Skip to main content
Erschienen in: Herzschrittmachertherapie + Elektrophysiologie 1/2018

05.01.2018 | Schwerpunkt

Cardiac ischemia—insights from computational models

verfasst von: Axel Loewe, Eike Moritz Wülfers, Dr.-Ing. Gunnar Seemann

Erschienen in: Herzschrittmachertherapie + Elektrophysiologie | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Background

Complementary to clinical and experimental studies, computational cardiac modeling serves to obtain a comprehensive understanding of the cardiovascular system in order to analyze dysfunction, evaluate existing, and develop novel treatment strategies.

Objectives

We describe the basics of multiscale computational modeling of cardiac electrophysiology from the molecular ion channel to the whole body scale. By modeling cardiac ischemia, we illustrate how in silico experiments can contribute to our understanding of how the pathophysiological mechanisms translate into changes observed in diagnostic tools such as the electrocardiogram (ECG).

Materials and methods

Quantitative in silico modeling spans a wide range of scales from ion channel biophysics to ECG signals. For each of the scales, a set of mathematical equations describes electrophysiology in relation to the other scales. Integration of ischemia-induced changes is performed on the ion channel, single-cell, and tissue level. This approach allows us to study how effects simulated at molecular scales translate to changes in the ECG.

Results

Ischemia induces action potential shortening and conduction slowing. Hence, ischemic myocardium has distinct and significant effects on propagation and repolarization of excitation, depending on the intramural extent of the ischemic region. For transmural and subendocardial ischemic regions, ST segment elevation and depression, respectively, were observed, whereas intermediate ischemic regions were found to be electrically silent (NSTEMI).

Conclusions

In silico modeling contributes quantitative and mechanistic insight into fundamental ischemia-related arrhythmogenic mechanisms. In addition, computational modeling can help to translate experimental findings at the (sub-)cellular level to the organ and body context (e. g., ECG), thereby providing a thorough understanding of this routinely used diagnostic tool that may translate into optimized applications.
Literatur
1.
Zurück zum Zitat Arevalo HJ, Boyle PM, Trayanova NA (2016) Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia. Prog Biophys Mol Biol 121:185–194CrossRefPubMedPubMedCentral Arevalo HJ, Boyle PM, Trayanova NA (2016) Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia. Prog Biophys Mol Biol 121:185–194CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Carmeliet E (1999) Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev 79:917–1017CrossRefPubMed Carmeliet E (1999) Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev 79:917–1017CrossRefPubMed
3.
Zurück zum Zitat Clayton RH, Bernus O, Cherry EM et al (2011) Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol 104:22–48CrossRefPubMed Clayton RH, Bernus O, Cherry EM et al (2011) Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol 104:22–48CrossRefPubMed
5.
Zurück zum Zitat Dutta S, Mincholé A, Zacur E et al (2016) Early afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve. Prog Biophys Mol Biol 120:236–248CrossRefPubMedPubMedCentral Dutta S, Mincholé A, Zacur E et al (2016) Early afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve. Prog Biophys Mol Biol 120:236–248CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Fink M, Niederer SA, Cherry EM et al (2011) Cardiac cell modelling: observations from the heart of the cardiac physiome project. Prog Biophys Mol Biol 104:2–21CrossRefPubMed Fink M, Niederer SA, Cherry EM et al (2011) Cardiac cell modelling: observations from the heart of the cardiac physiome project. Prog Biophys Mol Biol 104:2–21CrossRefPubMed
7.
Zurück zum Zitat Foster DB (2007) Twelve-lead electrocardiography: theory and interpretation. Springer, Berlin Foster DB (2007) Twelve-lead electrocardiography: theory and interpretation. Springer, Berlin
8.
Zurück zum Zitat Gemmell P, Burrage K, Rodríguez B, Quinn TA (2016) Rabbit-specific computational modelling of ventricular cell electrophysiology: using populations of models to explore variability in the response to ischemia. Prog Biophys Mol Biol 121:169–184CrossRefPubMedPubMedCentral Gemmell P, Burrage K, Rodríguez B, Quinn TA (2016) Rabbit-specific computational modelling of ventricular cell electrophysiology: using populations of models to explore variability in the response to ischemia. Prog Biophys Mol Biol 121:169–184CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Hanna G, Trayanova N, Graham, Ukwatta E (2016) Evaluation of a T1 mapping technique for stratifying patient risk: A preliminary study using computer simulations of cardiac electrophysiology. In: 2016 IEEE EMBS Int. Student Conf. IEEE, S 1–4 Hanna G, Trayanova N, Graham, Ukwatta E (2016) Evaluation of a T1 mapping technique for stratifying patient risk: A preliminary study using computer simulations of cardiac electrophysiology. In: 2016 IEEE EMBS Int. Student Conf. IEEE, S 1–4
10.
Zurück zum Zitat Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull Math Biol 117:500–544 Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull Math Biol 117:500–544
11.
Zurück zum Zitat Kahlmann W, Poremba E, Potyagaylo D et al (2017) Modelling of patient-specific Purkinje activation based on measured ECGs. Curr Dir Biomed Eng 3:171 Kahlmann W, Poremba E, Potyagaylo D et al (2017) Modelling of patient-specific Purkinje activation based on measured ECGs. Curr Dir Biomed Eng 3:171
12.
Zurück zum Zitat Keller DUJ, Weiss DL, Dössel O, Seemann G (2012) Influence of IKs heterogeneities on the genesis of the T‑wave: a computational evaluation. IEEE Trans Biomed Eng 59:311–322CrossRefPubMed Keller DUJ, Weiss DL, Dössel O, Seemann G (2012) Influence of IKs heterogeneities on the genesis of the T‑wave: a computational evaluation. IEEE Trans Biomed Eng 59:311–322CrossRefPubMed
13.
Zurück zum Zitat Li W, Kohl P, Trayanova N (2006) Myocardial ischemia lowers precordial thump efficacy: an inquiry into mechanisms using three-dimensional simulations. Heart Rhythm 3:179–186CrossRefPubMed Li W, Kohl P, Trayanova N (2006) Myocardial ischemia lowers precordial thump efficacy: an inquiry into mechanisms using three-dimensional simulations. Heart Rhythm 3:179–186CrossRefPubMed
14.
Zurück zum Zitat Loewe A, Schulze WHW, Jiang Y et al (2011) Determination of optimal electrode positions of a wearable ECG monitoring system for detection of myocardial ischemia: A simulation study. Comput Cardiol (2010) 38:741–744 Loewe A, Schulze WHW, Jiang Y et al (2011) Determination of optimal electrode positions of a wearable ECG monitoring system for detection of myocardial ischemia: A simulation study. Comput Cardiol (2010) 38:741–744
15.
Zurück zum Zitat Loewe A, Schulze WHW, Jiang Y et al (2014) ECG-based detection of early myocardial ischemia in a computational model: impact of additional electrodes, optimal placement, and a new feature for ST deviation. Biomed Res Int 530352:1–11 Loewe A, Schulze WHW, Jiang Y et al (2014) ECG-based detection of early myocardial ischemia in a computational model: impact of additional electrodes, optimal placement, and a new feature for ST deviation. Biomed Res Int 530352:1–11
16.
Zurück zum Zitat Mayourian J, Cashman TJ, Ceholski DK et al (2017) Experimental and computational insight into human mesenchymal stem cell paracrine signaling and heterocellular coupling effects on cardiac contractility and arrhythmogenicity. Circ Res 121:411–423CrossRefPubMed Mayourian J, Cashman TJ, Ceholski DK et al (2017) Experimental and computational insight into human mesenchymal stem cell paracrine signaling and heterocellular coupling effects on cardiac contractility and arrhythmogenicity. Circ Res 121:411–423CrossRefPubMed
17.
Zurück zum Zitat Mayourian J, Savizky RM, Sobie EA, Costa KD (2016) Modeling electrophysiological coupling and fusion between human mesenchymal stem cells and cardiomyocytes. Plos Comput Biol 12:e1005014CrossRefPubMedPubMedCentral Mayourian J, Savizky RM, Sobie EA, Costa KD (2016) Modeling electrophysiological coupling and fusion between human mesenchymal stem cells and cardiomyocytes. Plos Comput Biol 12:e1005014CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat McDougal AD, Dewey CF (2017) Modeling oxygen requirements in ischemic cardiomyocytes. J Biol Chem 292:11760–11776CrossRefPubMed McDougal AD, Dewey CF (2017) Modeling oxygen requirements in ischemic cardiomyocytes. J Biol Chem 292:11760–11776CrossRefPubMed
19.
Zurück zum Zitat Potyagaylo D, Seemann G, Schulze WH, Dossel O (2015) Magnetocardiography did not uncover electrically silent ischemia in an in-silico study case. 2015 Comput. Cardiol. Conf. IEEE, pp 1145–1148 Potyagaylo D, Seemann G, Schulze WH, Dossel O (2015) Magnetocardiography did not uncover electrically silent ischemia in an in-silico study case. 2015 Comput. Cardiol. Conf. IEEE, pp 1145–1148
20.
Zurück zum Zitat Quinn TA, Kohl P (2013) Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies. Cardiovasc Res 97:601–611CrossRefPubMedPubMedCentral Quinn TA, Kohl P (2013) Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies. Cardiovasc Res 97:601–611CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Schwab BC, Seemann G, Lasher RA et al (2013) Quantitative analysis of cardiac tissue including fibroblasts using three-dimensional confocal microscopy and image reconstruction: towards a basis for electrophysiological modeling. IEEE Trans Med Imaging 32:862–872CrossRefPubMedPubMedCentral Schwab BC, Seemann G, Lasher RA et al (2013) Quantitative analysis of cardiac tissue including fibroblasts using three-dimensional confocal microscopy and image reconstruction: towards a basis for electrophysiological modeling. IEEE Trans Med Imaging 32:862–872CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Siogkas PK, Rigas G, Exarchos TP et al (2017) Computational estimation of the hemodynamic significance of coronary stenoses in arterial branches deriving from CCTA: A proof-of-concept study. Eng. Med. Biol. Soc. IEEE, pp 1348–1351 Siogkas PK, Rigas G, Exarchos TP et al (2017) Computational estimation of the hemodynamic significance of coronary stenoses in arterial branches deriving from CCTA: A proof-of-concept study. Eng. Med. Biol. Soc. IEEE, pp 1348–1351
23.
Zurück zum Zitat Stinstra JG, Shome S, Hopenfeld B, MacLeod RS (2005) Modelling passive cardiac conductivity during ischaemia. Med Biol Eng Comput 43:776–782CrossRefPubMed Stinstra JG, Shome S, Hopenfeld B, MacLeod RS (2005) Modelling passive cardiac conductivity during ischaemia. Med Biol Eng Comput 43:776–782CrossRefPubMed
24.
Zurück zum Zitat ten Tusscher KHWJ, Panfilov AV (2006) Alternans and spiral breakup in a human ventricular tissue model. Am J Physiol Heart Circ Physiol 291:H1088–H1100CrossRefPubMed ten Tusscher KHWJ, Panfilov AV (2006) Alternans and spiral breakup in a human ventricular tissue model. Am J Physiol Heart Circ Physiol 291:H1088–H1100CrossRefPubMed
25.
Zurück zum Zitat Weiss DL, Ifland M, Sachse FB et al (2009) Modeling of cardiac ischemia in human myocytes and tissue including spatiotemporal electrophysiological variations. Biomed Tech (Berl) 54:107–125CrossRef Weiss DL, Ifland M, Sachse FB et al (2009) Modeling of cardiac ischemia in human myocytes and tissue including spatiotemporal electrophysiological variations. Biomed Tech (Berl) 54:107–125CrossRef
26.
Zurück zum Zitat Wilhelms M, Dössel O, Seemann G (2010) Simulating the impact of the transmural extent of acute ischemia on the electrocardiogram. Comput Cardiol (2010) 37:13–16 Wilhelms M, Dössel O, Seemann G (2010) Simulating the impact of the transmural extent of acute ischemia on the electrocardiogram. Comput Cardiol (2010) 37:13–16
27.
Zurück zum Zitat Wilhelms M, Dössel O, Seemann G (2011) Comparing simulated electrocardiograms of different stages of acute cardiac ischemia. Lect Notes Comput Sci, vol. 6666., pp 11–19 Wilhelms M, Dössel O, Seemann G (2011) Comparing simulated electrocardiograms of different stages of acute cardiac ischemia. Lect Notes Comput Sci, vol. 6666., pp 11–19
28.
Zurück zum Zitat Wilhelms M, Dössel O, Seemann G (2011) In silico investigation of electrically silent acute cardiac ischemia in the human ventricles. IEEE Trans Biomed Eng 58:2961–2964CrossRefPubMed Wilhelms M, Dössel O, Seemann G (2011) In silico investigation of electrically silent acute cardiac ischemia in the human ventricles. IEEE Trans Biomed Eng 58:2961–2964CrossRefPubMed
29.
Zurück zum Zitat Xie Y, Garfinkel A, Camelliti P et al (2009) Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: a computational study. Heart Rhythm 6:1641–1649CrossRefPubMedPubMedCentral Xie Y, Garfinkel A, Camelliti P et al (2009) Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: a computational study. Heart Rhythm 6:1641–1649CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Xie Y, Garfinkel A, Weiss JN, Qu Z (2009) Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models. Am J Physiol Heart Circ Physiol 297:H775–H784CrossRefPubMedPubMedCentral Xie Y, Garfinkel A, Weiss JN, Qu Z (2009) Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models. Am J Physiol Heart Circ Physiol 297:H775–H784CrossRefPubMedPubMedCentral
Metadaten
Titel
Cardiac ischemia—insights from computational models
verfasst von
Axel Loewe
Eike Moritz Wülfers
Dr.-Ing. Gunnar Seemann
Publikationsdatum
05.01.2018
Verlag
Springer Medizin
Erschienen in
Herzschrittmachertherapie + Elektrophysiologie / Ausgabe 1/2018
Print ISSN: 0938-7412
Elektronische ISSN: 1435-1544
DOI
https://doi.org/10.1007/s00399-017-0539-6

Weitere Artikel der Ausgabe 1/2018

Herzschrittmachertherapie + Elektrophysiologie 1/2018 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.