang YF, Lin YW, Lin ZH, Chang HT (2009) Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res 11:775–783 Huang YF, Lin YW, Lin ZH, Chang HT (2009) Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res 11:775–783
Zurück zum Zitat Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH et al (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127(35):12387–12391PubMed Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH et al (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127(35):12387–12391PubMed
Zurück zum Zitat Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A 93(24):14164–14169PubMedCentralPubMed Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A 93(24):14164–14169PubMedCentralPubMed
Zurück zum Zitat Hwang do W, Ko HY, Lee JH, Kang H, Ryu SH, Song IC et al (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 51(1):98–105PubMed Hwang do W, Ko HY, Lee JH, Kang H, Ryu SH, Song IC et al (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 51(1):98–105PubMed
Zurück zum Zitat Iinuma H, Maruyama K, Okinaga K, Sasaki K, Sekine T, Ishida O et al (2002) Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 99(1):130–137PubMed Iinuma H, Maruyama K, Okinaga K, Sasaki K, Sekine T, Ishida O et al (2002) Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 99(1):130–137PubMed
Zurück zum Zitat Ishida O, Maruyama K, Tanahashi H, Iwatsuru M, Sasaki K, Eriguchi M et al (2001) Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res 18(7):1042–1048PubMed Ishida O, Maruyama K, Tanahashi H, Iwatsuru M, Sasaki K, Eriguchi M et al (2001) Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res 18(7):1042–1048PubMed
Zurück zum Zitat Javier DJ, Nitin N, Levy M, Ellington A, Richards-Kortum R (2008) Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjug Chem 19(6):1309–1312PubMedCentralPubMed Javier DJ, Nitin N, Levy M, Ellington A, Richards-Kortum R (2008) Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjug Chem 19(6):1309–1312PubMedCentralPubMed
Zurück zum Zitat Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312(5990):162–163PubMed Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312(5990):162–163PubMed
Zurück zum Zitat Jiang W, Xie H, Ghoorah D, Shang Y, Shi H, Liu F et al (2012) Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model. PLoS ONE 7(5):e37376PubMedCentralPubMed Jiang W, Xie H, Ghoorah D, Shang Y, Shi H, Liu F et al (2012) Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model. PLoS ONE 7(5):e37376PubMedCentralPubMed
Zurück zum Zitat Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696PubMed Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696PubMed
Zurück zum Zitat Kobayashi T, Ishida T, Okada Y, Ise S, Harashima H, Kiwada H (2007) Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int J Pharm 329(1–2):94–102PubMed Kobayashi T, Ishida T, Okada Y, Ise S, Harashima H, Kiwada H (2007) Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int J Pharm 329(1–2):94–102PubMed
Zurück zum Zitat Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497PubMed Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497PubMed
Zurück zum Zitat Kolishetti N, Dhar S, Valencia PM, Lin LQ, Karnik R, Lippard SJ et al (2010) Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci U S A 107(42):17939–17944PubMedCentralPubMed Kolishetti N, Dhar S, Valencia PM, Lin LQ, Karnik R, Lippard SJ et al (2010) Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci U S A 107(42):17939–17944PubMedCentralPubMed
Zurück zum Zitat Kreuter J (2007) Nanoparticles—a historical perspective. Int J Pharm 331(1):1–10PubMed Kreuter J (2007) Nanoparticles—a historical perspective. Int J Pharm 331(1):1–10PubMed
Zurück zum Zitat LaRocque J, Bharali DJ, Mousa SA (2009) Cancer detection and treatment: the role of nanomedicines. Mol Biotechnol 42(3):358–366PubMed LaRocque J, Bharali DJ, Mousa SA (2009) Cancer detection and treatment: the role of nanomedicines. Mol Biotechnol 42(3):358–366PubMed
Zurück zum Zitat Lee JH, Yigit MV, Mazumdar D, Lu Y (2010) Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Deliv Rev 62(6):592–605PubMedCentralPubMed Lee JH, Yigit MV, Mazumdar D, Lu Y (2010) Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Deliv Rev 62(6):592–605PubMedCentralPubMed
Zurück zum Zitat Li X, Ding L, Xu Y, Wang Y, Ping Q (2009a) Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm 373(1–2):116–123PubMed Li X, Ding L, Xu Y, Wang Y, Ping Q (2009a) Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm 373(1–2):116–123PubMed
Zurück zum Zitat Li G, Li D, Zhang L, Zhai J, Wang E (2009b) One-step synthesis of folic acid protected gold nanoparticles and their receptor-mediated intracellular uptake. Chemistry 15(38):9868–9873PubMed Li G, Li D, Zhang L, Zhai J, Wang E (2009b) One-step synthesis of folic acid protected gold nanoparticles and their receptor-mediated intracellular uptake. Chemistry 15(38):9868–9873PubMed
Zurück zum Zitat Li N, Larson T, Nguyen HH, Sokolov KV, Ellington AD (2010) Directed evolution of gold nanoparticle delivery to cells. Chem Commun (Camb) 46(3):392–394 Li N, Larson T, Nguyen HH, Sokolov KV, Ellington AD (2010) Directed evolution of gold nanoparticle delivery to cells. Chem Commun (Camb) 46(3):392–394
Zurück zum Zitat Liao C, Sun Q, Liang B, Shen J, Shuai X (2011) Targeting EGFR-overexpressing tumor cells using cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur J Radiol 80(3):699–705PubMed Liao C, Sun Q, Liang B, Shen J, Shuai X (2011) Targeting EGFR-overexpressing tumor cells using cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur J Radiol 80(3):699–705PubMed
Zurück zum Zitat Ling Y, Wei K, Luo Y, Gao X, Zhong S (2011) Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials 32(29):7139–7150PubMed Ling Y, Wei K, Luo Y, Gao X, Zhong S (2011) Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials 32(29):7139–7150PubMed
Zurück zum Zitat Liss M, Petersen B, Wolf H, Prohaska E (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74(17):4488–4495PubMed Liss M, Petersen B, Wolf H, Prohaska E (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74(17):4488–4495PubMed
Zurück zum Zitat Liu G, Mao X, Phillips JA, Xu H, Tan W, Zeng L (2009) Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem 81(24):10013–10018PubMedCentralPubMed Liu G, Mao X, Phillips JA, Xu H, Tan W, Zeng L (2009) Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem 81(24):10013–10018PubMedCentralPubMed
Zurück zum Zitat Liu D, Chen C, Hu G, Mei Q, Qiu H, Long G (2011) Specific targeting of nasopharyngeal carcinoma cell line CNE1 by C225-conjugated ultrasmall superparamagnetic iron oxide particles with magnetic resonance imaging. Acta Biochim Biophys Sin (Shanghai) 43(4):301–306 Liu D, Chen C, Hu G, Mei Q, Qiu H, Long G (2011) Specific targeting of nasopharyngeal carcinoma cell line CNE1 by C225-conjugated ultrasmall superparamagnetic iron oxide particles with magnetic resonance imaging. Acta Biochim Biophys Sin (Shanghai) 43(4):301–306
Zurück zum Zitat Low PS, Kularatne SA (2009) Folate-targeted therapeutic and imaging agents for cancer. Current Opin Chem Biol 13(3):256–262 Low PS, Kularatne SA (2009) Folate-targeted therapeutic and imaging agents for cancer. Current Opin Chem Biol 13(3):256–262
Zurück zum Zitat Lu Y, Yang J, Sega E (2006) Issues related to targeted delivery of proteins and peptides. AAPS J 8(3):E466–E478PubMedCentralPubMed Lu Y, Yang J, Sega E (2006) Issues related to targeted delivery of proteins and peptides. AAPS J 8(3):E466–E478PubMedCentralPubMed
Zurück zum Zitat Lu RM, Chang YL, Chen MS, Wu HC (2011) Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials 32(12):3265–3274PubMed Lu RM, Chang YL, Chen MS, Wu HC (2011) Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials 32(12):3265–3274PubMed
Zurück zum Zitat Manju S, Sreenivasan K (2012) Gold nanoparticles generated and stabilized by water soluble curcumin-polymer conjugate: blood compatibility evaluation and targeted drug delivery onto cancer cells. J Colloid Interface Sci 368(1):144–151PubMed Manju S, Sreenivasan K (2012) Gold nanoparticles generated and stabilized by water soluble curcumin-polymer conjugate: blood compatibility evaluation and targeted drug delivery onto cancer cells. J Colloid Interface Sci 368(1):144–151PubMed
Zurück zum Zitat Marty C, Schwendener RA (2005) Cytotoxic tumor targeting with scFv antibody-modified liposomes. Methods Mol Med 109:389–402PubMed Marty C, Schwendener RA (2005) Cytotoxic tumor targeting with scFv antibody-modified liposomes. Methods Mol Med 109:389–402PubMed
Zurück zum Zitat Marty C, Odermatt B, Schott H, Neri D, Ballmer-Hofer K, Klemenz R et al (2002) Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes. Br J Cancer 87(1):106–112PubMedCentralPubMed Marty C, Odermatt B, Schott H, Neri D, Ballmer-Hofer K, Klemenz R et al (2002) Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes. Br J Cancer 87(1):106–112PubMedCentralPubMed
Zurück zum Zitat Marty C, Langer-Machova Z, Sigrist S, Schott H, Schwendener RA, Ballmer-Hofer K (2006) Isolation and characterization of a scFv antibody specific for tumor endothelial marker 1 (TEM1), a new reagent for targeted tumor therapy. Cancer Lett 235(2):298–308PubMed Marty C, Langer-Machova Z, Sigrist S, Schott H, Schwendener RA, Ballmer-Hofer K (2006) Isolation and characterization of a scFv antibody specific for tumor endothelial marker 1 (TEM1), a new reagent for targeted tumor therapy. Cancer Lett 235(2):298–308PubMed
Zurück zum Zitat Matherly LH, Goldman DI (2003) Membrane transport of folates. Vitam Horm 66:403–456PubMed Matherly LH, Goldman DI (2003) Membrane transport of folates. Vitam Horm 66:403–456PubMed
Zurück zum Zitat Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80(4):1067–1072PubMed Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80(4):1067–1072PubMed
Zurück zum Zitat Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3(5):269–280PubMed Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3(5):269–280PubMed
Zurück zum Zitat Nakase M, Inui M, Okumura K, Kamei T, Nakamura S, Tagawa T (2005) p53 gene therapy of human osteosarcoma using a transferrin-modified cationic liposome. Mol Cancer Ther 4(4):625–631PubMed Nakase M, Inui M, Okumura K, Kamei T, Nakamura S, Tagawa T (2005) p53 gene therapy of human osteosarcoma using a transferrin-modified cationic liposome. Mol Cancer Ther 4(4):625–631PubMed
Zurück zum Zitat Ni S, Stephenson SM, Lee RJ (2002) Folate receptor targeted delivery of liposomal daunorubicin into tumor cells. Anticancer Res 22(4):2131–2135PubMed Ni S, Stephenson SM, Lee RJ (2002) Folate receptor targeted delivery of liposomal daunorubicin into tumor cells. Anticancer Res 22(4):2131–2135PubMed
Zurück zum Zitat Ni X, Castanares M, Mukherjee A, Lupold SE (2011) Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 18(27):4206–4214PubMedCentralPubMed Ni X, Castanares M, Mukherjee A, Lupold SE (2011) Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 18(27):4206–4214PubMedCentralPubMed
Zurück zum Zitat Nobs L, Buchegger F, Gurny R, Allemann E (2006) Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug Chem 17(1):139–145PubMed Nobs L, Buchegger F, Gurny R, Allemann E (2006) Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug Chem 17(1):139–145PubMed
Zurück zum Zitat Oghabian MA, Jeddi-Tehrani M, Zolfaghari A, Shamsipour F, Khoei S, Amanpour S (2011) Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide nanoparticles in MRI. J Nanosci Nanotechnol 11(6):5340–5344PubMed Oghabian MA, Jeddi-Tehrani M, Zolfaghari A, Shamsipour F, Khoei S, Amanpour S (2011) Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide nanoparticles in MRI. J Nanosci Nanotechnol 11(6):5340–5344PubMed
Zurück zum Zitat Pan XQ, Zheng X, Shi G, Wang H, Ratnam M, Lee RJ (2002) Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood 100(2):594–602PubMed Pan XQ, Zheng X, Shi G, Wang H, Ratnam M, Lee RJ (2002) Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood 100(2):594–602PubMed
Zurück zum Zitat Pan X, Wu G, Yang W, Barth RF, Tjarks W, Lee RJ (2007) Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeting of EGFR. Bioconjug Chem 18(1):101–108PubMedCentralPubMed Pan X, Wu G, Yang W, Barth RF, Tjarks W, Lee RJ (2007) Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeting of EGFR. Bioconjug Chem 18(1):101–108PubMedCentralPubMed
Zurück zum Zitat Parab HJ, Huang JH, Lai TC, Jan YH, Liu RS, Wang JL et al (2011) Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake. Nanotechnology 22(39):395706PubMed Parab HJ, Huang JH, Lai TC, Jan YH, Liu RS, Wang JL et al (2011) Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake. Nanotechnology 22(39):395706PubMed
Zurück zum Zitat Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S et al (2008) Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res 68(6):1970–1978PubMed Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S et al (2008) Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res 68(6):1970–1978PubMed
Zurück zum Zitat Patra CR, Bhattacharya R, Mukherjee P (2010) Fabrication and functional characterization of goldnanoconjugates for potential application in ovarian cancer. J Mater Chem 20(3):547–554PubMedCentralPubMed Patra CR, Bhattacharya R, Mukherjee P (2010) Fabrication and functional characterization of goldnanoconjugates for potential application in ovarian cancer. J Mater Chem 20(3):547–554PubMedCentralPubMed
Zurück zum Zitat Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30(30):6065–6075PubMed Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30(30):6065–6075PubMed
Zurück zum Zitat Press MF, Cordon-Cardo C, Slamon DJ (1990) Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene 5(7):953–962PubMed Press MF, Cordon-Cardo C, Slamon DJ (1990) Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene 5(7):953–962PubMed
Zurück zum Zitat Pulkkinen M, Pikkarainen J, Wirth T, Tarvainen T, Haapa-aho V, Korhonen H et al (2008) Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biotin technology: formulation development and in vitro anticancer activity. Eur J Pharm Biopharm 70(1):66–74PubMed Pulkkinen M, Pikkarainen J, Wirth T, Tarvainen T, Haapa-aho V, Korhonen H et al (2008) Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biotin technology: formulation development and in vitro anticancer activity. Eur J Pharm Biopharm 70(1):66–74PubMed
Zurück zum Zitat Puvanakrishnan P, Diagaradjane P, Kazmi SM, Dunn AK, Krishnan S, Tunnell JW (2012) Narrow band imaging of squamous cell carcinoma tumors using topically delivered anti-EGFR antibody conjugated gold nanorods. Lasers Surg Med 44(4):310–317PubMed Puvanakrishnan P, Diagaradjane P, Kazmi SM, Dunn AK, Krishnan S, Tunnell JW (2012) Narrow band imaging of squamous cell carcinoma tumors using topically delivered anti-EGFR antibody conjugated gold nanorods. Lasers Surg Med 44(4):310–317PubMed
Zurück zum Zitat Qian ZM, Tang PL (1995) Mechanisms of iron uptake by mammalian cells. Biochim Biophys Acta 1269(3):205–214PubMed Qian ZM, Tang PL (1995) Mechanisms of iron uptake by mammalian cells. Biochim Biophys Acta 1269(3):205–214PubMed
Zurück zum Zitat Riviere K, Huang Z, Jerger K, Macaraeg N, Szoka FC Jr (2011) Antitumor effect of folate-targeted liposomal doxorubicin in KB tumor-bearing mice after intravenous administration. J Drug Target 19(1):14–24PubMedCentralPubMed Riviere K, Huang Z, Jerger K, Macaraeg N, Szoka FC Jr (2011) Antitumor effect of folate-targeted liposomal doxorubicin in KB tumor-bearing mice after intravenous administration. J Drug Target 19(1):14–24PubMedCentralPubMed
Zurück zum Zitat Ruan J, Song H, Qian Q, Li C, Wang K, Bao C et al (2012) HER2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer. Biomaterials 33(29):7093–7102PubMed Ruan J, Song H, Qian Q, Li C, Wang K, Bao C et al (2012) HER2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer. Biomaterials 33(29):7093–7102PubMed
Zurück zum Zitat Rudolph C, Schillinger U, Plank C, Gessner A, Nicklaus P, Muller R et al (2002) Nonviral gene delivery to the lung with copolymer-protected and transferrin-modified polyethylenimine. Biochim Biophys Acta 1573(1):75–83PubMed Rudolph C, Schillinger U, Plank C, Gessner A, Nicklaus P, Muller R et al (2002) Nonviral gene delivery to the lung with copolymer-protected and transferrin-modified polyethylenimine. Biochim Biophys Acta 1573(1):75–83PubMed
Zurück zum Zitat Sahoo SK, Labhasetwar V (2005) Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharm 2(5):373–383PubMed Sahoo SK, Labhasetwar V (2005) Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharm 2(5):373–383PubMed
Zurück zum Zitat Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112(2):335–340PubMed Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112(2):335–340PubMed
Zurück zum Zitat Sapra P, Moase EH, Ma J, Allen TM (2004) Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for liposomal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab’ fragments. Clin Cancer Res 10(3):1100–1111PubMed Sapra P, Moase EH, Ma J, Allen TM (2004) Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for liposomal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab’ fragments. Clin Cancer Res 10(3):1100–1111PubMed
Zurück zum Zitat Schroeder JE, Shweky I, Shmeeda H, Banin U, Gabizon A (2007) Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles. J Control Release 124(1–2):28–34PubMed Schroeder JE, Shweky I, Shmeeda H, Banin U, Gabizon A (2007) Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles. J Control Release 124(1–2):28–34PubMed
Zurück zum Zitat Serda RE, Adolphi NL, Bisoffi M, Sillerud LO (2007) Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol Imaging 6(4):277–288PubMed Serda RE, Adolphi NL, Bisoffi M, Sillerud LO (2007) Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol Imaging 6(4):277–288PubMed
Zurück zum Zitat Shah N, Chaudhari K, Dantuluri P, Murthy RS, Das S (2009) Paclitaxel-loaded PLGA nanoparticles surface modified with transferrin and Pluronic((R))P85, an in vitro cell line and in vivo biodistribution studies on rat model. J Drug Target 17(7):533–542PubMed Shah N, Chaudhari K, Dantuluri P, Murthy RS, Das S (2009) Paclitaxel-loaded PLGA nanoparticles surface modified with transferrin and Pluronic((R))P85, an in vitro cell line and in vivo biodistribution studies on rat model. J Drug Target 17(7):533–542PubMed
Zurück zum Zitat Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103(32):11838–11843PubMedCentralPubMed Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103(32):11838–11843PubMedCentralPubMed
Zurück zum Zitat Shi X, Wang S, Meshinchi S, Van Antwerp ME, Bi X, Lee I et al (2007) Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3(7):1245–1252PubMed Shi X, Wang S, Meshinchi S, Van Antwerp ME, Bi X, Lee I et al (2007) Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3(7):1245–1252PubMed
Zurück zum Zitat Shi X, Wang SH, Van Antwerp ME, Chen X, Baker JR Jr (2009a) Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. Analyst 134(7):1373–1379PubMedCentralPubMed Shi X, Wang SH, Van Antwerp ME, Chen X, Baker JR Jr (2009a) Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. Analyst 134(7):1373–1379PubMedCentralPubMed
Zurück zum Zitat Shi X, Wang SH, Lee I, Shen M, Baker JR Jr (2009b) Comparison of the internalization of targeted dendrimers and dendrimer-entrapped gold nanoparticles into cancer cells. Biopolymers 91(11):936–942PubMedCentralPubMed Shi X, Wang SH, Lee I, Shen M, Baker JR Jr (2009b) Comparison of the internalization of targeted dendrimers and dendrimer-entrapped gold nanoparticles into cancer cells. Biopolymers 91(11):936–942PubMedCentralPubMed
Zurück zum Zitat Shmeeda H, Mak L, Tzemach D, Astrahan P, Tarshish M, Gabizon A (2006) Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol Cancer Ther 5(4):818–824PubMed Shmeeda H, Mak L, Tzemach D, Astrahan P, Tarshish M, Gabizon A (2006) Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol Cancer Ther 5(4):818–824PubMed
Zurück zum Zitat Song EQ, Zhang ZL, Luo QY, Lu W, Shi YB, Pang DW (2009) Tumor cell targeting using folate-conjugated fluorescent quantum dots and receptor-mediated endocytosis. Clin Chem 55(5):955–963PubMedCentralPubMed Song EQ, Zhang ZL, Luo QY, Lu W, Shi YB, Pang DW (2009) Tumor cell targeting using folate-conjugated fluorescent quantum dots and receptor-mediated endocytosis. Clin Chem 55(5):955–963PubMedCentralPubMed
Zurück zum Zitat Spector NL, Blackwell KL (2009) Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 27(34):5838–5847PubMed Spector NL, Blackwell KL (2009) Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 27(34):5838–5847PubMed
Zurück zum Zitat Steinhauser I, Spankuch B, Strebhardt K, Langer K (2006) Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells. Biomaterials 27(28):4975–4983PubMed Steinhauser I, Spankuch B, Strebhardt K, Langer K (2006) Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells. Biomaterials 27(28):4975–4983PubMed
Zurück zum Zitat Sugano M, Egilmez NK, Yokota SJ, Chen FA, Harding J, Huang SK et al (2000) Antibody targeting of doxorubicin-loaded liposomes suppresses the growth and metastatic spread of established human lung tumor xenografts in severe combined immunodeficient mice. Cancer Res 60(24):6942–6949PubMed Sugano M, Egilmez NK, Yokota SJ, Chen FA, Harding J, Huang SK et al (2000) Antibody targeting of doxorubicin-loaded liposomes suppresses the growth and metastatic spread of established human lung tumor xenografts in severe combined immunodeficient mice. Cancer Res 60(24):6942–6949PubMed
Zurück zum Zitat Suzuki R, Takizawa T, Kuwata Y, Mutoh M, Ishiguro N, Utoguchi N et al (2008) Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm 346(1–2):143–150PubMed Suzuki R, Takizawa T, Kuwata Y, Mutoh M, Ishiguro N, Utoguchi N et al (2008) Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm 346(1–2):143–150PubMed
Zurück zum Zitat Taghdisi SM, Lavaee P, Ramezani M, Abnous K (2011) Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur J Pharm Biopharm 77(2):200–206PubMed Taghdisi SM, Lavaee P, Ramezani M, Abnous K (2011) Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur J Pharm Biopharm 77(2):200–206PubMed
Zurück zum Zitat Talekar M, Kendall J, Denny W, Garg S (2011) Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anticancer Drugs 22(10):949–962PubMed Talekar M, Kendall J, Denny W, Garg S (2011) Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anticancer Drugs 22(10):949–962PubMed
Zurück zum Zitat Taylor RM, Sillerud LO (2012) Paclitaxel-loaded iron platinum stealth immunomicelles are potent MRI imaging agents that prevent prostate cancer growth in a PSMA-dependent manner. Int J Nanomed 7:4341–4352 Taylor RM, Sillerud LO (2012) Paclitaxel-loaded iron platinum stealth immunomicelles are potent MRI imaging agents that prevent prostate cancer growth in a PSMA-dependent manner. Int J Nanomed 7:4341–4352
Zurück zum Zitat Taylor RM, Huber DL, Monson TC, Ali AM, Bisoffi M, Sillerud LO (2011) Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging. J Nanopart Res 13(10):4717–4729PubMedCentralPubMed Taylor RM, Huber DL, Monson TC, Ali AM, Bisoffi M, Sillerud LO (2011) Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging. J Nanopart Res 13(10):4717–4729PubMedCentralPubMed
Zurück zum Zitat Thistlethwaite JR Jr, Cosimi AB, Delmonico FL, Rubin RH, Talkoff-Rubin N, Nelson PW et al (1984) Evolving use of OKT3 monoclonal antibody for treatment of renal allograft rejection. Transplantation 38(6):695–701PubMed Thistlethwaite JR Jr, Cosimi AB, Delmonico FL, Rubin RH, Talkoff-Rubin N, Nelson PW et al (1984) Evolving use of OKT3 monoclonal antibody for treatment of renal allograft rejection. Transplantation 38(6):695–701PubMed
Zurück zum Zitat Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB et al (2004) In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules 5(6):2269–2274PubMed Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB et al (2004) In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules 5(6):2269–2274PubMed
Zurück zum Zitat Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol 197:3–53PubMed Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol 197:3–53PubMed
Zurück zum Zitat Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm 71(2):251–256PubMed Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm 71(2):251–256PubMed
Zurück zum Zitat Waldmann TA (2003) Immunotherapy: past, present and future. Nat Med 9(3):269–277PubMed Waldmann TA (2003) Immunotherapy: past, present and future. Nat Med 9(3):269–277PubMed
Zurück zum Zitat Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR et al (2008a) Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 8(8):1063–1070PubMedCentralPubMed Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR et al (2008a) Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 8(8):1063–1070PubMedCentralPubMed
Zurück zum Zitat Wang X, Yang L, Chen ZG, Shin DM (2008b) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58(2):97–110PubMed Wang X, Yang L, Chen ZG, Shin DM (2008b) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58(2):97–110PubMed
Zurück zum Zitat Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L et al (2008c) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3(9):1311–1315PubMedCentralPubMed Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L et al (2008c) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3(9):1311–1315PubMedCentralPubMed
Zurück zum Zitat Wang X, Wang Y, Chen ZG, Shin DM (2009) Advances of cancer therapy by nanotechnology. Cancer Res Treat 41(1):1–11PubMedCentralPubMed Wang X, Wang Y, Chen ZG, Shin DM (2009) Advances of cancer therapy by nanotechnology. Cancer Res Treat 41(1):1–11PubMedCentralPubMed
Zurück zum Zitat Wang H, Wang S, Liao Z, Zhao P, Su W, Niu R et al (2012) Folate-targeting magnetic core-shell nanocarriers for selective drug release and imaging. Int J Pharm 430(1–2):342–349PubMed Wang H, Wang S, Liao Z, Zhao P, Su W, Niu R et al (2012) Folate-targeting magnetic core-shell nanocarriers for selective drug release and imaging. Int J Pharm 430(1–2):342–349PubMed
Zurück zum Zitat Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G (2013) Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adenocarcinoma. Biomaterials 34(2):470–480 Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G (2013) Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adenocarcinoma. Biomaterials 34(2):470–480
Zurück zum Zitat Wartlick H, Michaelis K, Balthasar S, Strebhardt K, Kreuter J, Langer K (2004) Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. J Drug Target 12(7):461–471PubMed Wartlick H, Michaelis K, Balthasar S, Strebhardt K, Kreuter J, Langer K (2004) Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. J Drug Target 12(7):461–471PubMed
Zurück zum Zitat Wu J, Lu Y, Lee A, Pan X, Yang X, Zhao X et al (2007) Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. J Pharm Pharm Sci Publ Can Soc Pharm Sci (Societe canadienne des sciences pharmaceutiques) 10(3):350–357 Wu J, Lu Y, Lee A, Pan X, Yang X, Zhao X et al (2007) Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. J Pharm Pharm Sci Publ Can Soc Pharm Sci (Societe canadienne des sciences pharmaceutiques) 10(3):350–357
Zurück zum Zitat Xu L, Pirollo KF, Tang WH, Rait A, Chang EH (1999) Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum Gene Ther 10(18):2941–2952PubMed Xu L, Pirollo KF, Tang WH, Rait A, Chang EH (1999) Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum Gene Ther 10(18):2941–2952PubMed
Zurück zum Zitat Xu Z, Gu W, Huang J, Sui H, Zhou Z, Yang Y et al (2005) In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int J Pharm 288(2):361–368PubMed Xu Z, Gu W, Huang J, Sui H, Zhou Z, Yang Y et al (2005) In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int J Pharm 288(2):361–368PubMed
Zurück zum Zitat Yang J, Eom K, Lim EK, Park J, Kang Y, Yoon DS et al (2008) In situ detection of live cancer cells by using bioprobes based on Au nanoparticles. Langmuir 24(21):12112–12115PubMed Yang J, Eom K, Lim EK, Park J, Kang Y, Yoon DS et al (2008) In situ detection of live cancer cells by using bioprobes based on Au nanoparticles. Langmuir 24(21):12112–12115PubMed
Zurück zum Zitat Yang L, Mao H, Wang YA, Cao Z, Peng X, Wang X et al (2009) Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 5(2):235–243PubMedCentralPubMed Yang L, Mao H, Wang YA, Cao Z, Peng X, Wang X et al (2009) Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 5(2):235–243PubMedCentralPubMed
Zurück zum Zitat Yang HM, Park CW, Woo MA, Kim MI, Jo YM, Park HG et al (2010) HER2/neu antibody conjugated poly(amino acid)-coated iron oxide nanoparticles for breast cancer MR imaging. Biomacromolecules 11(11):2866–2872 Yang HM, Park CW, Woo MA, Kim MI, Jo YM, Park HG et al (2010) HER2/neu antibody conjugated poly(amino acid)-coated iron oxide nanoparticles for breast cancer MR imaging. Biomacromolecules 11(11):2866–2872
Zurück zum Zitat Yu B, Tai HC, Xue W, Lee LJ, Lee RJ (2010) Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 27(7):286–298PubMedCentralPubMed Yu B, Tai HC, Xue W, Lee LJ, Lee RJ (2010) Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 27(7):286–298PubMedCentralPubMed
Zurück zum Zitat Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S (2011a) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7(15):2241–2249PubMed Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S (2011a) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7(15):2241–2249PubMed
Zurück zum Zitat Yu C, Hu Y, Duan J, Yuan W, Wang C, Xu H et al (2011b) Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS ONE 6(9):e24077PubMedCentralPubMed Yu C, Hu Y, Duan J, Yuan W, Wang C, Xu H et al (2011b) Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS ONE 6(9):e24077PubMedCentralPubMed
Zurück zum Zitat Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2(1):3–44PubMedCentralPubMed Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2(1):3–44PubMedCentralPubMed
Zurück zum Zitat Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561PubMed Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561PubMed
Zurück zum Zitat Zhang L, Radovic-Moreno AF, Alexis F, Gu FX, Basto PA, Bagalkot V et al (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2(9):1268–1271PubMed Zhang L, Radovic-Moreno AF, Alexis F, Gu FX, Basto PA, Bagalkot V et al (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2(9):1268–1271PubMed
Zurück zum Zitat Zhao N, Bagaria HG, Wong MS, Zu Y (2011) A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma. J Nanobiotechnol 9:2 Zhao N, Bagaria HG, Wong MS, Zu Y (2011) A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma. J Nanobiotechnol 9:2
Zurück zum Zitat Zheng Y, Yu B, Weecharangsan W, Piao L, Darby M, Mao Y et al (2010) Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7alpha-APTADD to breast cancer cells. Int J Pharm 390(2):234–241PubMed Zheng Y, Yu B, Weecharangsan W, Piao L, Darby M, Mao Y et al (2010) Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7alpha-APTADD to breast cancer cells. Int J Pharm 390(2):234–241PubMed
Zurück zum Zitat Zhou Y, Drummond DC, Zou H, Hayes ME, Adams GP, Kirpotin DB et al (2007) Impact of single-chain Fv antibody fragment affinity on nanoparticle targeting of epidermal growth factor receptor-expressing tumor cells. J Mol Biol 371(4):934–947PubMedCentralPubMed Zhou Y, Drummond DC, Zou H, Hayes ME, Adams GP, Kirpotin DB et al (2007) Impact of single-chain Fv antibody fragment affinity on nanoparticle targeting of epidermal growth factor receptor-expressing tumor cells. J Mol Biol 371(4):934–947PubMedCentralPubMed
Metadaten
Titel
Cancer active targeting by nanoparticles: a comprehensive review of literature
verfasst von
Remon Bazak
Mohamad Houri
Samar El Achy
Serag Kamel
Tamer Refaat
Publikationsdatum
01.05.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Cancer Research and Clinical Oncology / Ausgabe 5/2015
Print ISSN: 0171-5216
Elektronische ISSN: 1432-1335
DOI
https://doi.org/10.1007/s00432-014-1767-3

Weitere Artikel der Ausgabe 5/2015

Journal of Cancer Research and Clinical Oncology 5/2015 Zur Ausgabe

Review – Clinical Oncology

Management of hepatocellular carcinoma

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.