Skip to main content
main-content

01.12.2014 | Ausgabe 10/2014

Quality of Life Research 10/2014

Cancer-related fatigue in breast cancer patients: factor mixture models with continuous non-normal distributions

Zeitschrift:
Quality of Life Research > Ausgabe 10/2014
Autoren:
Rainbow T. H. Ho, Ted C. T. Fong, Irene K. M. Cheung

Abstract

Objective

Fatigue is one of the most prevalent and significant symptoms experienced by breast cancer patients. This study aimed to investigate potential population heterogeneity in fatigue symptoms of the patients using the innovative non-normal mixture modeling.

Methods

A sample of 197 breast cancer patients completed the brief fatigue inventory and other measures on cancer symptoms. Non-normal factor mixture models were analyzed and compared using the normal, t, skew-normal, and skew-t distributions. Selection of the number of latent classes was based on the Bayesian information criterion (BIC). The identified classes were validated by comparing their demographic profiles, clinical characteristics, and cancer symptoms using a stepwise distal outcome approach.

Results

The observed fatigue items displayed slight skewness but evident negative kurtosis. Factor mixture models using the normal distribution pointed to a 3-class solution. The t distribution mixture models showed the lowest BIC for the 2-class model. The restored class (52.5 %) exhibited moderate severity (item mean = 2.8–3.2) and low interference (item mean = 1.1–1.9). The exhausted class (47.5 %) displayed high levels of fatigue severity and interference (item mean = 5.8–6.6). Compared to the restored class, the exhausted class reported significantly higher perceived stress, anxiety, depression, pain, sleep disturbance, and lower quality of life.

Conclusions

The non-normal factor mixture models suggest two distinct subgroups of patients on their fatigue symptoms. The presence of the exhausted class with exacerbated symptoms calls for a proactive assessment of the symptoms and development of tailored interventions for this subgroup.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2014

Quality of Life Research 10/2014 Zur Ausgabe