Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2018

08.12.2017 | NON-THEMATIC REVIEW

Cancer driver G-protein coupled receptor (GPCR) induced β-catenin nuclear localization: the transcriptional junction

verfasst von: Jeetendra Kumar Nag, Tatyana Rudina, Myriam Maoz, Sorina Grisaru-Granovsky, Beatrice Uziely, Rachel Bar-Shavit

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

G protein-coupled receptors (GPCRs) comprise the main signal-transmitting components in the cell membrane. Over the past several years, biochemical and structural analyses have immensely enhanced our knowledge of GPCR involvement in health and disease states. The present review focuses on GPCRs that are cancer drivers, involved in tumor growth and development. Our aim is to highlight the involvement of stabilized β-catenin molecular machinery with a specific array of GPCRs. We discuss recent advances in understanding the molecular path leading to β-catenin nuclear localization and transcriptional activity and their implications for future cancer therapy research.
Literatur
1.
Zurück zum Zitat Bjarnadottir, T. K., Gloriam, D. E., Hellstrand, S. H., Kristiansson, H., Fredriksson, R., & Schioth, H. B. (2006). Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics, 88(3), 263–273.PubMedCrossRef Bjarnadottir, T. K., Gloriam, D. E., Hellstrand, S. H., Kristiansson, H., Fredriksson, R., & Schioth, H. B. (2006). Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics, 88(3), 263–273.PubMedCrossRef
2.
Zurück zum Zitat Bockaert, J., & Pin, J. P. (1999). Molecular tinkering of G protein-coupled receptors: an evolutionary success. The EMBO Journal, 18(7), 1723–1729.PubMedPubMedCentralCrossRef Bockaert, J., & Pin, J. P. (1999). Molecular tinkering of G protein-coupled receptors: an evolutionary success. The EMBO Journal, 18(7), 1723–1729.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Feigin, M. E. (2013). Harnessing the genome for characterization of G-protein coupled receptors in cancer pathogenesis. The FEBS Journal, 280(19), 4729–4738.PubMedPubMedCentralCrossRef Feigin, M. E. (2013). Harnessing the genome for characterization of G-protein coupled receptors in cancer pathogenesis. The FEBS Journal, 280(19), 4729–4738.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Hollenberg, M. D., Mihara, K., Polley, D., Suen, J. Y., Han, A., Fairlie, D. P., et al. (2014). Biased signalling and proteinase-activated receptors (PARs): targeting inflammatory disease. British Journal of Pharmacology, 171(5), 1180–1194.PubMedPubMedCentralCrossRef Hollenberg, M. D., Mihara, K., Polley, D., Suen, J. Y., Han, A., Fairlie, D. P., et al. (2014). Biased signalling and proteinase-activated receptors (PARs): targeting inflammatory disease. British Journal of Pharmacology, 171(5), 1180–1194.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Kenakin, T. (2012). The potential for selective pharmacological therapies through biased receptor signaling. BMC Pharmacology & Toxicology, 13, 3.CrossRef Kenakin, T. (2012). The potential for selective pharmacological therapies through biased receptor signaling. BMC Pharmacology & Toxicology, 13, 3.CrossRef
6.
Zurück zum Zitat Miao, Y., & McCammon, J. A. (2016). G-protein coupled receptors: advances in simulation and drug discovery. Current Opinion in Structural Biology, 41, 83–89.PubMedPubMedCentralCrossRef Miao, Y., & McCammon, J. A. (2016). G-protein coupled receptors: advances in simulation and drug discovery. Current Opinion in Structural Biology, 41, 83–89.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Wisler, J. W., Xiao, K., Thomsen, A. R., & Lefkowitz, R. J. (2014). Recent developments in biased agonism. Current Opinion in Cell Biology, 27, 18–24.PubMedCrossRef Wisler, J. W., Xiao, K., Thomsen, A. R., & Lefkowitz, R. J. (2014). Recent developments in biased agonism. Current Opinion in Cell Biology, 27, 18–24.PubMedCrossRef
8.
Zurück zum Zitat Premont, R. T., & Gainetdinov, R. R. (2007). Physiological roles of G protein-coupled receptor kinases and arrestins. Annual Review of Physiology, 69, 511–534.PubMedCrossRef Premont, R. T., & Gainetdinov, R. R. (2007). Physiological roles of G protein-coupled receptor kinases and arrestins. Annual Review of Physiology, 69, 511–534.PubMedCrossRef
9.
Zurück zum Zitat Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127(3), 469–480.PubMedCrossRef Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127(3), 469–480.PubMedCrossRef
10.
Zurück zum Zitat Nusse, R. (2005). Wnt signaling in disease and in development. Cell Research, 15(1), 28–32.PubMedCrossRef Nusse, R. (2005). Wnt signaling in disease and in development. Cell Research, 15(1), 28–32.PubMedCrossRef
11.
Zurück zum Zitat Liu, T., DeCostanzo, A. J., Liu, X., Wang, H., Hallagan, S., Moon, R. T., et al. (2001). G protein signaling from activated rat frizzled-1 to the beta-catenin-Lef-Tcf pathway. Science, 292(5522), 1718–1722.PubMedCrossRef Liu, T., DeCostanzo, A. J., Liu, X., Wang, H., Hallagan, S., Moon, R. T., et al. (2001). G protein signaling from activated rat frizzled-1 to the beta-catenin-Lef-Tcf pathway. Science, 292(5522), 1718–1722.PubMedCrossRef
12.
Zurück zum Zitat Wang, H. Y., & Malbon, C. C. (2004). Wnt-frizzled signaling to G-protein-coupled effectors. Cellular and Molecular Life Sciences: CMLS, 61(1), 69–75.PubMedCrossRef Wang, H. Y., & Malbon, C. C. (2004). Wnt-frizzled signaling to G-protein-coupled effectors. Cellular and Molecular Life Sciences: CMLS, 61(1), 69–75.PubMedCrossRef
14.
Zurück zum Zitat Potts, J. T., & Gardella, T. J. (2007). Progress, paradox, and potential: parathyroid hormone research over five decades. Annals of the New York Academy of Sciences, 1117, 196–208.PubMedCrossRef Potts, J. T., & Gardella, T. J. (2007). Progress, paradox, and potential: parathyroid hormone research over five decades. Annals of the New York Academy of Sciences, 1117, 196–208.PubMedCrossRef
15.
Zurück zum Zitat Honore, P., Luger, N. M., Sabino, M. A., Schwei, M. J., Rogers, S. D., Mach, D. B., et al. (2000). Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nature Medicine, 6(5), 521–528.PubMedCrossRef Honore, P., Luger, N. M., Sabino, M. A., Schwei, M. J., Rogers, S. D., Mach, D. B., et al. (2000). Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nature Medicine, 6(5), 521–528.PubMedCrossRef
16.
Zurück zum Zitat Southby, J., Kissin, M. W., Danks, J. A., Hayman, J. A., Moseley, J. M., Henderson, M. A., et al. (1990). Immunohistochemical localization of parathyroid hormone-related protein in human breast cancer. Cancer Research, 50(23), 7710–7716.PubMed Southby, J., Kissin, M. W., Danks, J. A., Hayman, J. A., Moseley, J. M., Henderson, M. A., et al. (1990). Immunohistochemical localization of parathyroid hormone-related protein in human breast cancer. Cancer Research, 50(23), 7710–7716.PubMed
17.
Zurück zum Zitat McCauley, L. K., & Martin, T. J. (2012). Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 27(6), 1231–1239.CrossRef McCauley, L. K., & Martin, T. J. (2012). Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 27(6), 1231–1239.CrossRef
18.
Zurück zum Zitat Allison, D. C., Carney, S. C., Ahlmann, E. R., Hendifar, A., Chawla, S., Fedenko, A., et al. (2012). A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma, 2012, 704872.PubMedPubMedCentralCrossRef Allison, D. C., Carney, S. C., Ahlmann, E. R., Hendifar, A., Chawla, S., Fedenko, A., et al. (2012). A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma, 2012, 704872.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Fearon, K., Arends, J., & Baracos, V. (2013). Understanding the mechanisms and treatment options in cancer cachexia. Nature Reviews. Clinical Oncology, 10(2), 90–99.PubMedCrossRef Fearon, K., Arends, J., & Baracos, V. (2013). Understanding the mechanisms and treatment options in cancer cachexia. Nature Reviews. Clinical Oncology, 10(2), 90–99.PubMedCrossRef
20.
Zurück zum Zitat Fearon, K. C., Glass, D. J., & Guttridge, D. C. (2012). Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metabolism, 16(2), 153–166.PubMedCrossRef Fearon, K. C., Glass, D. J., & Guttridge, D. C. (2012). Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metabolism, 16(2), 153–166.PubMedCrossRef
21.
Zurück zum Zitat Kir, S., White, J. P., Kleiner, S., Kazak, L., Cohen, P., Baracos, V. E., et al. (2014). Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature, 513(7516), 100–104.PubMedPubMedCentralCrossRef Kir, S., White, J. P., Kleiner, S., Kazak, L., Cohen, P., Baracos, V. E., et al. (2014). Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature, 513(7516), 100–104.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Ovesen, L., Allingstrup, L., Hannibal, J., Mortensen, E. L., & Hansen, O. P. (1993). Effect of dietary counseling on food intake, body weight, response rate, survival, and quality of life in cancer patients undergoing chemotherapy: a prospective, randomized study. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 11(10), 2043–2049.CrossRef Ovesen, L., Allingstrup, L., Hannibal, J., Mortensen, E. L., & Hansen, O. P. (1993). Effect of dietary counseling on food intake, body weight, response rate, survival, and quality of life in cancer patients undergoing chemotherapy: a prospective, randomized study. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 11(10), 2043–2049.CrossRef
24.
Zurück zum Zitat Barnes, M. R., Duckworth, D. M., & Beeley, L. J. (1998). Frizzled proteins constitute a novel family of G protein-coupled receptors, most closely related to the secretin family. Trends in Pharmacological Sciences, 19(10), 399–400.PubMedCrossRef Barnes, M. R., Duckworth, D. M., & Beeley, L. J. (1998). Frizzled proteins constitute a novel family of G protein-coupled receptors, most closely related to the secretin family. Trends in Pharmacological Sciences, 19(10), 399–400.PubMedCrossRef
25.
Zurück zum Zitat Romero, G., Sneddon, W. B., Yang, Y., Wheeler, D., Blair, H. C., & Friedman, P. A. (2010). Parathyroid hormone receptor directly interacts with dishevelled to regulate beta-catenin signaling and osteoclastogenesis. The Journal of Biological Chemistry, 285(19), 14756–14763.PubMedPubMedCentralCrossRef Romero, G., Sneddon, W. B., Yang, Y., Wheeler, D., Blair, H. C., & Friedman, P. A. (2010). Parathyroid hormone receptor directly interacts with dishevelled to regulate beta-catenin signaling and osteoclastogenesis. The Journal of Biological Chemistry, 285(19), 14756–14763.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Boyce, B. F., Xing, L., & Chen, D. (2005). Osteoprotegerin, the bone protector, is a surprising target for beta-catenin signaling. Cell Metabolism, 2(6), 344–345.PubMedPubMedCentralCrossRef Boyce, B. F., Xing, L., & Chen, D. (2005). Osteoprotegerin, the bone protector, is a surprising target for beta-catenin signaling. Cell Metabolism, 2(6), 344–345.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Goldring, S. R., & Goldring, M. B. (2007). Eating bone or adding it: the Wnt pathway decides. Nature Medicine, 13(2), 133–134.PubMedCrossRef Goldring, S. R., & Goldring, M. B. (2007). Eating bone or adding it: the Wnt pathway decides. Nature Medicine, 13(2), 133–134.PubMedCrossRef
28.
Zurück zum Zitat Holmen, S. L., Zylstra, C. R., Mukherjee, A., Sigler, R. E., Faugere, M. C., Bouxsein, M. L., et al. (2005). Essential role of beta-catenin in postnatal bone acquisition. The Journal of Biological Chemistry, 280(22), 21162–21168.PubMedCrossRef Holmen, S. L., Zylstra, C. R., Mukherjee, A., Sigler, R. E., Faugere, M. C., Bouxsein, M. L., et al. (2005). Essential role of beta-catenin in postnatal bone acquisition. The Journal of Biological Chemistry, 280(22), 21162–21168.PubMedCrossRef
29.
Zurück zum Zitat Yao, W., Cheng, Z., Shahnazari, M., Dai, W., Johnson, M. L., & Lane, N. E. (2010). Overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates parathyroid hormone bone anabolic effects. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 25(2), 190–199.CrossRef Yao, W., Cheng, Z., Shahnazari, M., Dai, W., Johnson, M. L., & Lane, N. E. (2010). Overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates parathyroid hormone bone anabolic effects. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 25(2), 190–199.CrossRef
30.
Zurück zum Zitat Diarra, D., Stolina, M., Polzer, K., Zwerina, J., Ominsky, M. S., Dwyer, D., et al. (2007). Dickkopf-1 is a master regulator of joint remodeling. Nature Medicine, 13(2), 156–163.PubMedCrossRef Diarra, D., Stolina, M., Polzer, K., Zwerina, J., Ominsky, M. S., Dwyer, D., et al. (2007). Dickkopf-1 is a master regulator of joint remodeling. Nature Medicine, 13(2), 156–163.PubMedCrossRef
31.
Zurück zum Zitat Wan, M., Yang, C., Li, J., Wu, X., Yuan, H., Ma, H., et al. (2008). Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes & Development, 22(21), 2968–2979.CrossRef Wan, M., Yang, C., Li, J., Wu, X., Yuan, H., Ma, H., et al. (2008). Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes & Development, 22(21), 2968–2979.CrossRef
32.
Zurück zum Zitat Torrance, C. J., Jackson, P. E., Montgomery, E., Kinzler, K. W., Vogelstein, B., Wissner, A., et al. (2000). Combinatorial chemoprevention of intestinal neoplasia. Nature Medicine, 6(9), 1024–1028.PubMedCrossRef Torrance, C. J., Jackson, P. E., Montgomery, E., Kinzler, K. W., Vogelstein, B., Wissner, A., et al. (2000). Combinatorial chemoprevention of intestinal neoplasia. Nature Medicine, 6(9), 1024–1028.PubMedCrossRef
34.
Zurück zum Zitat Vane, J. R., & Botting, R. M. (1998). Mechanism of action of nonsteroidal anti-inflammatory drugs. The American Journal of Medicine, 104(3A), 2S–8S discussion 21S-22S.PubMedCrossRef Vane, J. R., & Botting, R. M. (1998). Mechanism of action of nonsteroidal anti-inflammatory drugs. The American Journal of Medicine, 104(3A), 2S–8S discussion 21S-22S.PubMedCrossRef
35.
Zurück zum Zitat Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M., & Gutkind, J. S. (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science, 310(5753), 1504–1510.PubMedCrossRef Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M., & Gutkind, J. S. (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science, 310(5753), 1504–1510.PubMedCrossRef
36.
Zurück zum Zitat Hull, M. A., Ko, S. C., & Hawcroft, G. (2004). Prostaglandin EP receptors: targets for treatment and prevention of colorectal cancer? Molecular Cancer Therapeutics, 3(8), 1031–1039.PubMed Hull, M. A., Ko, S. C., & Hawcroft, G. (2004). Prostaglandin EP receptors: targets for treatment and prevention of colorectal cancer? Molecular Cancer Therapeutics, 3(8), 1031–1039.PubMed
37.
Zurück zum Zitat Backlund, M. G., Mann, J. R., & Dubois, R. N. (2005). Mechanisms for the prevention of gastrointestinal cancer: the role of prostaglandin E2. Oncology, 69(Suppl 1), 28–32.PubMedCrossRef Backlund, M. G., Mann, J. R., & Dubois, R. N. (2005). Mechanisms for the prevention of gastrointestinal cancer: the role of prostaglandin E2. Oncology, 69(Suppl 1), 28–32.PubMedCrossRef
38.
Zurück zum Zitat Wang, D., Wang, H., Brown, J., Daikoku, T., Ning, W., Shi, Q., et al. (2006). CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. The Journal of Experimental Medicine, 203(4), 941–951.PubMedPubMedCentralCrossRef Wang, D., Wang, H., Brown, J., Daikoku, T., Ning, W., Shi, Q., et al. (2006). CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. The Journal of Experimental Medicine, 203(4), 941–951.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Majumder, M., Xin, X., Liu, L., Tutunea-Fatan, E., Rodriguez-Torres, M., Vincent, K., et al. (2016). COX-2 induces breast cancer stem cells via EP4/PI3K/AKT/NOTCH/WNT Axis. Stem Cells, 34(9), 2290–2305.PubMedCrossRef Majumder, M., Xin, X., Liu, L., Tutunea-Fatan, E., Rodriguez-Torres, M., Vincent, K., et al. (2016). COX-2 induces breast cancer stem cells via EP4/PI3K/AKT/NOTCH/WNT Axis. Stem Cells, 34(9), 2290–2305.PubMedCrossRef
40.
Zurück zum Zitat Du, M., Shi, F., Zhang, H., Xia, S., Zhang, M., Ma, J., et al. (2015). Prostaglandin E2 promotes human cholangiocarcinoma cell proliferation, migration and invasion through the upregulation of beta-catenin expression via EP3-4 receptor. Oncology Reports, 34(2), 715–726.PubMedCrossRef Du, M., Shi, F., Zhang, H., Xia, S., Zhang, M., Ma, J., et al. (2015). Prostaglandin E2 promotes human cholangiocarcinoma cell proliferation, migration and invasion through the upregulation of beta-catenin expression via EP3-4 receptor. Oncology Reports, 34(2), 715–726.PubMedCrossRef
41.
Zurück zum Zitat Vaid, M., Singh, T., Prasad, R., Kappes, J. C., & Katiyar, S. K. (2015). Therapeutic intervention of proanthocyanidins on the migration capacity of melanoma cells is mediated through PGE2 receptors and beta-catenin signaling molecules. American Journal of Cancer Research, 5(11), 3325–3338.PubMedPubMedCentral Vaid, M., Singh, T., Prasad, R., Kappes, J. C., & Katiyar, S. K. (2015). Therapeutic intervention of proanthocyanidins on the migration capacity of melanoma cells is mediated through PGE2 receptors and beta-catenin signaling molecules. American Journal of Cancer Research, 5(11), 3325–3338.PubMedPubMedCentral
42.
Zurück zum Zitat Auersperg, N. (2011). The origin of ovarian carcinomas: a unifying hypothesis. International Journal of Gynecological Pathology: Official Journal of the International Society of Gynecological Pathologists, 30(1), 12–21.CrossRef Auersperg, N. (2011). The origin of ovarian carcinomas: a unifying hypothesis. International Journal of Gynecological Pathology: Official Journal of the International Society of Gynecological Pathologists, 30(1), 12–21.CrossRef
43.
Zurück zum Zitat Kim, J., Coffey, D. M., Creighton, C. J., Yu, Z., Hawkins, S. M., & Matzuk, M. M. (2012). High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proceedings of the National Academy of Sciences of the United States of America, 109(10), 3921–3926.PubMedPubMedCentralCrossRef Kim, J., Coffey, D. M., Creighton, C. J., Yu, Z., Hawkins, S. M., & Matzuk, M. M. (2012). High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proceedings of the National Academy of Sciences of the United States of America, 109(10), 3921–3926.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Kurman, R. J., & Shih Ie, M. (2010). The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. The American Journal of Surgical Pathology, 34(3), 433–443.PubMedPubMedCentralCrossRef Kurman, R. J., & Shih Ie, M. (2010). The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. The American Journal of Surgical Pathology, 34(3), 433–443.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Lee, Y., Miron, A., Drapkin, R., Nucci, M. R., Medeiros, F., Saleemuddin, A., et al. (2007). A candidate precursor to serous carcinoma that originates in the distal fallopian tube. The Journal of Pathology, 211(1), 26–35.PubMedCrossRef Lee, Y., Miron, A., Drapkin, R., Nucci, M. R., Medeiros, F., Saleemuddin, A., et al. (2007). A candidate precursor to serous carcinoma that originates in the distal fallopian tube. The Journal of Pathology, 211(1), 26–35.PubMedCrossRef
47.
Zurück zum Zitat Shih Ie, M., & Kurman, R. J. (2004). Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. The American Journal of Pathology, 164(5), 1511–1518.PubMedCrossRef Shih Ie, M., & Kurman, R. J. (2004). Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. The American Journal of Pathology, 164(5), 1511–1518.PubMedCrossRef
48.
Zurück zum Zitat Auersperg, N., Edelson, M. I., Mok, S. C., Johnson, S. W., & Hamilton, T. C. (1998). The biology of ovarian cancer. Seminars in Oncology, 25(3), 281–304.PubMed Auersperg, N., Edelson, M. I., Mok, S. C., Johnson, S. W., & Hamilton, T. C. (1998). The biology of ovarian cancer. Seminars in Oncology, 25(3), 281–304.PubMed
50.
Zurück zum Zitat Mills, G. B., May, C., Hill, M., Campbell, S., Shaw, P., & Marks, A. (1990). Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells. The Journal of Clinical Investigation, 86(3), 851–855.PubMedPubMedCentralCrossRef Mills, G. B., May, C., Hill, M., Campbell, S., Shaw, P., & Marks, A. (1990). Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells. The Journal of Clinical Investigation, 86(3), 851–855.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Xu, Y., Gaudette, D. C., Boynton, J. D., Frankel, A., Fang, X. J., Sharma, A., et al. (1995). Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 1(10), 1223–1232. Xu, Y., Gaudette, D. C., Boynton, J. D., Frankel, A., Fang, X. J., Sharma, A., et al. (1995). Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 1(10), 1223–1232.
52.
Zurück zum Zitat Xu, Y., Shen, Z., Wiper, D. W., Wu, M., Morton, R. E., Elson, P., et al. (1998). Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA, 280(8), 719–723.PubMedCrossRef Xu, Y., Shen, Z., Wiper, D. W., Wu, M., Morton, R. E., Elson, P., et al. (1998). Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA, 280(8), 719–723.PubMedCrossRef
53.
Zurück zum Zitat Hecht, J. H., Weiner, J. A., Post, S. R., & Chun, J. (1996). Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. The Journal of Cell Biology, 135(4), 1071–1083.PubMedCrossRef Hecht, J. H., Weiner, J. A., Post, S. R., & Chun, J. (1996). Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. The Journal of Cell Biology, 135(4), 1071–1083.PubMedCrossRef
54.
Zurück zum Zitat Yang, M., Zhong, W. W., Srivastava, N., Slavin, A., Yang, J., Hoey, T., et al. (2005). G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the beta-catenin pathway. Proceedings of the National Academy of Sciences of the United States of America, 102(17), 6027–6032.PubMedPubMedCentralCrossRef Yang, M., Zhong, W. W., Srivastava, N., Slavin, A., Yang, J., Hoey, T., et al. (2005). G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the beta-catenin pathway. Proceedings of the National Academy of Sciences of the United States of America, 102(17), 6027–6032.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Ranjan, R., Dwivedi, H., Baidya, M., Kumar, M., & Shukla, A. K. (2017). Novel structural insights into GPCR-beta-arrestin interaction and signaling. Trends in Cell Biology, S0962-8924(17), 30087–30089. Ranjan, R., Dwivedi, H., Baidya, M., Kumar, M., & Shukla, A. K. (2017). Novel structural insights into GPCR-beta-arrestin interaction and signaling. Trends in Cell Biology, S0962-8924(17), 30087–30089.
57.
Zurück zum Zitat Cahill 3rd, T. J., Thomsen, A. R., Tarrasch, J. T., Plouffe, B., Nguyen, A. H., Yang, F., et al. (2017). Distinct conformations of GPCR-beta-arrestin complexes mediate desensitization, signaling, and endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 114(10), 2562–2567.PubMedPubMedCentralCrossRef Cahill 3rd, T. J., Thomsen, A. R., Tarrasch, J. T., Plouffe, B., Nguyen, A. H., Yang, F., et al. (2017). Distinct conformations of GPCR-beta-arrestin complexes mediate desensitization, signaling, and endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 114(10), 2562–2567.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Jean-Charles, P. Y., Kaur, S., & Shenoy, S. K. (2017). G protein-coupled receptor signaling through beta-arrestin-dependent mechanisms. Journal of Cardiovascular Pharmacology, 70(3), 142–158.PubMedCrossRef Jean-Charles, P. Y., Kaur, S., & Shenoy, S. K. (2017). G protein-coupled receptor signaling through beta-arrestin-dependent mechanisms. Journal of Cardiovascular Pharmacology, 70(3), 142–158.PubMedCrossRef
59.
Zurück zum Zitat Hinsley, E. E., Hunt, S., Hunter, K. D., Whawell, S. A., & Lambert, D. W. (2012). Endothelin-1 stimulates motility of head and neck squamous carcinoma cells by promoting stromal-epithelial interactions. International Journal of Cancer, 130(1), 40–47.PubMedCrossRef Hinsley, E. E., Hunt, S., Hunter, K. D., Whawell, S. A., & Lambert, D. W. (2012). Endothelin-1 stimulates motility of head and neck squamous carcinoma cells by promoting stromal-epithelial interactions. International Journal of Cancer, 130(1), 40–47.PubMedCrossRef
60.
Zurück zum Zitat Kim, T. H., Xiong, H., Zhang, Z., & Ren, B. (2005). Beta-catenin activates the growth factor endothelin-1 in colon cancer cells. Oncogene, 24(4), 597–604.PubMedCrossRef Kim, T. H., Xiong, H., Zhang, Z., & Ren, B. (2005). Beta-catenin activates the growth factor endothelin-1 in colon cancer cells. Oncogene, 24(4), 597–604.PubMedCrossRef
61.
Zurück zum Zitat Rosanò, L., Cianfrocca, R., Masi, S., Spinella, F., Di Castro, V., Biroccio, A., et al. (2009). Beta-arrestin links endothelin A receptor to beta-catenin signaling to induce ovarian cancer cell invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 106(8), 2806–2811.PubMedPubMedCentralCrossRef Rosanò, L., Cianfrocca, R., Masi, S., Spinella, F., Di Castro, V., Biroccio, A., et al. (2009). Beta-arrestin links endothelin A receptor to beta-catenin signaling to induce ovarian cancer cell invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 106(8), 2806–2811.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Rosanò, L., Cianfrocca, R., Tocci, P., Spinella, F., Di Castro, V., Spadaro, F., et al. (2013). Beta-arrestin-1 is a nuclear transcriptional regulator of endothelin-1-induced beta-catenin signaling. Oncogene, 32(42), 5066–5077.PubMedCrossRef Rosanò, L., Cianfrocca, R., Tocci, P., Spinella, F., Di Castro, V., Spadaro, F., et al. (2013). Beta-arrestin-1 is a nuclear transcriptional regulator of endothelin-1-induced beta-catenin signaling. Oncogene, 32(42), 5066–5077.PubMedCrossRef
63.
Zurück zum Zitat Spinella, F., Caprara, V., Di Castro, V., Rosano, L., Cianfrocca, R., Natali, P. G., et al. (2013). Endothelin-1 induces the transactivation of vascular endothelial growth factor receptor-3 and modulates cell migration and vasculogenic mimicry in melanoma cells. Journal of Molecular Medicine, 91(3), 395–405.PubMedCrossRef Spinella, F., Caprara, V., Di Castro, V., Rosano, L., Cianfrocca, R., Natali, P. G., et al. (2013). Endothelin-1 induces the transactivation of vascular endothelial growth factor receptor-3 and modulates cell migration and vasculogenic mimicry in melanoma cells. Journal of Molecular Medicine, 91(3), 395–405.PubMedCrossRef
64.
Zurück zum Zitat Sun, P., Xiong, H., Kim, T. H., Ren, B., & Zhang, Z. (2006). Positive inter-regulation between beta-catenin/T cell factor-4 signaling and endothelin-1 signaling potentiates proliferation and survival of prostate cancer cells. Molecular Pharmacology, 69(2), 520–531.PubMedCrossRef Sun, P., Xiong, H., Kim, T. H., Ren, B., & Zhang, Z. (2006). Positive inter-regulation between beta-catenin/T cell factor-4 signaling and endothelin-1 signaling potentiates proliferation and survival of prostate cancer cells. Molecular Pharmacology, 69(2), 520–531.PubMedCrossRef
65.
Zurück zum Zitat de Lau, W., Barker, N., Low, T. Y., Koo, B. K., Li, V. S., Teunissen, H., et al. (2011). Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature, 476(7360), 293–297.PubMedCrossRef de Lau, W., Barker, N., Low, T. Y., Koo, B. K., Li, V. S., Teunissen, H., et al. (2011). Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature, 476(7360), 293–297.PubMedCrossRef
66.
Zurück zum Zitat Carmon, K. S., Gong, X., Lin, Q., Thomas, A., & Liu, Q. (2011). R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proceedings of the National Academy of Sciences of the United States of America, 108(28), 11452–11457.PubMedPubMedCentralCrossRef Carmon, K. S., Gong, X., Lin, Q., Thomas, A., & Liu, Q. (2011). R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proceedings of the National Academy of Sciences of the United States of America, 108(28), 11452–11457.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Hao, H. X., Xie, Y., Zhang, Y., Charlat, O., Oster, E., Avello, M., et al. (2012). ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature, 485(7397), 195–200.PubMedCrossRef Hao, H. X., Xie, Y., Zhang, Y., Charlat, O., Oster, E., Avello, M., et al. (2012). ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature, 485(7397), 195–200.PubMedCrossRef
68.
Zurück zum Zitat Koo, B. K., Spit, M., Jordens, I., Low, T. Y., Stange, D. E., van de Wetering, M., et al. (2012). Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature, 488(7413), 665–669.PubMedCrossRef Koo, B. K., Spit, M., Jordens, I., Low, T. Y., Stange, D. E., van de Wetering, M., et al. (2012). Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature, 488(7413), 665–669.PubMedCrossRef
69.
Zurück zum Zitat Barker, N., Ridgway, R. A., van Es, J. H., van de Wetering, M., Begthel, H., van den Born, M., et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 457(7229), 608–611.PubMedCrossRef Barker, N., Ridgway, R. A., van Es, J. H., van de Wetering, M., Begthel, H., van den Born, M., et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 457(7229), 608–611.PubMedCrossRef
70.
Zurück zum Zitat Barker, N., Tan, S., & Clevers, H. (2013). Lgr proteins in epithelial stem cell biology. Development, 140(12), 2484–2494.PubMedCrossRef Barker, N., Tan, S., & Clevers, H. (2013). Lgr proteins in epithelial stem cell biology. Development, 140(12), 2484–2494.PubMedCrossRef
71.
Zurück zum Zitat Munoz, J., Stange, D. E., Schepers, A. G., van de Wetering, M., Koo, B. K., Itzkovitz, S., et al. (2012). The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers. The EMBO Journal, 31(14), 3079–3091.PubMedPubMedCentralCrossRef Munoz, J., Stange, D. E., Schepers, A. G., van de Wetering, M., Koo, B. K., Itzkovitz, S., et al. (2012). The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers. The EMBO Journal, 31(14), 3079–3091.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat van der Flier, L. G., van Gijn, M. E., Hatzis, P., Kujala, P., Haegebarth, A., Stange, D. E., et al. (2009). Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell, 136(5), 903–912.PubMedCrossRef van der Flier, L. G., van Gijn, M. E., Hatzis, P., Kujala, P., Haegebarth, A., Stange, D. E., et al. (2009). Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell, 136(5), 903–912.PubMedCrossRef
73.
Zurück zum Zitat Ramalingam, S., Daughtridge, G. W., Johnston, M. J., Gracz, A. D., & Magness, S. T. (2012). Distinct levels of Sox9 expression mark colon epithelial stem cells that form colonoids in culture. American Journal of Physiology. Gastrointestinal and Liver Physiology, 302(1), G10–G20.PubMedCrossRef Ramalingam, S., Daughtridge, G. W., Johnston, M. J., Gracz, A. D., & Magness, S. T. (2012). Distinct levels of Sox9 expression mark colon epithelial stem cells that form colonoids in culture. American Journal of Physiology. Gastrointestinal and Liver Physiology, 302(1), G10–G20.PubMedCrossRef
74.
Zurück zum Zitat Furuyama, K., Kawaguchi, Y., Akiyama, H., Horiguchi, M., Kodama, S., Kuhara, T., et al. (2011). Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nature Genetics, 43(1), 34–41.PubMedCrossRef Furuyama, K., Kawaguchi, Y., Akiyama, H., Horiguchi, M., Kodama, S., Kuhara, T., et al. (2011). Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nature Genetics, 43(1), 34–41.PubMedCrossRef
75.
Zurück zum Zitat Clevers, H. (2013). The intestinal crypt, a prototype stem cell compartment. Cell, 154(2), 274–284.PubMedCrossRef Clevers, H. (2013). The intestinal crypt, a prototype stem cell compartment. Cell, 154(2), 274–284.PubMedCrossRef
76.
Zurück zum Zitat Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843–850.PubMedCrossRef Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843–850.PubMedCrossRef
77.
Zurück zum Zitat Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 20, 781–810.PubMedCrossRef Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 20, 781–810.PubMedCrossRef
78.
Zurück zum Zitat Marikawa, Y. (2006). Wnt/beta-catenin signaling and body plan formation in mouse embryos. Seminars in Cell & Developmental Biology, 17(2), 175–184.CrossRef Marikawa, Y. (2006). Wnt/beta-catenin signaling and body plan formation in mouse embryos. Seminars in Cell & Developmental Biology, 17(2), 175–184.CrossRef
79.
Zurück zum Zitat Harland, R., & Gerhart, J. (1997). Formation and function of Spemann’s organizer. Annual Review of Cell and Developmental Biology, 13, 611–667.PubMedCrossRef Harland, R., & Gerhart, J. (1997). Formation and function of Spemann’s organizer. Annual Review of Cell and Developmental Biology, 13, 611–667.PubMedCrossRef
80.
Zurück zum Zitat Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K. W., et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science, 275(5307), 1784–1787.PubMedCrossRef Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K. W., et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science, 275(5307), 1784–1787.PubMedCrossRef
82.
Zurück zum Zitat Major, M. B., Roberts, B. S., Berndt, J. D., Marine, S., Anastas, J., Chung, N., et al. (2008). New regulators of Wnt/beta-catenin signaling revealed by integrative molecular screening. Science Signaling, 1(45), ra12.PubMed Major, M. B., Roberts, B. S., Berndt, J. D., Marine, S., Anastas, J., Chung, N., et al. (2008). New regulators of Wnt/beta-catenin signaling revealed by integrative molecular screening. Science Signaling, 1(45), ra12.PubMed
83.
Zurück zum Zitat Regard, J. B., Cherman, N., Palmer, D., Kuznetsov, S. A., Celi, F. S., Guettier, J. M., et al. (2011). Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20101–20106.PubMedPubMedCentralCrossRef Regard, J. B., Cherman, N., Palmer, D., Kuznetsov, S. A., Celi, F. S., Guettier, J. M., et al. (2011). Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20101–20106.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Katanaev, V. L., Ponzielli, R., Semeriva, M., & Tomlinson, A. (2005). Trimeric G protein-dependent frizzled signaling in Drosophila. Cell, 120(1), 111–122.PubMedCrossRef Katanaev, V. L., Ponzielli, R., Semeriva, M., & Tomlinson, A. (2005). Trimeric G protein-dependent frizzled signaling in Drosophila. Cell, 120(1), 111–122.PubMedCrossRef
85.
Zurück zum Zitat Mo, J. S., Yu, F. X., Gong, R., Brown, J. H., & Guan, K. L. (2012). Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes & Development, 26(19), 2138–2143.CrossRef Mo, J. S., Yu, F. X., Gong, R., Brown, J. H., & Guan, K. L. (2012). Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes & Development, 26(19), 2138–2143.CrossRef
87.
Zurück zum Zitat Slusarski, D. C., Corces, V. G., & Moon, R. T. (1997). Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature, 390(6658), 410–413.PubMedCrossRef Slusarski, D. C., Corces, V. G., & Moon, R. T. (1997). Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature, 390(6658), 410–413.PubMedCrossRef
88.
Zurück zum Zitat Feng, X., Degese, M. S., Iglesias-Bartolome, R., Vaque, J. P., Molinolo, A. A., Rodrigues, M., et al. (2014). Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell, 25(6), 831–845.PubMedPubMedCentralCrossRef Feng, X., Degese, M. S., Iglesias-Bartolome, R., Vaque, J. P., Molinolo, A. A., Rodrigues, M., et al. (2014). Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell, 25(6), 831–845.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Park, H. W., Kim, Y. C., Yu, B., Moroishi, T., Mo, J. S., Plouffe, S. W., et al. (2015). Alternative Wnt signaling activates YAP/TAZ. Cell, 162(4), 780–794.PubMedPubMedCentralCrossRef Park, H. W., Kim, Y. C., Yu, B., Moroishi, T., Mo, J. S., Plouffe, S. W., et al. (2015). Alternative Wnt signaling activates YAP/TAZ. Cell, 162(4), 780–794.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Meng, Z., Moroishi, T., & Guan, K. L. (2016). Mechanisms of Hippo pathway regulation. Genes & Development, 30(1), 1–17.CrossRef Meng, Z., Moroishi, T., & Guan, K. L. (2016). Mechanisms of Hippo pathway regulation. Genes & Development, 30(1), 1–17.CrossRef
91.
Zurück zum Zitat Yu, F. X., Zhao, B., Panupinthu, N., Jewell, J. L., Lian, I., Wang, L. H., et al. (2012). Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell, 150(4), 780–791.PubMedPubMedCentralCrossRef Yu, F. X., Zhao, B., Panupinthu, N., Jewell, J. L., Lian, I., Wang, L. H., et al. (2012). Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell, 150(4), 780–791.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Burger, M. M. (1970). Proteolytic enzymes initiating cell division and escape from contact inhibition of growth. Nature, 227(5254), 170–171.PubMedCrossRef Burger, M. M. (1970). Proteolytic enzymes initiating cell division and escape from contact inhibition of growth. Nature, 227(5254), 170–171.PubMedCrossRef
93.
Zurück zum Zitat Carney, D. H., & Cunningham, D. D. (1977). Initiation of check cell division by trypsin action at the cell surface. Nature, 268(5621), 602–606.PubMedCrossRef Carney, D. H., & Cunningham, D. D. (1977). Initiation of check cell division by trypsin action at the cell surface. Nature, 268(5621), 602–606.PubMedCrossRef
94.
Zurück zum Zitat Chen, L. B., & Buchanan, J. M. (1975). Mitogenic activity of blood components. I. Thrombin and prothrombin. Proceedings of the National Academy of Sciences of the United States of America, 72(1), 131–135.PubMedPubMedCentralCrossRef Chen, L. B., & Buchanan, J. M. (1975). Mitogenic activity of blood components. I. Thrombin and prothrombin. Proceedings of the National Academy of Sciences of the United States of America, 72(1), 131–135.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Rasmussen, U. B., Vouret-Craviari, V., Jallat, S., Schlesinger, Y., Pages, G., Pavirani, A., et al. (1991). cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2+ mobilization. FEBS Letters, 288(1–2), 123–128.PubMedCrossRef Rasmussen, U. B., Vouret-Craviari, V., Jallat, S., Schlesinger, Y., Pages, G., Pavirani, A., et al. (1991). cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2+ mobilization. FEBS Letters, 288(1–2), 123–128.PubMedCrossRef
96.
Zurück zum Zitat Vu, T. K., Hung, D. T., Wheaton, V. I., & Coughlin, S. R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell, 64(6), 1057–1068.PubMedCrossRef Vu, T. K., Hung, D. T., Wheaton, V. I., & Coughlin, S. R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell, 64(6), 1057–1068.PubMedCrossRef
97.
Zurück zum Zitat Coughlin, S. R. (1994). Protease-activated receptors start a family. Proceedings of the National Academy of Sciences of the United States of America, 91(20), 9200–9202.PubMedPubMedCentralCrossRef Coughlin, S. R. (1994). Protease-activated receptors start a family. Proceedings of the National Academy of Sciences of the United States of America, 91(20), 9200–9202.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Nystedt, S., Emilsson, K., Wahlestedt, C., & Sundelin, J. (1994). Molecular cloning of a potential proteinase activated receptor. Proceedings of the National Academy of Sciences of the United States of America, 91(20), 9208–9212.PubMedPubMedCentralCrossRef Nystedt, S., Emilsson, K., Wahlestedt, C., & Sundelin, J. (1994). Molecular cloning of a potential proteinase activated receptor. Proceedings of the National Academy of Sciences of the United States of America, 91(20), 9208–9212.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat O'Brien, P. J., Prevost, N., Molino, M., Hollinger, M. K., Woolkalis, M. J., Woulfe, D. S., et al. (2000). Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. The Journal of Biological Chemistry, 275(18), 13502–13509.PubMedCrossRef O'Brien, P. J., Prevost, N., Molino, M., Hollinger, M. K., Woolkalis, M. J., Woulfe, D. S., et al. (2000). Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. The Journal of Biological Chemistry, 275(18), 13502–13509.PubMedCrossRef
100.
Zurück zum Zitat Jaber, M., Maoz, M., Kancharla, A., Agranovich, D., Peretz, T., Grisaru-Granovsky, S., et al. (2014). Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer. Cellular and Molecular Life Sciences: CMLS, 71(13), 2517–2533.PubMedCrossRef Jaber, M., Maoz, M., Kancharla, A., Agranovich, D., Peretz, T., Grisaru-Granovsky, S., et al. (2014). Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer. Cellular and Molecular Life Sciences: CMLS, 71(13), 2517–2533.PubMedCrossRef
101.
Zurück zum Zitat Sevigny, L. M., Austin, K. M., Zhang, P., Kasuda, S., Koukos, G., Sharifi, S., et al. (2011). Protease-activated receptor-2 modulates protease-activated receptor-1-driven neointimal hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(12), e100–e106.PubMedPubMedCentralCrossRef Sevigny, L. M., Austin, K. M., Zhang, P., Kasuda, S., Koukos, G., Sharifi, S., et al. (2011). Protease-activated receptor-2 modulates protease-activated receptor-1-driven neointimal hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(12), e100–e106.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat McLaughlin, J. N., Patterson, M. M., & Malik, A. B. (2007). Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proceedings of the National Academy of Sciences of the United States of America, 104(13), 5662–5667.PubMedPubMedCentralCrossRef McLaughlin, J. N., Patterson, M. M., & Malik, A. B. (2007). Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proceedings of the National Academy of Sciences of the United States of America, 104(13), 5662–5667.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Leger, A. J., Jacques, S. L., Badar, J., Kaneider, N. C., Derian, C. K., Andrade-Gordon, P., et al. (2006). Blocking the protease-activated receptor 1-4 heterodimer in platelet-mediated thrombosis. Circulation, 113(9), 1244–1254.PubMedCrossRef Leger, A. J., Jacques, S. L., Badar, J., Kaneider, N. C., Derian, C. K., Andrade-Gordon, P., et al. (2006). Blocking the protease-activated receptor 1-4 heterodimer in platelet-mediated thrombosis. Circulation, 113(9), 1244–1254.PubMedCrossRef
104.
Zurück zum Zitat Blackhart, B. D., Emilsson, K., Nguyen, D., Teng, W., Martelli, A. J., Nystedt, S., et al. (1996). Ligand cross-reactivity within the protease-activated receptor family. The Journal of Biological Chemistry, 271(28), 16466–16471.PubMedCrossRef Blackhart, B. D., Emilsson, K., Nguyen, D., Teng, W., Martelli, A. J., Nystedt, S., et al. (1996). Ligand cross-reactivity within the protease-activated receptor family. The Journal of Biological Chemistry, 271(28), 16466–16471.PubMedCrossRef
105.
Zurück zum Zitat Ishihara, H., Connolly, A. J., Zeng, D., Kahn, M. L., Zheng, Y. W., Timmons, C., et al. (1997). Protease-activated receptor 3 is a second thrombin receptor in humans. Nature, 386(6624), 502–506.PubMedCrossRef Ishihara, H., Connolly, A. J., Zeng, D., Kahn, M. L., Zheng, Y. W., Timmons, C., et al. (1997). Protease-activated receptor 3 is a second thrombin receptor in humans. Nature, 386(6624), 502–506.PubMedCrossRef
106.
Zurück zum Zitat Kahn, M. L., Zheng, Y. W., Huang, W., Bigornia, V., Zeng, D., Moff, S., et al. (1998). A dual thrombin receptor system for platelet activation. Nature, 394(6694), 690–694.PubMedCrossRef Kahn, M. L., Zheng, Y. W., Huang, W., Bigornia, V., Zeng, D., Moff, S., et al. (1998). A dual thrombin receptor system for platelet activation. Nature, 394(6694), 690–694.PubMedCrossRef
107.
Zurück zum Zitat Xu, W. F., Andersen, H., Whitmore, T. E., Presnell, S. R., Yee, D. P., Ching, A., et al. (1998). Cloning and characterization of human protease-activated receptor 4. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 6642–6646.PubMedPubMedCentralCrossRef Xu, W. F., Andersen, H., Whitmore, T. E., Presnell, S. R., Yee, D. P., Ching, A., et al. (1998). Cloning and characterization of human protease-activated receptor 4. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 6642–6646.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Even-Ram, S., Uziely, B., Cohen, P., Grisaru-Granovsky, S., Maoz, M., Ginzburg, Y., et al. (1998). Thrombin receptor overexpression in malignant and physiological invasion processes. Nature Medicine, 4(8), 909–914.PubMedCrossRef Even-Ram, S., Uziely, B., Cohen, P., Grisaru-Granovsky, S., Maoz, M., Ginzburg, Y., et al. (1998). Thrombin receptor overexpression in malignant and physiological invasion processes. Nature Medicine, 4(8), 909–914.PubMedCrossRef
109.
Zurück zum Zitat Nag, J. K., Kancharla, A., Maoz, M., Turm, H., Agranovich, D., Gupta, C. L., et al. (2017). Low-density lipoprotein receptor-related protein 6 is a novel coreceptor of protease-activated receptor-2 in the dynamics of cancer-associated beta-catenin stabilization. Oncotarget, 8(24), 38650–38667.PubMedPubMedCentralCrossRef Nag, J. K., Kancharla, A., Maoz, M., Turm, H., Agranovich, D., Gupta, C. L., et al. (2017). Low-density lipoprotein receptor-related protein 6 is a novel coreceptor of protease-activated receptor-2 in the dynamics of cancer-associated beta-catenin stabilization. Oncotarget, 8(24), 38650–38667.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Kancharla, A., Maoz, M., Jaber, M., Agranovich, D., Peretz, T., Grisaru-Granovsky, S., et al. (2015). PH motifs in PAR1&2 endow breast cancer growth. Nature Communications, 6, 8853–8865.PubMedPubMedCentralCrossRef Kancharla, A., Maoz, M., Jaber, M., Agranovich, D., Peretz, T., Grisaru-Granovsky, S., et al. (2015). PH motifs in PAR1&2 endow breast cancer growth. Nature Communications, 6, 8853–8865.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Yin, Y. J., Katz, V., Salah, Z., Maoz, M., Cohen, I., Uziely, B., et al. (2006). Mammary gland tissue targeted overexpression of human protease-activated receptor 1 reveals a novel link to beta-catenin stabilization. Cancer Research, 66(10), 5224–5233.PubMedCrossRef Yin, Y. J., Katz, V., Salah, Z., Maoz, M., Cohen, I., Uziely, B., et al. (2006). Mammary gland tissue targeted overexpression of human protease-activated receptor 1 reveals a novel link to beta-catenin stabilization. Cancer Research, 66(10), 5224–5233.PubMedCrossRef
Metadaten
Titel
Cancer driver G-protein coupled receptor (GPCR) induced β-catenin nuclear localization: the transcriptional junction
verfasst von
Jeetendra Kumar Nag
Tatyana Rudina
Myriam Maoz
Sorina Grisaru-Granovsky
Beatrice Uziely
Rachel Bar-Shavit
Publikationsdatum
08.12.2017
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2018
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9711-z

Weitere Artikel der Ausgabe 1/2018

Cancer and Metastasis Reviews 1/2018 Zur Ausgabe

Announcement

Biographies

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.