Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 4/2016

16.05.2016 | Original Article

Cardiac Strain in a Swine Model of Regional Hibernating Myocardium: Effects of CoQ10 on Contractile Reserve Following Bypass Surgery

verfasst von: Laura Hocum Stone, Tammy A. Butterick, Cayla Duffy, Corey Swingen, Herbert B. Ward, Rosemary F. Kelly, Edward O. McFalls

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

There is conflicting clinical evidence whether administration of coenzyme Q10 (CoQ10) improves function following coronary artery bypass graft surgery (CABG). Using a swine model of hibernating myocardium, we tested whether daily CoQ10 would improve contractile function by MRI at 4-week post-CABG. Twelve pigs underwent a thoracotomy and had a constrictor placed on the left anterior descending (LAD). At 12 weeks, they underwent off-pump bypass and received daily dietary supplements of either CoQ10 (10 mg/kg/day) or placebo. At 4-week post-CABG, circumferential strain measurements in the hibernating LAD region from placebo and CoQ10 groups were not different and increased to a similar extent with dobutamine (−14.7 ± 0.6 versus −14.8 ± 0.1, respectively (NS)). Post-sacrifice, oxidant stress markers were obtained in the mitochondrial isolates and protein carbonyl in the placebo, and CoQ10 groups were 6.14 ± 0.36 and 5.05 ± 0.32 nmol/mg, respectively (NS). In summary, CoQ10 did not improve contractile reserve or reduce oxidant stress at 4-week post-CABG.
Literatur
1.
Zurück zum Zitat Rahimtoola, S. H. (1989). The hibernating myocardium. American Heart Journal, 117(1), 211–221.CrossRefPubMed Rahimtoola, S. H. (1989). The hibernating myocardium. American Heart Journal, 117(1), 211–221.CrossRefPubMed
2.
Zurück zum Zitat Tillisch, J., Brunken, R., Marshall, R., Schwaiger, M., Mandelkern, M., Phelps, M., et al. (1986). Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. New England Journal of Medicine, 314, 884–888.CrossRefPubMed Tillisch, J., Brunken, R., Marshall, R., Schwaiger, M., Mandelkern, M., Phelps, M., et al. (1986). Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. New England Journal of Medicine, 314, 884–888.CrossRefPubMed
3.
Zurück zum Zitat Haas, F., Augustin, N., Holper, K., Wottke, M., Haehnel, C., Nekolla, S., et al. (2000). Time course and extent of improvement of dysfunctioning myocardium in patients with coronary artery disease and severely depressed left ventricular function after revascularization: correlation with positron emission tomographic findings. Journal of the American College of Cardiology, 36, 1927–1934.CrossRefPubMed Haas, F., Augustin, N., Holper, K., Wottke, M., Haehnel, C., Nekolla, S., et al. (2000). Time course and extent of improvement of dysfunctioning myocardium in patients with coronary artery disease and severely depressed left ventricular function after revascularization: correlation with positron emission tomographic findings. Journal of the American College of Cardiology, 36, 1927–1934.CrossRefPubMed
4.
Zurück zum Zitat McFalls, E., Baldwin, D., Kuskowsk, M., Liow, J., Chesler, E., & Ward, H. (2000). Utility of positron emission tomography in predicting improved left ventricular ejection fraction after coronary artery bypass grafting among patients with ischemic cardiomyopathy. Cardiology, 93, 105–112.CrossRefPubMed McFalls, E., Baldwin, D., Kuskowsk, M., Liow, J., Chesler, E., & Ward, H. (2000). Utility of positron emission tomography in predicting improved left ventricular ejection fraction after coronary artery bypass grafting among patients with ischemic cardiomyopathy. Cardiology, 93, 105–112.CrossRefPubMed
5.
Zurück zum Zitat Depre, C., Vanoverschelde, J. L., Melin, J. A., Borgers, M., Bol, A., Ausma, J., et al. (1995). Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. American Journal of Physiology, 268(3 Pt 2), H1265–H1275.PubMed Depre, C., Vanoverschelde, J. L., Melin, J. A., Borgers, M., Bol, A., Ausma, J., et al. (1995). Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. American Journal of Physiology, 268(3 Pt 2), H1265–H1275.PubMed
6.
Zurück zum Zitat Pasquet, A., Lauer, M. S., Williams, M. J., Secknus, M. A., Lytle, B., & Marwick, T. H. (2000). Prediction of global left ventricular function after bypass surgery in patients with severe left ventricular dysfunction. Impact of pre-operative myocardial function, perfusion, and metabolism. European Heart Journal, 21(2), 125–136.CrossRefPubMed Pasquet, A., Lauer, M. S., Williams, M. J., Secknus, M. A., Lytle, B., & Marwick, T. H. (2000). Prediction of global left ventricular function after bypass surgery in patients with severe left ventricular dysfunction. Impact of pre-operative myocardial function, perfusion, and metabolism. European Heart Journal, 21(2), 125–136.CrossRefPubMed
7.
Zurück zum Zitat Lorusso, R., La Canna, G., Ceconi, C., Borghetti, V., Totaro, P., Parrinello, G., et al. (2001). Long-term results of coronary artery bypass grafting procedure in the presence of left ventricular dysfunction and hibernating myocardium. European Journal of Cardio-Thoracic Surgery, 20(5), 937–948.CrossRefPubMed Lorusso, R., La Canna, G., Ceconi, C., Borghetti, V., Totaro, P., Parrinello, G., et al. (2001). Long-term results of coronary artery bypass grafting procedure in the presence of left ventricular dysfunction and hibernating myocardium. European Journal of Cardio-Thoracic Surgery, 20(5), 937–948.CrossRefPubMed
8.
Zurück zum Zitat Di Carli, M. F., Davidson, M., Little, R., Khanna, S., Mody, F. V., Brunken, R. C., et al. (1994). Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. American Journal of Cardiology, 73(8), 527–533.CrossRefPubMed Di Carli, M. F., Davidson, M., Little, R., Khanna, S., Mody, F. V., Brunken, R. C., et al. (1994). Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. American Journal of Cardiology, 73(8), 527–533.CrossRefPubMed
9.
Zurück zum Zitat Colbert, R., Holley, C., Stone, L., Crampton, M., Adabag, S., Garcia, S., et al. (2015). The recovery of hibernating hearts lies on a spectrum: from bears in nature to patients with coronary artery disease. Journal of Cardiovascular Translational Research, 8, 244–252.CrossRefPubMed Colbert, R., Holley, C., Stone, L., Crampton, M., Adabag, S., Garcia, S., et al. (2015). The recovery of hibernating hearts lies on a spectrum: from bears in nature to patients with coronary artery disease. Journal of Cardiovascular Translational Research, 8, 244–252.CrossRefPubMed
10.
Zurück zum Zitat McFalls, E. O., Baldwin, D., Palmer, B., Marx, D., Jaimes, D., & Ward, H. B. (1997). Regional glucose uptake within hypoperfused swine myocardium as measured by positron emission tomography. American Journal of Physiology, 272(1 Pt 2), H343–H349.PubMed McFalls, E. O., Baldwin, D., Palmer, B., Marx, D., Jaimes, D., & Ward, H. B. (1997). Regional glucose uptake within hypoperfused swine myocardium as measured by positron emission tomography. American Journal of Physiology, 272(1 Pt 2), H343–H349.PubMed
11.
Zurück zum Zitat McFalls, E., Kelly, R., Hu, Q., Mansoor, A., Lee, J., Kuskowski, M., et al. (2007). The energetic state within hibernating myocardium is normal during dobutamine despite inhibition of ATP-dependent potassium channel opening with glibenclamide. American Journal of Physiology, 293, H2945–H2951.PubMed McFalls, E., Kelly, R., Hu, Q., Mansoor, A., Lee, J., Kuskowski, M., et al. (2007). The energetic state within hibernating myocardium is normal during dobutamine despite inhibition of ATP-dependent potassium channel opening with glibenclamide. American Journal of Physiology, 293, H2945–H2951.PubMed
12.
Zurück zum Zitat Kelly, R. F., Cabrera, J. A., Ziemba, E. A., Crampton, M., Anderson, L. B., McFalls, E. O., et al. (2011). Continued depression of maximal oxygen consumption and mitochondrial proteomic expression despite successful coronary artery bypass grafting in a swine model of hibernation. Journal of Thoracic and Cardiovascular Surgery, 141(1), 261–268.CrossRefPubMed Kelly, R. F., Cabrera, J. A., Ziemba, E. A., Crampton, M., Anderson, L. B., McFalls, E. O., et al. (2011). Continued depression of maximal oxygen consumption and mitochondrial proteomic expression despite successful coronary artery bypass grafting in a swine model of hibernation. Journal of Thoracic and Cardiovascular Surgery, 141(1), 261–268.CrossRefPubMed
13.
Zurück zum Zitat Rosenfeldt, F., Marasco, S., Lyon, W., Wowk, M., Sheeran, F., Bailey, M., et al. (2005). Coenzyme Q10 therapy before cardiac surgery improves mitochondria function and in vitro contractility of myocardial tissue. Journal of Thoracic and Cardiovascular Surgery, 129, 25–32.CrossRefPubMed Rosenfeldt, F., Marasco, S., Lyon, W., Wowk, M., Sheeran, F., Bailey, M., et al. (2005). Coenzyme Q10 therapy before cardiac surgery improves mitochondria function and in vitro contractility of myocardial tissue. Journal of Thoracic and Cardiovascular Surgery, 129, 25–32.CrossRefPubMed
14.
Zurück zum Zitat Lee, B., Huang, Y., Chen, S., & Lin, P. (2012). Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease. Nutrition, 28, 250–255.CrossRefPubMed Lee, B., Huang, Y., Chen, S., & Lin, P. (2012). Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease. Nutrition, 28, 250–255.CrossRefPubMed
15.
Zurück zum Zitat Leong, J., van der Merwe, J., Pepe, S., Bailey, M., Perkins, A., Lymbury, R., et al. (2010). Perioperative metabolic therapy improves redox status and outcomes in cardiac surgery patients: a randomised trial. Heart, Lung & Circulation, 19, 584–591.CrossRef Leong, J., van der Merwe, J., Pepe, S., Bailey, M., Perkins, A., Lymbury, R., et al. (2010). Perioperative metabolic therapy improves redox status and outcomes in cardiac surgery patients: a randomised trial. Heart, Lung & Circulation, 19, 584–591.CrossRef
16.
Zurück zum Zitat Holley, C., Duffy, C., Butterick, T., Long, E., Lindsey, M., Cabrera, J., et al. (2015). Expression of uncoupling protein-2 remains increased within hibernating myocardium despite successful coronary artery bypass grafting at 4 weeks post-revascularization. Journal of Surgical Research, 193, 15–21.CrossRefPubMed Holley, C., Duffy, C., Butterick, T., Long, E., Lindsey, M., Cabrera, J., et al. (2015). Expression of uncoupling protein-2 remains increased within hibernating myocardium despite successful coronary artery bypass grafting at 4 weeks post-revascularization. Journal of Surgical Research, 193, 15–21.CrossRefPubMed
17.
Zurück zum Zitat Feygin, J., Hu, Q., Swingen, C., & Zhang, J. (2008). Relationships between regional myocardial wall stress and bioenergetics in hearts with left ventricular hypertrophy. American Journal of Physiology, 294, H2313–H2321.PubMedPubMedCentral Feygin, J., Hu, Q., Swingen, C., & Zhang, J. (2008). Relationships between regional myocardial wall stress and bioenergetics in hearts with left ventricular hypertrophy. American Journal of Physiology, 294, H2313–H2321.PubMedPubMedCentral
18.
Zurück zum Zitat Mortensen, S., Rosenfeldt, F., Kumar, A., Dolliner, P., Filipiak, K., Pella, D., et al. (2014). The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure results from Q-SYMBIO: a randomized double-blind trial. JACC: Heart Failure, 6, 641–649. Mortensen, S., Rosenfeldt, F., Kumar, A., Dolliner, P., Filipiak, K., Pella, D., et al. (2014). The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure results from Q-SYMBIO: a randomized double-blind trial. JACC: Heart Failure, 6, 641–649.
19.
Zurück zum Zitat Fotino, A., Thompson-Paul, A., & Bazzano, L. (2013). Effect of coenzyme Q10 supplementation on heart failure: a meta-analysis. American Journal of Clinical Nutrition, 97, 268–275.CrossRefPubMed Fotino, A., Thompson-Paul, A., & Bazzano, L. (2013). Effect of coenzyme Q10 supplementation on heart failure: a meta-analysis. American Journal of Clinical Nutrition, 97, 268–275.CrossRefPubMed
20.
Zurück zum Zitat Wagner, A., Ernst, I., Birringer, M., Sancak, O., Barella, L., & Rimbach, G. (2012). A combination of lipoic acid plus coenzyme Q10 induces PGC1alph, a master switch of energy metabolism, improves stress response, and increases cellular glutathione levels in cultured C2C12 skeletal muscle cells. Oxidative Medicine and Cellular Longevity, 2012, 1–9.CrossRef Wagner, A., Ernst, I., Birringer, M., Sancak, O., Barella, L., & Rimbach, G. (2012). A combination of lipoic acid plus coenzyme Q10 induces PGC1alph, a master switch of energy metabolism, improves stress response, and increases cellular glutathione levels in cultured C2C12 skeletal muscle cells. Oxidative Medicine and Cellular Longevity, 2012, 1–9.CrossRef
21.
Zurück zum Zitat Mugoni, V., Postel, R., Catanzaro, V., De Luca, E., Turco, E., Digilio, G., et al. (2013). Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell, 152, 504–518.CrossRefPubMedPubMedCentral Mugoni, V., Postel, R., Catanzaro, V., De Luca, E., Turco, E., Digilio, G., et al. (2013). Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell, 152, 504–518.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Maulik, N., Yoshida, T., Engelman, R., Bagchi, D., Otani, H., & Das, D. (2000). Dietary coenzyme Q10 supplement renders swine hearts resistant to ischemia-reperfusion injury. American Journal of Physiology, 278, H1084–H1090.PubMed Maulik, N., Yoshida, T., Engelman, R., Bagchi, D., Otani, H., & Das, D. (2000). Dietary coenzyme Q10 supplement renders swine hearts resistant to ischemia-reperfusion injury. American Journal of Physiology, 278, H1084–H1090.PubMed
23.
Zurück zum Zitat Choi, H., Park, H., Koh, S., Choi, N., Yu, H., Park, J., et al. (2012). Coenzyme Q10 protects against amyloid beta-induced neuronal cell death by inhibiting oxidative stress and activating the P13K pathway. NeuroToxicology, 33, 85–90.CrossRefPubMed Choi, H., Park, H., Koh, S., Choi, N., Yu, H., Park, J., et al. (2012). Coenzyme Q10 protects against amyloid beta-induced neuronal cell death by inhibiting oxidative stress and activating the P13K pathway. NeuroToxicology, 33, 85–90.CrossRefPubMed
24.
Zurück zum Zitat Velazquez, E. J., Lee, K. L., Deja, M. A., Jain, A., Sopko, G., Marchenko, A., et al. (2011). Coronary-artery bypass surgery in patients with left ventricular dysfunction. New England Journal of Medicine, 364(17), 1607–1616.CrossRefPubMedPubMedCentral Velazquez, E. J., Lee, K. L., Deja, M. A., Jain, A., Sopko, G., Marchenko, A., et al. (2011). Coronary-artery bypass surgery in patients with left ventricular dysfunction. New England Journal of Medicine, 364(17), 1607–1616.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Holley, C., Long, E., Lindsey, M., McFalls, E., & Kelly, R. (2015). Recovery of hibernating myocardium: what is the role of surgical revascularization? Journal of Cardiac Surgery, 30, 224–231.CrossRefPubMed Holley, C., Long, E., Lindsey, M., McFalls, E., & Kelly, R. (2015). Recovery of hibernating myocardium: what is the role of surgical revascularization? Journal of Cardiac Surgery, 30, 224–231.CrossRefPubMed
26.
Zurück zum Zitat Canty, J. M., Jr., & Suzuki, G. (2012). Myocardial perfusion and contraction in acute ischemia and chronic ischemic heart disease. Journal of Molecular and Cellular Cardiology, 52(4), 822–831.CrossRefPubMed Canty, J. M., Jr., & Suzuki, G. (2012). Myocardial perfusion and contraction in acute ischemia and chronic ischemic heart disease. Journal of Molecular and Cellular Cardiology, 52(4), 822–831.CrossRefPubMed
27.
Zurück zum Zitat Heusch, G., Schulz, R., & Rahimtoola, S. (2005). Myocardial hibernation: a delicate balance. American Journal of Physiology, 288, H984–H999.PubMed Heusch, G., Schulz, R., & Rahimtoola, S. (2005). Myocardial hibernation: a delicate balance. American Journal of Physiology, 288, H984–H999.PubMed
28.
Zurück zum Zitat Chugh, A., Beache, G., Loughran, J., Mewton, N., Stoddard, M., Lima, J., et al. (2012). Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO Trial. Surgical aspects and interim analysis of myocardial function and viability by MR. Circulation, 126, S54–S64.CrossRefPubMedPubMedCentral Chugh, A., Beache, G., Loughran, J., Mewton, N., Stoddard, M., Lima, J., et al. (2012). Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO Trial. Surgical aspects and interim analysis of myocardial function and viability by MR. Circulation, 126, S54–S64.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Marban, E., & Malliaras, K. (2012). Mixed results for bone marrow-derived cell therapy for ischemic heart disease. JAMA, 308, 2405–2406.CrossRefPubMed Marban, E., & Malliaras, K. (2012). Mixed results for bone marrow-derived cell therapy for ischemic heart disease. JAMA, 308, 2405–2406.CrossRefPubMed
30.
Zurück zum Zitat Suzuki, G., Weil, B. R., Leiker, M. M., Ribbeck, A. E., Young, R. F., Cimato, T. R., et al. (2014). Global intracoronary infusion of allogeneic cardiosphere-derived cells improves ventricular function and stimulates endogenous myocyte regeneration throughout the heart in swine with hibernating myocardium. PLoS ONE, 9(11), 1–16. Suzuki, G., Weil, B. R., Leiker, M. M., Ribbeck, A. E., Young, R. F., Cimato, T. R., et al. (2014). Global intracoronary infusion of allogeneic cardiosphere-derived cells improves ventricular function and stimulates endogenous myocyte regeneration throughout the heart in swine with hibernating myocardium. PLoS ONE, 9(11), 1–16.
Metadaten
Titel
Cardiac Strain in a Swine Model of Regional Hibernating Myocardium: Effects of CoQ10 on Contractile Reserve Following Bypass Surgery
verfasst von
Laura Hocum Stone
Tammy A. Butterick
Cayla Duffy
Corey Swingen
Herbert B. Ward
Rosemary F. Kelly
Edward O. McFalls
Publikationsdatum
16.05.2016
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 4/2016
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-016-9696-y

Weitere Artikel der Ausgabe 4/2016

Journal of Cardiovascular Translational Research 4/2016 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.