Skip to main content
Erschienen in: Breast Cancer Research and Treatment 1/2008

01.03.2008 | Preclinical Study

Cancer-specific targeting of a conditionally replicative adenovirus using mRNA translational control

verfasst von: Mariam A. Stoff-Khalili, Angel A. Rivera, Ana Nedeljkovic-Kurepa, Arrigo DeBenedetti, Xiao-Lin Li, Yoshinobu Odaka, Jagat Podduturi, Don A. Sibley, Gene P. Siegal, Alexander Stoff, Scott Young, Zheng B. Zhu, David T. Curiel, J. Michael Mathis

Erschienen in: Breast Cancer Research and Treatment | Ausgabe 1/2008

Einloggen, um Zugang zu erhalten

Abstract

Background

In view of the limited success of available treatment modalities for a wide array of cancer, alternative and complementary therapeutic strategies need to be developed. Virotherapy employing conditionally replicative adenoviruses (CRAds) represents a promising targeted intervention relevant to a wide array of neoplastic diseases. Critical to the realization of an acceptable therapeutic index using virotherapy in clinical trials is the achievement of oncolytic replication in tumor cells, while avoiding non-specific replication in normal tissues. In this report, we exploited cancer-specific control of mRNA translation initiation in order to achieve enhanced replicative specificity of CRAd virotherapy agents. Heretofore, the achievement of replicative specificity of CRAd agents has been accomplished either by viral genome deletions or incorporation of tumor selective promoters. In contrast, control of mRNA translation has not been exploited for the design of tumor specific replicating viruses to date. We show herein, the utility of a novel approach that combines both transcriptional and translational regulation strategies for the key goal of replicative specificity.

Methods

We describe the construction of a CRAd with cancer specific gene transcriptional control using the CXCR4 gene promoter (TSP) and cancer specific mRNA translational control using a 5′-untranslated region (5′-UTR) element from the FGF-2 (Fibroblast Growth Factor-2) mRNA.

Results

Both in vitro and in vivo studies demonstrated that our CRAd agent retains anti-tumor potency. Importantly, assessment of replicative specificity using stringent tumor and non-tumor tissue slice systems demonstrated significant improvement in tumor selectivity.

Conclusions

Our study addresses a conceptually new paradigm: dual targeting of transgene expression to cancer cells using both transcriptional and mRNA translational control. Our novel approach addresses the key issue of replicative specificity and can potentially be generalized to a wide array of tumor types, whereby tumor selective patterns of gene expression and mRNA translational control can be exploited.
Literatur
1.
Zurück zum Zitat Mathis JM, Stoff-Khalili MA, Curiel DT (2005) Oncolytic adenoviruses - selective retargeting to tumor cells. Oncogene 24(52):7775–7791PubMedCrossRef Mathis JM, Stoff-Khalili MA, Curiel DT (2005) Oncolytic adenoviruses - selective retargeting to tumor cells. Oncogene 24(52):7775–7791PubMedCrossRef
2.
Zurück zum Zitat Biederer C et al (2002) Replication-selective viruses for cancer therapy. J Mol Med 80(3):163–175PubMedCrossRef Biederer C et al (2002) Replication-selective viruses for cancer therapy. J Mol Med 80(3):163–175PubMedCrossRef
3.
Zurück zum Zitat Vile RG, Russell SJ, Lemoine NR (2000) Cancer gene therapy: hard lessons and new courses. Gene Ther 7(1):2–8PubMedCrossRef Vile RG, Russell SJ, Lemoine NR (2000) Cancer gene therapy: hard lessons and new courses. Gene Ther 7(1):2–8PubMedCrossRef
4.
Zurück zum Zitat Alemany R, Suzuki K, Curiel DT (2000) Blood clearance rates of adenovirus type 5 in mice. J Gen Virol 81(Pt 11):2605–2609PubMed Alemany R, Suzuki K, Curiel DT (2000) Blood clearance rates of adenovirus type 5 in mice. J Gen Virol 81(Pt 11):2605–2609PubMed
5.
Zurück zum Zitat Krasnykh V et al (2001) Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J Virol 75(9):4176–4183PubMedCrossRef Krasnykh V et al (2001) Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J Virol 75(9):4176–4183PubMedCrossRef
6.
Zurück zum Zitat Alemany R, Balague C, Curiel DT (2000) Replicative adenoviruses for cancer therapy. Nat Biotechnol 18(7):723–727PubMedCrossRef Alemany R, Balague C, Curiel DT (2000) Replicative adenoviruses for cancer therapy. Nat Biotechnol 18(7):723–727PubMedCrossRef
7.
Zurück zum Zitat Siders WM, Halloran PJ, Fenton RG (1996) Transcriptional targeting of recombinant adenoviruses to human and murine melanoma cells. Cancer Res 56(24):5638–5646PubMed Siders WM, Halloran PJ, Fenton RG (1996) Transcriptional targeting of recombinant adenoviruses to human and murine melanoma cells. Cancer Res 56(24):5638–5646PubMed
8.
Zurück zum Zitat Bernt KM et al (2003) The effect of sequestration by nontarget tissues on anti-tumor efficacy of systemically applied, conditionally replicating adenovirus vectors. Mol Ther 8(5):746–755PubMedCrossRef Bernt KM et al (2003) The effect of sequestration by nontarget tissues on anti-tumor efficacy of systemically applied, conditionally replicating adenovirus vectors. Mol Ther 8(5):746–755PubMedCrossRef
9.
Zurück zum Zitat Ring CJ et al (1996) Suicide gene expression induced in tumour cells transduced with recombinant adenoviral, retroviral and plasmid vectors containing the ERBB2 promoter. Gene Ther 3(12):1094–1103PubMed Ring CJ et al (1996) Suicide gene expression induced in tumour cells transduced with recombinant adenoviral, retroviral and plasmid vectors containing the ERBB2 promoter. Gene Ther 3(12):1094–1103PubMed
10.
Zurück zum Zitat Ahmed A et al (2003) A conditionally replicating adenovirus targeted to tumor cells through activated RAS/P-MAPK-selective mRNA stabilization. Nat Biotechnol 21(7):771–777PubMedCrossRef Ahmed A et al (2003) A conditionally replicating adenovirus targeted to tumor cells through activated RAS/P-MAPK-selective mRNA stabilization. Nat Biotechnol 21(7):771–777PubMedCrossRef
11.
Zurück zum Zitat DeFatta RJ et al (1999) Elevated expression of eIF4E in confined early breast cancer lesions: possible role of hypoxia. Int J Cancer 80(4):516–522PubMedCrossRef DeFatta RJ et al (1999) Elevated expression of eIF4E in confined early breast cancer lesions: possible role of hypoxia. Int J Cancer 80(4):516–522PubMedCrossRef
12.
Zurück zum Zitat De Benedetti A et al (1991) Expression of antisense RNA against initiation factor eIF-4E mRNA in HeLa cells results in lengthened cell division times, diminished translation rates, and reduced levels of both eIF-4E and the p220 component of eIF-4F. Mol Cell Biol 11(11):5435–5445PubMed De Benedetti A et al (1991) Expression of antisense RNA against initiation factor eIF-4E mRNA in HeLa cells results in lengthened cell division times, diminished translation rates, and reduced levels of both eIF-4E and the p220 component of eIF-4F. Mol Cell Biol 11(11):5435–5445PubMed
13.
Zurück zum Zitat Rhoads RE (1988) Cap recognition and the entry of mRNA into the protein synthesis initiation cycle. Trends Biochem Sci 13(2):52–56PubMedCrossRef Rhoads RE (1988) Cap recognition and the entry of mRNA into the protein synthesis initiation cycle. Trends Biochem Sci 13(2):52–56PubMedCrossRef
14.
Zurück zum Zitat Kozak M (1991) An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol 115(4):887–903PubMedCrossRef Kozak M (1991) An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol 115(4):887–903PubMedCrossRef
15.
Zurück zum Zitat Pelletier J, Sonenberg N (1987) The involvement of mRNA secondary structure in protein synthesis. Biochem Cell Biol 65(6):576–581PubMedCrossRef Pelletier J, Sonenberg N (1987) The involvement of mRNA secondary structure in protein synthesis. Biochem Cell Biol 65(6):576–581PubMedCrossRef
16.
Zurück zum Zitat Smola H, Thiekotter G, Fusenig NE (1993) Mutual induction of growth factor gene expression by epidermal-dermal cell interaction. J Cell Biol 122(2):417–429PubMedCrossRef Smola H, Thiekotter G, Fusenig NE (1993) Mutual induction of growth factor gene expression by epidermal-dermal cell interaction. J Cell Biol 122(2):417–429PubMedCrossRef
17.
Zurück zum Zitat Stark HJ et al (1999) Organotypic keratinocyte cocultures in defined medium with regular epidermal morphogenesis and differentiation. J Invest Dermatol 112(5):681–691PubMedCrossRef Stark HJ et al (1999) Organotypic keratinocyte cocultures in defined medium with regular epidermal morphogenesis and differentiation. J Invest Dermatol 112(5):681–691PubMedCrossRef
18.
Zurück zum Zitat Satish L et al (2004) Keloid fibroblast responsiveness to epidermal growth factor and activation of downstream intracellular signaling pathways. Wound Repair Regen 12(2):183–192PubMedCrossRef Satish L et al (2004) Keloid fibroblast responsiveness to epidermal growth factor and activation of downstream intracellular signaling pathways. Wound Repair Regen 12(2):183–192PubMedCrossRef
19.
Zurück zum Zitat Kirby TO et al (2004) A novel ex vivo model system for evaluation of conditionally replicative adenoviruses therapeutic efficacy and toxicity. Clin Cancer Res 10(24):8697–8703PubMedCrossRef Kirby TO et al (2004) A novel ex vivo model system for evaluation of conditionally replicative adenoviruses therapeutic efficacy and toxicity. Clin Cancer Res 10(24):8697–8703PubMedCrossRef
20.
Zurück zum Zitat Olinga P et al (1997) Comparison of five incubation systems for rat liver slices using functional and viability parameters. J Pharmacol Toxicol Methods 38(2):59–69PubMedCrossRef Olinga P et al (1997) Comparison of five incubation systems for rat liver slices using functional and viability parameters. J Pharmacol Toxicol Methods 38(2):59–69PubMedCrossRef
21.
Zurück zum Zitat Wegner SA et al (1998) Genomic organization and functional characterization of the chemokine receptor CXCR4, a major entry co-receptor for human immunodeficiency virus type 1. J Biol Chem 273(8):4754–4760PubMedCrossRef Wegner SA et al (1998) Genomic organization and functional characterization of the chemokine receptor CXCR4, a major entry co-receptor for human immunodeficiency virus type 1. J Biol Chem 273(8):4754–4760PubMedCrossRef
22.
Zurück zum Zitat Zhu ZB et al (2004) Transcriptional targeting of adenoviral vector through the CXCR4 tumor-specific promoter. Gene Ther 11(7):645–648PubMedCrossRef Zhu ZB et al (2004) Transcriptional targeting of adenoviral vector through the CXCR4 tumor-specific promoter. Gene Ther 11(7):645–648PubMedCrossRef
23.
Zurück zum Zitat Zhu ZB et al (2004) Transcriptional targeting of tumors with a novel tumor-specific survivin promoter. Cancer Gene Ther 11(4):256–262PubMedCrossRef Zhu ZB et al (2004) Transcriptional targeting of tumors with a novel tumor-specific survivin promoter. Cancer Gene Ther 11(4):256–262PubMedCrossRef
24.
Zurück zum Zitat Kanerva A et al (2003) Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol Ther 8(3):449–458PubMedCrossRef Kanerva A et al (2003) Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol Ther 8(3):449–458PubMedCrossRef
25.
Zurück zum Zitat Rivera AA et al (2004) Combining high selectivity of replication with fiber chimerism for effective adenoviral oncolysis of CAR-negative melanoma cells. Gene Ther 11(23):1694–1702PubMedCrossRef Rivera AA et al (2004) Combining high selectivity of replication with fiber chimerism for effective adenoviral oncolysis of CAR-negative melanoma cells. Gene Ther 11(23):1694–1702PubMedCrossRef
26.
Zurück zum Zitat Zhu ZB et al (2005) Incorporating the surviving promoter in an infectivity enhanced CRAd-analysis of oncolysis and anti-tumor effects in vitro and in vivo. Int J Oncol 27(1):237–246PubMed Zhu ZB et al (2005) Incorporating the surviving promoter in an infectivity enhanced CRAd-analysis of oncolysis and anti-tumor effects in vitro and in vivo. Int J Oncol 27(1):237–246PubMed
27.
Zurück zum Zitat Yamamoto M et al (2003) Infectivity enhanced, cyclooxygenase-2 promoter-based conditionally replicative adenovirus for pancreatic cancer. Gastroenterology 125(4):1203–1218PubMedCrossRef Yamamoto M et al (2003) Infectivity enhanced, cyclooxygenase-2 promoter-based conditionally replicative adenovirus for pancreatic cancer. Gastroenterology 125(4):1203–1218PubMedCrossRef
28.
Zurück zum Zitat Carroll JL et al (2001) The role of natural killer cells in adenovirus-mediated p53 gene therapy. Mol Cancer Ther 1(1):49–60PubMed Carroll JL et al (2001) The role of natural killer cells in adenovirus-mediated p53 gene therapy. Mol Cancer Ther 1(1):49–60PubMed
29.
Zurück zum Zitat Kianmanesh A et al (2001) Intratumoral administration of low doses of an adenovirus vector encoding tumor necrosis factor alpha together with naive dendritic cells elicits significant suppression of tumor growth without toxicity. Hum Gene Ther 12(17):2035–2049PubMedCrossRef Kianmanesh A et al (2001) Intratumoral administration of low doses of an adenovirus vector encoding tumor necrosis factor alpha together with naive dendritic cells elicits significant suppression of tumor growth without toxicity. Hum Gene Ther 12(17):2035–2049PubMedCrossRef
30.
Zurück zum Zitat Hall SJ et al (2002) A novel bystander effect involving tumor cell-derived Fas and FasL interactions following Ad.HSV-tk and Ad.mIL-12 gene therapies in experimental prostate cancer. Gene Ther 9(8):511–517PubMedCrossRef Hall SJ et al (2002) A novel bystander effect involving tumor cell-derived Fas and FasL interactions following Ad.HSV-tk and Ad.mIL-12 gene therapies in experimental prostate cancer. Gene Ther 9(8):511–517PubMedCrossRef
31.
Zurück zum Zitat Ruzek MC et al (2002) Adenoviral vectors stimulate murine natural killer cell responses and demonstrate antitumor activities in the absence of transgene expression. Mol Ther 5(2):115–124PubMedCrossRef Ruzek MC et al (2002) Adenoviral vectors stimulate murine natural killer cell responses and demonstrate antitumor activities in the absence of transgene expression. Mol Ther 5(2):115–124PubMedCrossRef
32.
Zurück zum Zitat Bessis N, GarciaCozar FJ, Boissier MC (2004) Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther 11(Suppl 1):S10–S17PubMedCrossRef Bessis N, GarciaCozar FJ, Boissier MC (2004) Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther 11(Suppl 1):S10–S17PubMedCrossRef
33.
Zurück zum Zitat Muruve DA (2004) The innate immune response to adenovirus vectors. Hum Gene Ther 15(12):1157–1166PubMedCrossRef Muruve DA (2004) The innate immune response to adenovirus vectors. Hum Gene Ther 15(12):1157–1166PubMedCrossRef
34.
Zurück zum Zitat Liu Q, Muruve DA (2003) Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther 10(11):935–940PubMedCrossRef Liu Q, Muruve DA (2003) Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther 10(11):935–940PubMedCrossRef
35.
Zurück zum Zitat Perricone MA et al (2004) Enhanced efficacy of melanoma vaccines in the absence of B lymphocytes. J Immunother 27(4):273–281PubMedCrossRef Perricone MA et al (2004) Enhanced efficacy of melanoma vaccines in the absence of B lymphocytes. J Immunother 27(4):273–281PubMedCrossRef
36.
Zurück zum Zitat Rosenwald IB et al (1999) Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene 18(15):2507–2517PubMedCrossRef Rosenwald IB et al (1999) Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene 18(15):2507–2517PubMedCrossRef
37.
Zurück zum Zitat Miyagi Y et al (1995) Elevated levels of eukaryotic translation initiation factor eIF-4E, mRNA in a broad spectrum of transformed cell lines. Cancer Lett 91(2):247–252PubMedCrossRef Miyagi Y et al (1995) Elevated levels of eukaryotic translation initiation factor eIF-4E, mRNA in a broad spectrum of transformed cell lines. Cancer Lett 91(2):247–252PubMedCrossRef
38.
Zurück zum Zitat Ramaswamy S et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33(1):49–54PubMedCrossRef Ramaswamy S et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33(1):49–54PubMedCrossRef
39.
Zurück zum Zitat Kevil C et al (1995) Translational enhancement of FGF-2 by eIF-4 factors, and alternate utilization of CUG and AUG codons for translation initiation. Oncogene 11(11):2339–2348PubMed Kevil C et al (1995) Translational enhancement of FGF-2 by eIF-4 factors, and alternate utilization of CUG and AUG codons for translation initiation. Oncogene 11(11):2339–2348PubMed
40.
Zurück zum Zitat Kevil CG et al (1996) Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer 65(6):785–790PubMedCrossRef Kevil CG et al (1996) Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer 65(6):785–790PubMedCrossRef
41.
Zurück zum Zitat Goto F et al (1993) Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab Invest 69(5):508–517PubMed Goto F et al (1993) Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab Invest 69(5):508–517PubMed
42.
Zurück zum Zitat Ginsberg HS et al (1991) A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proc Natl Acad Sci USA 88(5):1651–1655PubMedCrossRef Ginsberg HS et al (1991) A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proc Natl Acad Sci USA 88(5):1651–1655PubMedCrossRef
43.
Zurück zum Zitat Hjorth RN et al (1988) A new hamster model for adenoviral vaccination. Arch Virol 100(3–4):279–283PubMedCrossRef Hjorth RN et al (1988) A new hamster model for adenoviral vaccination. Arch Virol 100(3–4):279–283PubMedCrossRef
44.
Zurück zum Zitat Stoff-Khalili MA et al (2006) Employment of liver tissue slice analysis to assay hepatotoxicity linked to replicative and nonreplicative adenoviral agents. Cancer Gene Ther 13(6):606–618PubMedCrossRef Stoff-Khalili MA et al (2006) Employment of liver tissue slice analysis to assay hepatotoxicity linked to replicative and nonreplicative adenoviral agents. Cancer Gene Ther 13(6):606–618PubMedCrossRef
45.
Zurück zum Zitat Stoff-Khalili MA et al (2005) Preclinical evaluation of transcriptional targeting strategies for carcinoma of the breast in a tissue slice model system. Breast Cancer Res 7(6):R1141–R1152PubMedCrossRef Stoff-Khalili MA et al (2005) Preclinical evaluation of transcriptional targeting strategies for carcinoma of the breast in a tissue slice model system. Breast Cancer Res 7(6):R1141–R1152PubMedCrossRef
Metadaten
Titel
Cancer-specific targeting of a conditionally replicative adenovirus using mRNA translational control
verfasst von
Mariam A. Stoff-Khalili
Angel A. Rivera
Ana Nedeljkovic-Kurepa
Arrigo DeBenedetti
Xiao-Lin Li
Yoshinobu Odaka
Jagat Podduturi
Don A. Sibley
Gene P. Siegal
Alexander Stoff
Scott Young
Zheng B. Zhu
David T. Curiel
J. Michael Mathis
Publikationsdatum
01.03.2008
Verlag
Springer US
Erschienen in
Breast Cancer Research and Treatment / Ausgabe 1/2008
Print ISSN: 0167-6806
Elektronische ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-007-9587-7

Weitere Artikel der Ausgabe 1/2008

Breast Cancer Research and Treatment 1/2008 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.