Skip to main content
Erschienen in: Clinical & Experimental Metastasis 2/2019

07.03.2019 | Review

Cancer-associated fibroblasts: how do they contribute to metastasis?

verfasst von: Mei Qi Kwa, Kate M. Herum, Cord Brakebusch

Erschienen in: Clinical & Experimental Metastasis | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Cancer-associated fibroblasts (CAFs) are activated fibroblasts in the tumor microenvironment. They are one of the most prominent cell types in the stroma and produce large amounts of extracellular matrix molecules, chemokines, cytokines and growth factors. Importantly, CAFs promote cancer progression and metastasis by multiple pathways. This, together with their genetic stability, makes them an interesting target for cancer therapy. However, CAF heterogeneity and limited knowledge about the function of the different CAF subpopulations in vivo, are currently major obstacles for identifying specific molecular targets that are of value for cancer treatment. In this review, we discuss recent major findings on CAF development and their metastasis-promoting functions, as well as open questions to be addressed in order to establish successful cancer therapies targeting CAFs.
Literatur
4.
5.
Zurück zum Zitat Valkenburg KC, de Groot AE, Pienta KJ (2018) Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 15(6):366–381CrossRef Valkenburg KC, de Groot AE, Pienta KJ (2018) Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 15(6):366–381CrossRef
6.
Zurück zum Zitat Karagiannis GS et al (2012) Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res 10(11):1403–1418CrossRefPubMedPubMedCentral Karagiannis GS et al (2012) Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res 10(11):1403–1418CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Rosen LS, Jacobs IA, Burkes RL (2017) Bevacizumab in colorectal cancer: current role in treatment and the potential of biosimilars. Target Oncol 12(5):599–610CrossRefPubMedPubMedCentral Rosen LS, Jacobs IA, Burkes RL (2017) Bevacizumab in colorectal cancer: current role in treatment and the potential of biosimilars. Target Oncol 12(5):599–610CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Verdaguer H, Tabernero J, Macarulla T (2016) Ramucirumab in metastatic colorectal cancer: evidence to date and place in therapy. Ther Adv Med Oncol 8(3):230–242CrossRefPubMedPubMedCentral Verdaguer H, Tabernero J, Macarulla T (2016) Ramucirumab in metastatic colorectal cancer: evidence to date and place in therapy. Ther Adv Med Oncol 8(3):230–242CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Weber J et al (2017) Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med 377(19):1824–1835CrossRefPubMed Weber J et al (2017) Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med 377(19):1824–1835CrossRefPubMed
11.
Zurück zum Zitat Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18:99–115CrossRefPubMed Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18:99–115CrossRefPubMed
12.
Zurück zum Zitat Affo S, Yu LX, Schwabe RF (2017) The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu Rev Pathol 12:153–186CrossRefPubMed Affo S, Yu LX, Schwabe RF (2017) The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu Rev Pathol 12:153–186CrossRefPubMed
13.
Zurück zum Zitat Barbazán J, Matic Vignjevic D (2019) Cancer associated fibroblasts: is the force the path to the dark side? Curr Opin Cell Biol 56:71–79CrossRefPubMed Barbazán J, Matic Vignjevic D (2019) Cancer associated fibroblasts: is the force the path to the dark side? Curr Opin Cell Biol 56:71–79CrossRefPubMed
15.
Zurück zum Zitat Ishii G, Ochiai A, Neri S (2016) Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev 99(Pt B):186–196CrossRefPubMed Ishii G, Ochiai A, Neri S (2016) Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev 99(Pt B):186–196CrossRefPubMed
16.
Zurück zum Zitat Ashida S et al (2012) Integrated analysis reveals critical genomic regions in prostate tumor microenvironment associated with clinicopathologic phenotypes. Clin Cancer Res 18(6):1578–1587CrossRefPubMed Ashida S et al (2012) Integrated analysis reveals critical genomic regions in prostate tumor microenvironment associated with clinicopathologic phenotypes. Clin Cancer Res 18(6):1578–1587CrossRefPubMed
17.
Zurück zum Zitat Bianchi-Frias D et al (2016) Cells comprising the prostate cancer microenvironment lack recurrent clonal somatic genomic aberrations. Mol Cancer Res 14(4):374–384CrossRefPubMedPubMedCentral Bianchi-Frias D et al (2016) Cells comprising the prostate cancer microenvironment lack recurrent clonal somatic genomic aberrations. Mol Cancer Res 14(4):374–384CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Qiu W et al (2008) No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet 40(5):650–655CrossRefPubMedPubMedCentral Qiu W et al (2008) No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet 40(5):650–655CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Albrengues J et al (2015) Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat Commun 6:10204CrossRefPubMed Albrengues J et al (2015) Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat Commun 6:10204CrossRefPubMed
22.
Zurück zum Zitat Costa A et al (2018) Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33(3):463–479 e10CrossRefPubMed Costa A et al (2018) Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33(3):463–479 e10CrossRefPubMed
23.
Zurück zum Zitat Osterreicher CH et al (2011) Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc Natl Acad Sci USA 108(1):308–313CrossRefPubMed Osterreicher CH et al (2011) Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc Natl Acad Sci USA 108(1):308–313CrossRefPubMed
24.
Zurück zum Zitat Sappino AP et al (1988) Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int J Cancer 41(5):707–712CrossRefPubMed Sappino AP et al (1988) Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int J Cancer 41(5):707–712CrossRefPubMed
26.
Zurück zum Zitat Öhlund D et al (2017) Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214(3):579–596PubMedPubMedCentral Öhlund D et al (2017) Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214(3):579–596PubMedPubMedCentral
27.
28.
Zurück zum Zitat Patel AK et al (2018) A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma. Oncogenesis 7(10):78CrossRefPubMedPubMedCentral Patel AK et al (2018) A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma. Oncogenesis 7(10):78CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Quante M et al (2011) Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19(2):257–272CrossRefPubMedPubMedCentral Quante M et al (2011) Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19(2):257–272CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Su S et al (2018) CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172(4):841–856 e16CrossRefPubMed Su S et al (2018) CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172(4):841–856 e16CrossRefPubMed
31.
Zurück zum Zitat Ishii G et al (2003) Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun 309(1):232–240CrossRefPubMed Ishii G et al (2003) Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun 309(1):232–240CrossRefPubMed
32.
Zurück zum Zitat Arina A et al (2016) Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc Natl Acad Sci USA 113(27):7551–7556CrossRefPubMedPubMedCentral Arina A et al (2016) Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc Natl Acad Sci USA 113(27):7551–7556CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Fujisawa M et al (2018) Ovarian stromal cells as a source of cancer-associated fibroblasts in human epithelial ovarian cancer: a histopathological study. PLoS ONE 13(10):e0205494CrossRefPubMedPubMedCentral Fujisawa M et al (2018) Ovarian stromal cells as a source of cancer-associated fibroblasts in human epithelial ovarian cancer: a histopathological study. PLoS ONE 13(10):e0205494CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Kramann R et al (2015) Perivascular Gli1 + progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16(1):51–66CrossRefPubMed Kramann R et al (2015) Perivascular Gli1 + progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16(1):51–66CrossRefPubMed
36.
Zurück zum Zitat Zeisberg EM et al (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67(21):10123–10128CrossRefPubMed Zeisberg EM et al (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67(21):10123–10128CrossRefPubMed
39.
Zurück zum Zitat Ronnov-Jessen L et al (1995) The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Investig 95(2):859–873CrossRefPubMedPubMedCentral Ronnov-Jessen L et al (1995) The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Investig 95(2):859–873CrossRefPubMedPubMedCentral
40.
42.
Zurück zum Zitat Nair N et al (2017) A cancer stem cell model as the point of origin of cancer-associated fibroblasts in tumor microenvironment. Sci Rep 7(1):6838CrossRefPubMedPubMedCentral Nair N et al (2017) A cancer stem cell model as the point of origin of cancer-associated fibroblasts in tumor microenvironment. Sci Rep 7(1):6838CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Ge J et al (2018) RhoA, Rac1, and Cdc42 differentially regulate alphaSMA and collagen I expression in mesenchymal stem cells. J Biol Chem 293(24):9358–9369CrossRefPubMedPubMedCentral Ge J et al (2018) RhoA, Rac1, and Cdc42 differentially regulate alphaSMA and collagen I expression in mesenchymal stem cells. J Biol Chem 293(24):9358–9369CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Beyer C et al (2012) Beta-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann Rheum Dis 71(5):761–767CrossRefPubMed Beyer C et al (2012) Beta-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann Rheum Dis 71(5):761–767CrossRefPubMed
46.
Zurück zum Zitat Hamburg EJ, Atit RP (2012) Sustained beta-catenin activity in dermal fibroblasts is sufficient for skin fibrosis. J Investig Dermatol 132(10):2469–2472CrossRefPubMed Hamburg EJ, Atit RP (2012) Sustained beta-catenin activity in dermal fibroblasts is sufficient for skin fibrosis. J Investig Dermatol 132(10):2469–2472CrossRefPubMed
47.
Zurück zum Zitat Sato M (2006) Upregulation of the Wnt/beta-catenin pathway induced by transforming growth factor-beta in hypertrophic scars and keloids. Acta Derm Venereol 86(4):300–307CrossRefPubMed Sato M (2006) Upregulation of the Wnt/beta-catenin pathway induced by transforming growth factor-beta in hypertrophic scars and keloids. Acta Derm Venereol 86(4):300–307CrossRefPubMed
48.
Zurück zum Zitat Lei S et al (2004) The murine gastrin promoter is synergistically activated by transforming growth factor-beta/Smad and Wnt signaling pathways. J Biol Chem 279(41):42492–42502CrossRefPubMed Lei S et al (2004) The murine gastrin promoter is synergistically activated by transforming growth factor-beta/Smad and Wnt signaling pathways. J Biol Chem 279(41):42492–42502CrossRefPubMed
49.
Zurück zum Zitat Chen JH et al (2011) Beta-catenin mediates mechanically regulated, transforming growth factor-beta1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler Thromb Vasc Biol 31(3):590–597CrossRefPubMed Chen JH et al (2011) Beta-catenin mediates mechanically regulated, transforming growth factor-beta1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler Thromb Vasc Biol 31(3):590–597CrossRefPubMed
50.
Zurück zum Zitat Caraci F et al (2008) TGF-beta1 targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res 57(4):274–282CrossRefPubMed Caraci F et al (2008) TGF-beta1 targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res 57(4):274–282CrossRefPubMed
51.
Zurück zum Zitat Carthy JM et al (2011) Wnt3a induces myofibroblast differentiation by upregulating TGF-beta signaling through SMAD2 in a beta-catenin-dependent manner. PLoS ONE 6(5):e19809CrossRefPubMedPubMedCentral Carthy JM et al (2011) Wnt3a induces myofibroblast differentiation by upregulating TGF-beta signaling through SMAD2 in a beta-catenin-dependent manner. PLoS ONE 6(5):e19809CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19(2):156–172CrossRefPubMed Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19(2):156–172CrossRefPubMed
53.
Zurück zum Zitat Bonner JC (2004) Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 15(4):255–273CrossRefPubMed Bonner JC (2004) Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 15(4):255–273CrossRefPubMed
54.
Zurück zum Zitat Anderberg C et al (2009) Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res 69(1):369–378CrossRefPubMedPubMedCentral Anderberg C et al (2009) Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res 69(1):369–378CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Forsberg K et al (1993) Platelet-derived growth factor (PDGF) in oncogenesis: development of a vascular connective tissue stroma in xenotransplanted human melanoma producing PDGF-BB. Proc Natl Acad Sci USA 90(2):393–397CrossRefPubMedPubMedCentral Forsberg K et al (1993) Platelet-derived growth factor (PDGF) in oncogenesis: development of a vascular connective tissue stroma in xenotransplanted human melanoma producing PDGF-BB. Proc Natl Acad Sci USA 90(2):393–397CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Skobe M, Fusenig NE (1998) Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc Natl Acad Sci USA 95(3):1050–1055CrossRefPubMedPubMedCentral Skobe M, Fusenig NE (1998) Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc Natl Acad Sci USA 95(3):1050–1055CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Herum KM et al (2017) The soft- and hard-heartedness of cardiac fibroblasts: mechanotransduction signaling pathways in fibrosis of the heart. J Clin Med 6(5):53CrossRefPubMedCentral Herum KM et al (2017) The soft- and hard-heartedness of cardiac fibroblasts: mechanotransduction signaling pathways in fibrosis of the heart. J Clin Med 6(5):53CrossRefPubMedCentral
58.
Zurück zum Zitat Lee AA et al (1999) Differential responses of adult cardiac fibroblasts to in vitro biaxial strain patterns. J Mol Cell Cardiol 31(10):1833–1843CrossRefPubMed Lee AA et al (1999) Differential responses of adult cardiac fibroblasts to in vitro biaxial strain patterns. J Mol Cell Cardiol 31(10):1833–1843CrossRefPubMed
61.
Zurück zum Zitat Boyle ST, Samuel MS (2016) Mechano-reciprocity is maintained between physiological boundaries by tuning signal flux through the Rho-associated protein kinase. Small GTPases 7(3):139–146CrossRefPubMedPubMedCentral Boyle ST, Samuel MS (2016) Mechano-reciprocity is maintained between physiological boundaries by tuning signal flux through the Rho-associated protein kinase. Small GTPases 7(3):139–146CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Calvo F et al (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15(6):637–646CrossRefPubMed Calvo F et al (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15(6):637–646CrossRefPubMed
64.
Zurück zum Zitat Paszek MJ et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254CrossRefPubMed Paszek MJ et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254CrossRefPubMed
65.
Zurück zum Zitat Huang X et al (2012) Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am J Respir Cell Mol Biol 47(3):340–348CrossRefPubMedPubMedCentral Huang X et al (2012) Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am J Respir Cell Mol Biol 47(3):340–348CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Zhao XH et al (2007) Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. J Cell Sci 120(Pt 10):1801–1809CrossRefPubMed Zhao XH et al (2007) Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. J Cell Sci 120(Pt 10):1801–1809CrossRefPubMed
67.
Zurück zum Zitat Foster CT, Gualdrini F, Treisman R (2017) Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes Dev 31(23–24):2361–2375CrossRefPubMedPubMedCentral Foster CT, Gualdrini F, Treisman R (2017) Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes Dev 31(23–24):2361–2375CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Liu F et al (2015) Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol 308(4):L344–L357CrossRefPubMed Liu F et al (2015) Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol 308(4):L344–L357CrossRefPubMed
69.
Zurück zum Zitat Mannaerts I et al (2015) The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J Hepatol 63(3):679–688CrossRefPubMed Mannaerts I et al (2015) The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J Hepatol 63(3):679–688CrossRefPubMed
70.
71.
Zurück zum Zitat Dupont S (2016) Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res 343(1):42–53CrossRefPubMed Dupont S (2016) Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res 343(1):42–53CrossRefPubMed
73.
Zurück zum Zitat Zhang K et al (2016) Mechanical signals regulate and activate SNAIL1 protein to control the fibrogenic response of cancer-associated fibroblasts. J Cell Sci 129(10):1989–2002CrossRefPubMedPubMedCentral Zhang K et al (2016) Mechanical signals regulate and activate SNAIL1 protein to control the fibrogenic response of cancer-associated fibroblasts. J Cell Sci 129(10):1989–2002CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Henderson NC et al (2013) Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19(12):1617–1624CrossRefPubMed Henderson NC et al (2013) Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19(12):1617–1624CrossRefPubMed
75.
Zurück zum Zitat Wipff PJ, Hinz B (2008) Integrins and the activation of latent transforming growth factor beta1—an intimate relationship. Eur J Cell Biol 87(8–9):601–615CrossRefPubMed Wipff PJ, Hinz B (2008) Integrins and the activation of latent transforming growth factor beta1—an intimate relationship. Eur J Cell Biol 87(8–9):601–615CrossRefPubMed
76.
77.
Zurück zum Zitat Arora PD, Narani N, McCulloch CA (1999) The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 154(3):871–882CrossRefPubMedPubMedCentral Arora PD, Narani N, McCulloch CA (1999) The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 154(3):871–882CrossRefPubMedPubMedCentral
78.
Zurück zum Zitat Pankova D et al (2016) Cancer-associated fibroblasts induce a collagen cross-link switch in tumor stroma. Mol Cancer Res 14(3):287–295CrossRefPubMed Pankova D et al (2016) Cancer-associated fibroblasts induce a collagen cross-link switch in tumor stroma. Mol Cancer Res 14(3):287–295CrossRefPubMed
79.
Zurück zum Zitat Karnoub AE et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563CrossRefPubMed Karnoub AE et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563CrossRefPubMed
80.
81.
Zurück zum Zitat Kojima Y et al (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA 107(46):20009–20014CrossRefPubMedPubMedCentral Kojima Y et al (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA 107(46):20009–20014CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Petersen OW et al (2003) Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 162(2):391–402CrossRefPubMedPubMedCentral Petersen OW et al (2003) Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 162(2):391–402CrossRefPubMedPubMedCentral
83.
Zurück zum Zitat Hargadon KM (2016) Dysregulation of TGFbeta1 activity in cancer and its influence on the quality of anti-tumor immunity. J Clin Med 5(9):76CrossRefPubMedCentral Hargadon KM (2016) Dysregulation of TGFbeta1 activity in cancer and its influence on the quality of anti-tumor immunity. J Clin Med 5(9):76CrossRefPubMedCentral
84.
Zurück zum Zitat De Silva DM et al (2017) Targeting the hepatocyte growth factor/Met pathway in cancer. Biochem Soc Trans 45(4):855–870CrossRefPubMed De Silva DM et al (2017) Targeting the hepatocyte growth factor/Met pathway in cancer. Biochem Soc Trans 45(4):855–870CrossRefPubMed
85.
Zurück zum Zitat Matsumoto K et al (1994) Hepatocyte growth factor/scatter factor induces tyrosine phosphorylation of focal adhesion kinase (p125FAK) and promotes migration and invasion by oral squamous cell carcinoma cells. J Biol Chem 269(50):31807–31813PubMed Matsumoto K et al (1994) Hepatocyte growth factor/scatter factor induces tyrosine phosphorylation of focal adhesion kinase (p125FAK) and promotes migration and invasion by oral squamous cell carcinoma cells. J Biol Chem 269(50):31807–31813PubMed
86.
Zurück zum Zitat Lau EY et al (2016) Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-Met/FRA1/HEY1 Signaling. Cell Rep 15(6):1175–1189CrossRefPubMed Lau EY et al (2016) Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-Met/FRA1/HEY1 Signaling. Cell Rep 15(6):1175–1189CrossRefPubMed
87.
Zurück zum Zitat Drebert Z et al (2018) Glucocorticoids indirectly decrease colon cancer cell proliferation and invasion via effects on cancer-associated fibroblasts. Exp Cell Res 362(2):332–342CrossRefPubMed Drebert Z et al (2018) Glucocorticoids indirectly decrease colon cancer cell proliferation and invasion via effects on cancer-associated fibroblasts. Exp Cell Res 362(2):332–342CrossRefPubMed
88.
Zurück zum Zitat Henriksson ML et al (2011) Colorectal cancer cells activate adjacent fibroblasts resulting in FGF1/FGFR3 signaling and increased invasion. Am J Pathol 178(3):1387–1394CrossRefPubMedPubMedCentral Henriksson ML et al (2011) Colorectal cancer cells activate adjacent fibroblasts resulting in FGF1/FGFR3 signaling and increased invasion. Am J Pathol 178(3):1387–1394CrossRefPubMedPubMedCentral
89.
Zurück zum Zitat Knuchel S et al (2015) Fibroblast surface-associated FGF-2 promotes contact-dependent colorectal cancer cell migration and invasion through FGFR-SRC signaling and integrin alphavbeta5-mediated adhesion. Oncotarget 6(16):14300–14317CrossRefPubMedPubMedCentral Knuchel S et al (2015) Fibroblast surface-associated FGF-2 promotes contact-dependent colorectal cancer cell migration and invasion through FGFR-SRC signaling and integrin alphavbeta5-mediated adhesion. Oncotarget 6(16):14300–14317CrossRefPubMedPubMedCentral
91.
Zurück zum Zitat Fukumura D et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94(6):715–725CrossRefPubMed Fukumura D et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94(6):715–725CrossRefPubMed
92.
Zurück zum Zitat Bai YP et al (2015) FGF-1/-3/FGFR4 signaling in cancer-associated fibroblasts promotes tumor progression in colon cancer through Erk and MMP-7. Cancer Sci 106(10):1278–1287CrossRefPubMedPubMedCentral Bai YP et al (2015) FGF-1/-3/FGFR4 signaling in cancer-associated fibroblasts promotes tumor progression in colon cancer through Erk and MMP-7. Cancer Sci 106(10):1278–1287CrossRefPubMedPubMedCentral
93.
Zurück zum Zitat Crawford Y et al (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15(1):21–34CrossRefPubMed Crawford Y et al (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15(1):21–34CrossRefPubMed
95.
Zurück zum Zitat Peña C et al (2013) STC1 expression by cancer-associated fibroblasts drives metastasis of colorectal cancer. Cancer Res 73(4):1287–1297CrossRefPubMed Peña C et al (2013) STC1 expression by cancer-associated fibroblasts drives metastasis of colorectal cancer. Cancer Res 73(4):1287–1297CrossRefPubMed
96.
Zurück zum Zitat Sumida T et al (2011) Anti-stromal therapy with imatinib inhibits growth and metastasis of gastric carcinoma in an orthotopic nude mouse model. Int J Cancer 128(9):2050–2062CrossRefPubMed Sumida T et al (2011) Anti-stromal therapy with imatinib inhibits growth and metastasis of gastric carcinoma in an orthotopic nude mouse model. Int J Cancer 128(9):2050–2062CrossRefPubMed
97.
Zurück zum Zitat Orimo A et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348CrossRefPubMed Orimo A et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348CrossRefPubMed
98.
Zurück zum Zitat Jin H et al (2006) A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J Clin Investig 116(3):652–662CrossRefPubMedPubMedCentral Jin H et al (2006) A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J Clin Investig 116(3):652–662CrossRefPubMedPubMedCentral
99.
Zurück zum Zitat Ao M et al (2007) Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Res 67(9):4244–4253CrossRefPubMed Ao M et al (2007) Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Res 67(9):4244–4253CrossRefPubMed
100.
Zurück zum Zitat Izumi D et al (2016) CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin beta1 clustering and invasiveness in gastric cancer. Int J Cancer 138(5):1207–1219CrossRefPubMed Izumi D et al (2016) CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin beta1 clustering and invasiveness in gastric cancer. Int J Cancer 138(5):1207–1219CrossRefPubMed
101.
Zurück zum Zitat Feig C et al (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA 110(50):20212–20217CrossRefPubMedPubMedCentral Feig C et al (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA 110(50):20212–20217CrossRefPubMedPubMedCentral
102.
Zurück zum Zitat Kraman M et al (2010) Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330(6005):827–830CrossRefPubMed Kraman M et al (2010) Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330(6005):827–830CrossRefPubMed
103.
Zurück zum Zitat Allaoui R et al (2016) Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers. Nat Commun 7:13050CrossRefPubMedPubMedCentral Allaoui R et al (2016) Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers. Nat Commun 7:13050CrossRefPubMedPubMedCentral
104.
Zurück zum Zitat Augsten M et al (2009) CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc Natl Acad Sci USA 106(9):3414–3419CrossRefPubMedPubMedCentral Augsten M et al (2009) CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc Natl Acad Sci USA 106(9):3414–3419CrossRefPubMedPubMedCentral
105.
Zurück zum Zitat Sjöberg E et al (2016) Expression of the chemokine CXCL14 in the tumour stroma is an independent marker of survival in breast cancer. Br J Cancer 114(10):1117–1124CrossRefPubMedPubMedCentral Sjöberg E et al (2016) Expression of the chemokine CXCL14 in the tumour stroma is an independent marker of survival in breast cancer. Br J Cancer 114(10):1117–1124CrossRefPubMedPubMedCentral
106.
Zurück zum Zitat Roca H et al (2009) CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 284(49):34342–34354CrossRefPubMedPubMedCentral Roca H et al (2009) CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 284(49):34342–34354CrossRefPubMedPubMedCentral
108.
Zurück zum Zitat Mishra P, Banerjee D, Ben-Baruch A (2011) Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J Leukoc Biol 89(1):31–39CrossRefPubMed Mishra P, Banerjee D, Ben-Baruch A (2011) Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J Leukoc Biol 89(1):31–39CrossRefPubMed
110.
Zurück zum Zitat Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA (2009) Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS ONE 4(11):e7965CrossRefPubMedPubMedCentral Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA (2009) Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS ONE 4(11):e7965CrossRefPubMedPubMedCentral
111.
Zurück zum Zitat Zhang F et al (2016) TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7(32):52294–52306PubMedPubMedCentral Zhang F et al (2016) TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7(32):52294–52306PubMedPubMedCentral
112.
Zurück zum Zitat Wu X et al (2017) IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget 8(13):20741–20750PubMedPubMedCentral Wu X et al (2017) IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget 8(13):20741–20750PubMedPubMedCentral
113.
Zurück zum Zitat Xiong S et al (2018) Cancer-associated fibroblasts promote stem cell-like properties of hepatocellular carcinoma cells through IL-6/STAT3/Notch signaling. Am J Cancer Res 8(2):302–316PubMedPubMedCentral Xiong S et al (2018) Cancer-associated fibroblasts promote stem cell-like properties of hepatocellular carcinoma cells through IL-6/STAT3/Notch signaling. Am J Cancer Res 8(2):302–316PubMedPubMedCentral
114.
Zurück zum Zitat Qiao Y et al (2018) IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene 37(7):873–883CrossRefPubMed Qiao Y et al (2018) IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene 37(7):873–883CrossRefPubMed
115.
Zurück zum Zitat Kumar V et al (2017) Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32(5):654–668.e5CrossRefPubMedPubMedCentral Kumar V et al (2017) Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32(5):654–668.e5CrossRefPubMedPubMedCentral
116.
Zurück zum Zitat Luga V et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556CrossRefPubMed Luga V et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556CrossRefPubMed
117.
Zurück zum Zitat Leca J et al (2016) Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness. J Clin Invest 126(11):4140–4156CrossRefPubMedPubMedCentral Leca J et al (2016) Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness. J Clin Invest 126(11):4140–4156CrossRefPubMedPubMedCentral
118.
Zurück zum Zitat Richards KE et al (2017) Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene 36(13):1770–1778CrossRefPubMed Richards KE et al (2017) Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene 36(13):1770–1778CrossRefPubMed
119.
Zurück zum Zitat Donnarumma E et al (2017) Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget 8(12):19592–19608CrossRefPubMedPubMedCentral Donnarumma E et al (2017) Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget 8(12):19592–19608CrossRefPubMedPubMedCentral
120.
Zurück zum Zitat Itoh G et al (2017) Cancer-associated fibroblasts induce cancer cell apoptosis that regulates invasion mode of tumours. Oncogene 36(31):4434–4444CrossRefPubMed Itoh G et al (2017) Cancer-associated fibroblasts induce cancer cell apoptosis that regulates invasion mode of tumours. Oncogene 36(31):4434–4444CrossRefPubMed
121.
Zurück zum Zitat Santi A, Kugeratski FG, Zanivan S (2018) Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics 18(5–6):e1700167CrossRefPubMed Santi A, Kugeratski FG, Zanivan S (2018) Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics 18(5–6):e1700167CrossRefPubMed
123.
Zurück zum Zitat Barker HE, Cox TR, Erler JT (2012) The rationale for targeting the LOX family in cancer. Nat Rev Cancer 12(8):540–552CrossRefPubMed Barker HE, Cox TR, Erler JT (2012) The rationale for targeting the LOX family in cancer. Nat Rev Cancer 12(8):540–552CrossRefPubMed
125.
Zurück zum Zitat Acerbi I et al (2015) Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol (Camb) 7(10):1120–1134CrossRef Acerbi I et al (2015) Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol (Camb) 7(10):1120–1134CrossRef
126.
127.
Zurück zum Zitat Navab R et al (2016) Integrin alpha11beta1 regulates cancer stromal stiffness and promotes tumorigenicity and metastasis in non-small cell lung cancer. Oncogene 35(15):1899–1908CrossRefPubMed Navab R et al (2016) Integrin alpha11beta1 regulates cancer stromal stiffness and promotes tumorigenicity and metastasis in non-small cell lung cancer. Oncogene 35(15):1899–1908CrossRefPubMed
128.
Zurück zum Zitat Hanley CJ et al (2016) A subset of myofibroblastic cancer-associated fibroblasts regulate collagen fiber elongation, which is prognostic in multiple cancers. Oncotarget 7(5):6159–6174CrossRefPubMed Hanley CJ et al (2016) A subset of myofibroblastic cancer-associated fibroblasts regulate collagen fiber elongation, which is prognostic in multiple cancers. Oncotarget 7(5):6159–6174CrossRefPubMed
130.
Zurück zum Zitat van der Zee JA et al (2012) Tumour basement membrane laminin expression predicts outcome following curative resection of pancreatic head cancer. Br J Cancer 107(7):1153–1158CrossRefPubMedPubMedCentral van der Zee JA et al (2012) Tumour basement membrane laminin expression predicts outcome following curative resection of pancreatic head cancer. Br J Cancer 107(7):1153–1158CrossRefPubMedPubMedCentral
131.
Zurück zum Zitat Schliekelman MJ et al (2011) Targets of the tumor suppressor miR-200 in regulation of the epithelial-mesenchymal transition in cancer. Cancer Res 71(24):7670–7682CrossRefPubMedPubMedCentral Schliekelman MJ et al (2011) Targets of the tumor suppressor miR-200 in regulation of the epithelial-mesenchymal transition in cancer. Cancer Res 71(24):7670–7682CrossRefPubMedPubMedCentral
132.
Zurück zum Zitat Lowy CM, Oskarsson T (2015) Tenascin C in metastasis: a view from the invasive front. Cell Adhes Migr 9(1–2):112–124CrossRef Lowy CM, Oskarsson T (2015) Tenascin C in metastasis: a view from the invasive front. Cell Adhes Migr 9(1–2):112–124CrossRef
133.
Zurück zum Zitat Yoshida T, Akatsuka T, Imanaka-Yoshida K (2015) Tenascin-C and integrins in cancer. Cell Adhes Migr 9(1–2):96–104CrossRef Yoshida T, Akatsuka T, Imanaka-Yoshida K (2015) Tenascin-C and integrins in cancer. Cell Adhes Migr 9(1–2):96–104CrossRef
134.
135.
Zurück zum Zitat Liu AY, Zheng H, Ouyang G (2014) Periostin, a multifunctional matricellular protein in inflammatory and tumor microenvironments. Matrix Biol 37:150–156CrossRefPubMed Liu AY, Zheng H, Ouyang G (2014) Periostin, a multifunctional matricellular protein in inflammatory and tumor microenvironments. Matrix Biol 37:150–156CrossRefPubMed
136.
Zurück zum Zitat Gillan L et al (2002) Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res 62(18):5358–5364PubMed Gillan L et al (2002) Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res 62(18):5358–5364PubMed
137.
Zurück zum Zitat Kii I et al (2010) Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J Biol Chem 285(3):2028–2039CrossRefPubMed Kii I et al (2010) Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J Biol Chem 285(3):2028–2039CrossRefPubMed
138.
139.
Zurück zum Zitat Underwood TJ et al (2015) Cancer-associated fibroblasts predict poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma. J Pathol 235(3):466–477CrossRefPubMedPubMedCentral Underwood TJ et al (2015) Cancer-associated fibroblasts predict poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma. J Pathol 235(3):466–477CrossRefPubMedPubMedCentral
140.
Zurück zum Zitat Glentis A et al (2017) Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat Commun 8(1):924CrossRefPubMedPubMedCentral Glentis A et al (2017) Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat Commun 8(1):924CrossRefPubMedPubMedCentral
141.
Zurück zum Zitat Gaggioli C et al (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9(12):1392–1400CrossRefPubMed Gaggioli C et al (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9(12):1392–1400CrossRefPubMed
142.
Zurück zum Zitat Attieh Y et al (2017) Cancer-associated fibroblasts lead tumor invasion through integrin-beta3-dependent fibronectin assembly. J Cell Biol 216(11):3509–3520CrossRefPubMedPubMedCentral Attieh Y et al (2017) Cancer-associated fibroblasts lead tumor invasion through integrin-beta3-dependent fibronectin assembly. J Cell Biol 216(11):3509–3520CrossRefPubMedPubMedCentral
143.
Zurück zum Zitat Labernadie A et al (2017) A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol 19(3):224–237CrossRefPubMedPubMedCentral Labernadie A et al (2017) A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol 19(3):224–237CrossRefPubMedPubMedCentral
144.
145.
Zurück zum Zitat McAllister SS, Weinberg RA (2014) The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 16(8):717–727CrossRefPubMedPubMedCentral McAllister SS, Weinberg RA (2014) The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 16(8):717–727CrossRefPubMedPubMedCentral
146.
Zurück zum Zitat Elkabets M et al (2011) Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J Clin Investig 121(2):784–799CrossRefPubMedPubMedCentral Elkabets M et al (2011) Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J Clin Investig 121(2):784–799CrossRefPubMedPubMedCentral
147.
Zurück zum Zitat Bruzzese F et al (2014) Local and systemic protumorigenic effects of cancer-associated fibroblast-derived GDF15. Cancer Res 74(13):3408–3417CrossRefPubMed Bruzzese F et al (2014) Local and systemic protumorigenic effects of cancer-associated fibroblast-derived GDF15. Cancer Res 74(13):3408–3417CrossRefPubMed
148.
149.
Zurück zum Zitat Hiratsuka S et al (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8(12):1369–1375CrossRefPubMed Hiratsuka S et al (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8(12):1369–1375CrossRefPubMed
151.
Zurück zum Zitat Malanchi I et al (2011) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481(7379):85–89CrossRefPubMed Malanchi I et al (2011) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481(7379):85–89CrossRefPubMed
152.
Zurück zum Zitat Wang Z et al (2016) Periostin promotes immunosuppressive premetastatic niche formation to facilitate breast tumour metastasis. J Pathol 239(4):484–495CrossRefPubMed Wang Z et al (2016) Periostin promotes immunosuppressive premetastatic niche formation to facilitate breast tumour metastasis. J Pathol 239(4):484–495CrossRefPubMed
153.
154.
Zurück zum Zitat Hansen MT et al (2015) A link between inflammation and metastasis: serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4. Oncogene 34(4):424–435CrossRefPubMed Hansen MT et al (2015) A link between inflammation and metastasis: serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4. Oncogene 34(4):424–435CrossRefPubMed
156.
157.
Zurück zum Zitat Hirata E et al (2015) Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell 27(4):574–588CrossRefPubMedPubMedCentral Hirata E et al (2015) Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell 27(4):574–588CrossRefPubMedPubMedCentral
158.
Zurück zum Zitat Jayson GC et al (2016) Antiangiogenic therapy in oncology: current status and future directions. Lancet 388(10043):518–529CrossRefPubMed Jayson GC et al (2016) Antiangiogenic therapy in oncology: current status and future directions. Lancet 388(10043):518–529CrossRefPubMed
160.
Zurück zum Zitat Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8(9):1069–1086CrossRefPubMed Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8(9):1069–1086CrossRefPubMed
161.
162.
Zurück zum Zitat Royal RE et al (2010) Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 33(8):828–833CrossRefPubMedPubMedCentral Royal RE et al (2010) Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 33(8):828–833CrossRefPubMedPubMedCentral
163.
Zurück zum Zitat Liu H, Shen J, Lu K (2017) IL-6 and PD-L1 blockade combination inhibits hepatocellular carcinoma cancer development in mouse model. Biochem Biophys Res Commun 486(2):239–244CrossRefPubMed Liu H, Shen J, Lu K (2017) IL-6 and PD-L1 blockade combination inhibits hepatocellular carcinoma cancer development in mouse model. Biochem Biophys Res Commun 486(2):239–244CrossRefPubMed
164.
166.
Zurück zum Zitat Mariathasan S et al (2018) TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554(7693):544–548CrossRefPubMedPubMedCentral Mariathasan S et al (2018) TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554(7693):544–548CrossRefPubMedPubMedCentral
167.
Zurück zum Zitat Tauriello DVF et al (2018) TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554(7693):538–543CrossRefPubMed Tauriello DVF et al (2018) TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554(7693):538–543CrossRefPubMed
169.
Zurück zum Zitat Ozdemir BC et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25(6):719–734CrossRefPubMedPubMedCentral Ozdemir BC et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25(6):719–734CrossRefPubMedPubMedCentral
170.
Metadaten
Titel
Cancer-associated fibroblasts: how do they contribute to metastasis?
verfasst von
Mei Qi Kwa
Kate M. Herum
Cord Brakebusch
Publikationsdatum
07.03.2019
Verlag
Springer Netherlands
Erschienen in
Clinical & Experimental Metastasis / Ausgabe 2/2019
Print ISSN: 0262-0898
Elektronische ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-019-09959-0

Weitere Artikel der Ausgabe 2/2019

Clinical & Experimental Metastasis 2/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.