Skip to main content
Erschienen in: BMC Medicine 1/2014

Open Access 01.12.2014 | Research article

Cardiovascular risks and elevation of serum DHT vary by route of testosterone administration: a systematic review and meta-analysis

verfasst von: Stephen E Borst, Jonathan J Shuster, Baiming Zou, Fan Ye, Huanguang Jia, Anita Wokhlu, Joshua F Yarrow

Erschienen in: BMC Medicine | Ausgabe 1/2014

Abstract

Background

Potential cardiovascular (CV) risks of testosterone replacement therapy (TRT) are currently a topic of intense interest. However, no studies have addressed CV risk as a function of the route of administration of TRT.

Methods

Two meta-analyses were conducted, one of CV adverse events (AEs) in 35 randomized controlled trials (RCTs) of TRT lasting 12 weeks or more, and one of 32 studies reporting the effect of TRT on serum testosterone and dihydrotestosterone (DHT).

Results

CV risks of TRT: Of 2,313 studies identified, 35 were eligible and included 3,703 mostly older men who experienced 218 CV-related AEs. No significant risk for CV AEs was present when all TRT administration routes were grouped (relative risk (RR) = 1.28, 95% confidence interval (CI): 0.76 to 2.13, P = 0.34). When analyzed separately, oral TRT produced significant CV risk (RR = 2.20, 95% CI: 1.45 to 3.55, P = 0.015), while neither intramuscular (RR = 0.66, 95% CI: 0.28 to 1.56, P = 0.32) nor transdermal (gel or patch) TRT (RR = 1.27, 95% CI: 0.62 to 2.62, P = 0.48) significantly altered CV risk. Serum testosterone/DHT following TRT: Of 419 studies identified, 32 were eligible which included 1,152 men receiving TRT. No significant difference in the elevation of serum testosterone was present between intramuscular or transdermal TRT. However, transdermal TRT elevated serum DHT (5.46-fold, 95% CI: 4.51 to 6.60) to a greater magnitude than intramuscular TRT (2.20-fold, 95% CI: 1.74 to 2.77).

Conclusions

Oral TRT produces significant CV risk. While no significant effects on CV risk were observed with either injected or transdermal TRT, the point estimates suggest that further research is needed to establish whether administration by these routes is protective or detrimental, respectively. Differences in the degree to which serum DHT is elevated may underlie the varying CV risk by TRT administration route, as elevated serum dihydrotestosterone has been shown to be associated with CV risk in observational studies.

Background

Testosterone replacement therapy (TRT) is being utilized at a rapidly increasing rate, with 1.6 billion dollars in sales in the US in 2011 [1]. Proven benefits for older men with low testosterone (T) levels include increases in muscle strength, exercise capacity, bone mineral density (BMD), libido and insulin sensitivity [2],[3]. Meta-analysis through 2010 [4]-[6] confirmed three adverse events resulting from TRT: 1) polycythemia, 2) an increased number of prostate-related events, and 3) a small reduction in high density lipoprotein (HDL) cholesterol. Prostate events consist of the combined incidence of elevated prostate-specific antigen (PSA), prostate biopsy necessitated by results of digital rectal exam, increased urinary symptoms and prostate cancer [4]. A meta-analysis by Calof et al. shows no evidence that TRT increases prostate cancer (odds ratio =1.09 with no trend toward significance), when considered as an independent outcome [4]. However, the cardiovascular (CV) risk of TRT is controversial [5],[6].
Several recent reports have raised the concern that TRT may produce CV risks. In their randomized controlled trial (RCT) of transdermal T gel administration, Basaria et al. reported a very high incidence of CV adverse events (AEs) in treated subjects (21%) compared to placebo (5%) resulting in cessation of the trial [7]. More recently, Vigen et al., in a retrospective study of 8,709 hypogonadal men with a history of recent coronary angiography, reported a higher risk of the combined endpoints of myocardial infarction (MI), stroke and all-cause mortality in those who received any form of TRT (25.7%) compared to those who did not (19.9%) [8]. Another observational study by Finkle et al. evaluated 55,000 patients and reported a more than two-fold greater risk of MI in men who had received a TRT prescription [9]. Similarly, a meta-analysis by Xu et al. of CV AEs in 27 RCTs administering TRT (reported through 2012) found that TRT produced a significantly greater number of CV AEs in TRT-treated participants compared to placebo (odds ratio (OR) 1.54, 95% CI 1.09 to 2.18) and also made the disturbing observation that these AEs were under-reported in industry-sponsored studies [10]. However, the statistical methods employed in the latter study were not appropriate for low event-rate meta-analysis [11]. In contrast, Corona et al. [12] published a meta-analysis of 75 studies of TRT using less stringent inclusion criteria and found no evidence of CV risk (OR = 1.07 for all CV AEs; OR = 1.01 for serious CV AEs). In response to these reports, in 2014, the US Food and Drug Administration [13], the US Veteran’s Administration [14] and the Endocrine Society [15] have all issued advisories regarding CV AEs resulting from TRT.
In contrast with the above reports, some of which indicate that TRT may be associated with [8],[9] or may cause [7],[10] increased CV events, there is an extensive literature supporting the CV benefits of adequate levels of endogenous T and TRT. In older men, low T is associated with increased CV risk and increased all-cause mortality [16]. Several studies have shown that TRT is beneficial in populations of older men with CV disease. English et al. have shown that TRT improves exercise capacity in men with angina [17]. In addition, Toma and colleagues [18] have published a meta-analysis demonstrating improved New York Heart Association (NYHA) class, six minute walk time and peak oxygen consumption after TRT in men with systolic heart failure [18]. Furthermore, in a large retrospective cohort study of more than 6,000 intramuscular TRT users and matched controls, Baillargeon et al. reported no increase in CV events in myocardial infarction hospitalization rates in all TRT-treated subjects and reduced rates in those who were in the quartile with the highest risk factors for CV disease [19].
One potential explanation for these apparently conflicting observations is that the CV risk/benefit ratio may vary by the route of TRT administration. Testosterone can be administered by intramuscular injection of long-acting T esters, transdermally by patch or gel and orally as testosterone undecanoate (TU). Different routes of administration are typically associated with different doses, different time courses of serum androgen elevation and different relative levels of dihydrotestosterone (DHT) relative to testosterone. Transdermally and orally administered T are exposed to a high degree of 5-alpha reductase activity present in the skin [20] and liver [21], respectively, possibly increasing serum DHT relative to testosterone, which may affect CV risk. Shores et al. recently reported that serum DHT is independently and positively associated with incident CV disease [22], incident stroke [23], and all-cause mortality [22]. In contract, in a cohort of 1,032 elderly men followed for a median of nine to ten years, neither circulating T nor free T were associated with the latter adverse outcomes.
The main purpose of this meta-analysis was to assess whether the incidence of CV events is affected by the mode of TRT administration. Our secondary purpose was to determine if there is a differential elevation of T versus DHT based on route of TRT administration. We postulate that the latter may be a potential mechanism for differential CV effects.

Methods

Data sources and searches

This meta-analysis follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist [see Additional file 1]. Two expert authors searched for and selected the studies, agreed upon the eligibility of each study and extracted information from the selected trials (SB, FY). We systematically searched PubMed until 31 May 2014 using two search strategies: 1) (“testosterone” or “androgen”) and (random*) and “trial” and 2) “testosterone” and “clinical trials”. Studies of men, published in English were selected and the search was supplemented by a search of the World Health Organization trial registry and by a manual search of bibliographies of identified studies (SB and FY). To identify studies reporting the elevation of serum T and DHT following TRT, we performed a supplemental search using the terms: “testosterone” and “DHT” and (“injection” or “gel” or “patch” or “oral”) that included all TRT clinical trials in men because few studies report DHT concentrations before and after TRT.

Study selection

CV risks following TRT

We included only placebo-controlled RCTs of TRT that reported CV related events for both the TRT and placebo arms. We excluded trials where testosterone secretion was experimentally suppressed prior to initiation of TRT because these studies do not have a true placebo group. In order to assess the long-term, rather than the acute, effects of TRT, we included only trials lasting 12 weeks or more. Initially, we intended to exclude RCTs that only reported AEs necessitating study withdrawal, however this turned out to be a fine distinction and so we included any RCT that reported CV events by treatment arm. In order to ensure that we did not include more than one study using the same data set, we checked for duplication based on authorship, study description, number of participants, and participant characteristics. Where duplication occurred, we used the report containing the most comprehensive description of AEs.

Elevation of serum T and DHT following TRT

Few placebo-controlled RCTs report both serum T and DHT before and after treatment. For this reason, we broadened our search to include all TRT trials that reported both serum T and DHT, before and after treatment, regardless of study duration or whether the study was blinded. We have recently shown that commercially available methods for measuring DHT by immunoassay are invalid [24]. For this reason, we also excluded one study where DHT was measured by immunoassay [25]. We also removed any duplication of studies as described above.

Outcome

The primary outcome was composite CV events because we anticipated too few events to allow for analysis by individual event type. CV events were defined as anything reported as such in the original study. In cases where authors sent us a table of all AEs, we (SEB and AW - Cardiologist) defined CV AEs using International Statistical Classification of Disease (ICD) 10 codes [see Additional file 2]. CV events in individual studies are listed in Additional file 3. The secondary outcome was elevation of serum T and DHT following TRT administration by different routes (intramuscular, transdermal (patch or gel) or oral).

Data extraction and quality assessment

Data for CV AEs and elevation of serum T and DHT were extracted by trial arm by SB and FY. Event classification was checked by a cardiologist (AW). Reviewers (SB and FY) used an established tool to evaluate the quality of each trial [26] [see Additional file 4 and Additional file 5]. If the trial did not report CV AEs or did not do so by treatment arm, we contacted the authors twice by email to ask for additional information [see Additional file 6]. Studies were excluded if CV event incidence could not be determined with the above method.

Statistical methods

CV events analysis

It is important to note that this collection of studies involves low event-rate randomized binomial trials. Since the trials involve diverse interventions, random effects are mandatory, whether or not a Cochran Q test fails to reject homogeneity (Borenstein et al. [27], section titled `Model should not be based on the test for heterogeneity’). In addition, commonly used methods based on inverses of variance estimators such as the DerSimonian-Laird method are not valid in this arena. The Cochrane Handbook [28], section 16.9, states `Methods that should be avoided with rare events are the inverse-variance methods (including the DerSimonian and Laird (DL) [29] random-effects method). Xu et al. [10] used a fixed effects meta-regression with inverse variance weights in their previous meta-analysis, and as such, this was not an acceptable approach when event rates are low. Furthermore, compared with a random effects model, a fixed effects model makes the strong assumption that the true effect size for all studies is identical and the inference from a fixed effects model is conditional and limited to the studies included in the meta-analysis [30]. The methodology we employ is the sample size weighted random effects method of Shuster et al. [11], specifically designed for low event-rate meta-analysis, and which has been vetted on nearly 40,000 low event scenarios. Given the issues with low event-rate meta-analysis, ignored in Xu et al., it is critically important to reanalyze those data in this paper. Note that we employ RR, the estimate of the ratio of failure rates, rather than the OR, the ratio of the odds of failure. RR and OR are very similar when event rates are low, but RRs are far easier to understand.

Analysis of serum T and DHT levels

For laboratory levels, we used a minor modification of the patient weighted random effects method of Shuster [31], using the more conservative t-distribution (degrees of freedom = number of studies - 1) instead of the normal approximation. In our experience this is a better large sample approximation. Means are sample-weighted. The individual study fold changes were analyzed (not the ratio of the summary post-test estimate to the summary pre-test estimate).

Results

Study selection and characteristics for analysis of CV risks

The initial search yielded 2,313 publications, of which 197 were subjected to further scrutiny. As shown in Figure 1, we subsequently identified 35 unique publications of placebo-controlled RCTs of TRT in men that reported CV events and met our search criteria. The study design and patient characteristics across these trials are summarized in Table 1. The 35 studies of TRT include 3,703 men, typically older than 45 years, with low T and/or chronic diseases. Of the 35 trials, 16 studies administered TRT intramuscularly, 15 transdermally (10 gel and 5 patch), and 4 orally. The mean duration of treatment was 11.9 months.
Table 1
Characteristics of placebo-controlled randomized clinical trials of testosterone replacement therapy (TRT) reporting CV events
Author/Year
Mode
Dose
Study duration
Age
Subjects in TRT group
Subjects in placebo group
Serum T at entry
Health status
Amory 2004 [32]
i.m.
100 mg TE/week
36 months
71 ± 4 (SD)
24
24
302 ± 48 (SD) ng/dL
hypogonadal
Aversa 2010 [33]
i.m.
1,000 mg TU/12 week
24 months
58 ± 10 (SD)
40
10
259 ± 48 (SD) ng/dL
hypogonadal
Borst 2014 [34]
i.m.
125 mg TE/week
12 months
69.2 ± 8.0 (SD)
31
29
264 ± 92 (SD) ng/dL
hypogonadal
Caminiti 2009 [35]
i.m.
1,000 mg TU/8 week
4.5 months
66 to 76
35
35
230 ± 180 (SD) ng/dL
hypogonadal, heart failure
Ferrando 2002 [36]
i.m.
100 mg TE/week
6 months
67 ± 3 (SD)
7
5
<480 ng/dL
eugonadal
Hackett 2014 [37]
i.m.
1000 mg TU/6 to 12 weeks
7.5 months
18 to 80
97
102
301 ± 11 (SD) ng/dL
hypogonadal, type 2 diabetes
Hall 1996 [38]
i.m.
250 mg TE/4 weeks
9 months
60.8 ± 9.7 (SD)
17
18
458 ± 187 (SD) ng/dL
eugonadal, rheumatoid arthritis
Ho 2011 [39]
i.m.
1,000 mg TU/10 to 14 weeks
24 months
≥40
60
60
<345 ng/dL
low normal T
Hoyos 2012 [40]
i.m.
1,000 mg TU/6 weeks
4.5 months
49 ± 12 (SD)
33
34
388 ± 152 (SD) ng/dL
eugonadal, obese, sleep apnea
Kalichenko 2010 [41]
i.m.
1,000 mg TU/6 to 12 weeks
7.5 months
49 to 53
113
71
<345 ng/dL
low normal T, metabolic syndrome
Kenny 2004 [42]
i.m.
200 mg TE/3 weeks
3 months
81 ± 5 (SD)
6
5
410 ± 112 (SD) ng/dL
mild cognitive impairment
Sih 1997 [43]
i.m.
200 mg TC/2 weeks
12 months
65 ± 7 (SD)
17
15
233 ± 20 (SD) ng/dL
hypogonadal
Svartberg 2004 [44]
i.m.
250 mg TE/4 weeks
6 months
64 ± 6.5 (SD)
15
14
590 ± 164 (SD) ng/dL
eugonadal, COPD
Svartberg 2008 [45]
i.m.
1,000 mg TU/6 to 12 weeks
12 months
69 ± 5 (SD)
19
19
239 ± 54 (SD) ng/dL
hypogonadal
Sheffield-Moore 2011 [46]
i.m.
100 mg TE/week
5 months
73 ± 8 (SD)
8
8
<500 ng/dL
eugonadal
Tan 2013 [47]
i.m.
1,000 mg TU/8 weeks
12 months
53.8 ± 8.3 (SD)
56
58
<345 ng/dL
low normal T
*Basaria 2010 [7]
gel
100 to 150 mg T/day
6 months*
74 ± 5 (SD)
106
103
250 ± 57 (SD) ng/dL
hypogonadal, mobility limited
Brockenbrough 2006 [48]
gel
100 mg T/day
6 months
58.9 ± 14.9 (SD)
19
21
218 ± 64 (SD) ng/dL
hypogonadal, renal disease
Glintborg 2013 [49]
gel
50 to 100 mg T/day
6 months
62 to 72
20
18
<210 ng/dL
hypogonadal, obese
Hildreth 2013 [50]
gel
25 to 50 mg T/day
12 months
66.6 ± 5.8 (SD)
96
47
294 ± 38 (SD) ng/dL
hypogonadal
Jones 2011 [51]
gel
60 mg T/day
12 months
37 to 77
108
112
265 ± 75 (SD) ng/dL
hypogonadal, metabolic syndrome
Kaufman 2011 [52]
gel
20 to 80 mg T/day
6 months
53.6 ± 9.5 (SD)
234
40
mean =294 ng/dL
hypogonadal
Kenny 2010 [53]
gel
50 mg T/day
12 to 24 months
79.9 ± 7.3 (SD)
69
62
380 ± (SD) ng/dL
eugonadal, osteoporosis
Marin 1993 [54]
gel
125 mg T/day
9 months
56.7 ± 2.2 (SD)
11
10
434 ± 23 (SD) ng/dL
eugonadal, obese
Spitzer 2012 [55]
gel
100 to 300 mg T/day
3.5 months
55.1 ± 8.3 (SD)
70
70
248 ± 62 (SD) ng/dL
hypogonadal, erectile dysfunction
Srinivas-Shankar 2010 [56]
gel
50 mg T/day
6 months
73.7 ± 5.7 (SD)
138
136
313 ± 89 (SD) ng/dL
low normal T, frail
English 2000 [17]
patch
5 mg T/day
3 months
69 ± 2 (SD)
25
25
390 ± 22 (SD) ng/dL
eugonadal, stable angina
Malkin 2006 [57]
patch
5 mg T/day
12 months
63.1 ± 10.7 (SD)
37
39
400 ± 152 (SD) ng/dL
eugonadal, heart failure
Merza 2005 [58]
patch
5 mg T/day
6 months
63 ± 9 (SD)
20
19
242 ± 95 (SD) ng/dL
hypogonadal
Nair 2006 [59]
patch
5 mg T/day
24 months
61 to 72
27
31
bioavailable T <103 ng/dL
hypogonadal
Snyder 2001 [60]
patch
6 mg T/day
36 months
71.3 ± 5.8 (SD)
54
54
<475 ng/dL
eugonadal
Chapman 2009 [61]
oral
160 mg TU/day
12 months
78 ± 4 (SD)
11
12
541 ± 35 (SD) ng/dL
eugonadal, undernourished
Copenhagen study 1986 [62]a
oral
600 mg micronized T/day
8 to 62 months
24 to 79
134
87
not measured
alcoholic cirrhosis
Emmelot-Vonk 2008 [63]
oral
80 mg TU/day
6 months
67.1 ± 5.0 (SD)
120
117
316 ± 54 (SD) ng/dL
low normal T
Legros 2009 [64]
oral
80 to 240 mg TU/day
12 months
58.6 ± 5.7 (SD)
237
79
free T <7.5 ng/dL
hypogonadal
aStudy was stopped early. COPD. chronic obstructive pulmonary disease; i.m., intramuscular; SD, standard deviation; T, testosterone; TC, testosterone cypionate; TE, testosterone enanthate; TU, testosterone undecanoate.

Risk of CV events based on route of TRT

Of the 3,703 subjects, 2,114 receiving TRT had 131 CV-related events (6.2%), while 1,589 receiving placebo had 87 (5.5%) CV-related events. Two trials were stopped early, one because of AEs in the TRT arm [7] and one because a beneficial effect of TRT was `not foreseeable’ [32]. Additional file 3 shows a comprehensive list of the type and severity of the 218 CV events (if specified) in the TRT and placebo groups.
As shown in Figure 2, among patients receiving any form of TRT, the estimated RR for CV events was 1.28 (95% CI 0.76 to 2.13, P = 0.34) which was not statistically significant. However, CV event rates varied by mode of TRT administration. Specifically, oral TRT resulted in a significant increase in CV events (estimated RR = 2.20, 95% CI 1.45 to 3.35, P = 0.015). In contrast, neither intramuscular TRT (estimated RR = 0.66, 95% CI 0.28 to 1.56, P = 0.32) nor transdermal (patch or gel) TRT (estimated RR = 1.27, 95% CI 0.62 to 2.62, P = 0.48) significantly affected CV events.
Re-analysis of Xu et al. [10]: Using the same patient-weighted method [31], the estimated relative risk for CV AEs is 1.59 (95% CI = 0.90 to 2.57), P = 0.059, not quite statistically significant, whereas Xu et al. [10] using inverse variance weighted methods (against the advice of the Cochrane Handbook), reported a point estimate of 1.54 (95% CI =1.09 to 2.18).

Route of TRT and elevation of serum T and DHT Levels

As shown in Figure 3, the initial search yielded 419 publications, of which 56 were subjected to further scrutiny. We subsequently identified 31 unique publications that met our criteria and which included 1,176 men who received TRT (see Table 2). Elevation of serum DHT, but not T, was significantly affected by TRT administration mode (see Table 3). Specifically, intramuscular TRT elevated serum T and DHT to a roughly similar degree. In contrast, transdermal TRT elevated DHT to a significantly greater degree (5.46-fold, 95% CI 4.51 to 6.60) than intramuscular TRT (2.20-fold, (95% CI 1.74 to 2.77). Only four oral TRT studies were identified that reported both T and DHT, and the data were insufficient for statistical analysis. However, oral TRT appeared to produce a post-treatment serum T that was similar with other administration routes and very high post-treatment serum DHT values.
Table 2
Characteristics of testosterone replacement therapy (TRT) trials reporting both serum testosterone (T) and dihydrotestosterone (DHT) concentrations before and after treatment
Author/Year
Study type
Mode
Dose
Duration
Age
Subjects in TRT group
Serum T at entry
Health status
Amory 2004 [32]
RCT
i.m.
100 mg TE/week
36 months
71 ± 4 (SD)
24
302 ± 48 (SD) ng/dL
hypogonadal
Arver 1997 [65]
open-label
i.m.
266 mg TE/26 days
3 weeks
58 ± 10 (SD)
27
121 ± 100 (SD) ng/dL
hypogonadal
Bhasin 2012 [66]
RCT
i.m.
125±mg TE/week
5 months
40 ± 7 (SD)
12
519 ng/dL (mean)
eugonadal
Borst 2014 [34]
RCT
i.m.
125 mg TE/week
12 months
69.2 ± 8.0 (SD)
31
264 ± 92 (SD) ng/dL
hypogonadal
Lakshman 2010 [67]
RCT
i.m.
125 mg TE/week
5 months
65.6 ± 4.3 (SD)
11
581 ± 168 (SD) ng/dL
eugonadal
Raynaud 2008 [68]
open-label
i.m.
250 mg TE/3 weeks
12 months
41.8 ± 12.4 (SD)
32
43 ng/dL (mean)
hypogonadal
Shubert 2003 [69]
open-label
i.m.
250 mg TE/3 weeks
12 months
31.9 ± 2.5 (SD)
14
63.6 ng/dL ±14 (SD)
hypogonadal
Wang 2010 [70]
open-label
i.m.
750 mg TU/4 to 10 weeks
21 months
>18
117
320 ng/dL ±111 (SD)
low normal T
Brockenbrough 2006 [48]
RCT
gel
10 mg T/day
6 months
58.9 ± 14.9 (SD)
19
218 ± 64 (SD) ng/dL
hypogonadal, renal disease
Cherrier 2003 [71]
RCT
gel
50-100 mg T/day
6 months
34 to 70
12
320 ± 90 (SD) ng/dL
low normal T
Chiang 2007 [72]
RCT
gel
50 mg T/day
3 months
20 to 75
17
213 ± 158 (SD) ng/dL
hypogonadal
Dean 2004 [73]
open-label
gel
50 mg T/day
9 months
58.5 (mean)
257
247 ng/dL (mean)
hypogonadal
Di Luigi 2012 [74]
open-label
gel
50 mg T/day
1.25 month
31.3 ± 7.5 (SD)
10
72 ng/dL (mean)
hypogonadal
Juang 2014 [75]
RCT
gel
100 mg T/day
3.5 months
24 to 51
14
302 ± 37 (SD) ng/dL
hypogonadal, osteoporosis
Kenny 2010 [53]
RCT
gel
50 mg T/day
12 months
79.9 ± 7.3 (SD)
69
380 ± 179 (SD) ng/dL
eugonadal, osteoporosis
Marin 1993 [54]
RCT
gel
125 mg T/day
9 months
56.7 ± 2.2 (SD)
10
455 ± 23 (SD) ng/dL
eugonadal, obese
Mazer 2005 [76]
RCT
gel
59 mg/day
2 weeks
52.4 ± 12.2 (SD)
28
226 ± 110 (SD) ng/dL
hypogonadal
Page 2011 [77]
RCT
gel
75 mg T/day
6 months
>50
27
204 ng/dL (mean)
hypogonadal, BPH
Swerdloff 2000 [78]
open-label
gel
100 mg T/day
3 months
51.3 (mean)
76
280 ng/dL (mean)
hypogonadal
Wang 2000 [79]
no placebo group
gel
100 mg T/day
2 weeks
26 to 59
10
179 ± 41 (SD) ng/dL
hypogonadal
Wang 2011 [80]
open-label
gel
60 mg T/day
4 months
51.5 ± 12.7 (SD)
135
215 ± 84 (SD) ng/dL
hypogonadal
Ahmed 1988 [81]
no placebo group
patch
15 mg T/day
6 to 8 weeks
34 to 54
5
45 ± 12 (SD) ng/dL
hypogonadal
Bals-Pratch 1988 [82]
not stated
patch
10 to 15 mg T/day
14 months
31 to 37
7
189 ng/dL (mean)
hypogonadal
Behre 1999 [83]
open-label
patch
2.4 to 3.6 mg T/day
7 years
35.9 ± 9.8 (SD)
11
147 ± 37 (SD) ng/dL
hypogonadal
Cunningham 1989 [84]
placebo-controlled
patch
15 mg T/day
8 weeks
33 to 66
12
43 ± 11 (SD) ng/dL
hypogonadal
Mazer 2005 [76]
open-label
patch
5 mg T/day
2 weeks
28 to 71
28
215 ± 110 (SD) ng/dL
hypogonadal
Meikle 1992 [85]
not stated
patch
12.6 mg T/day
single dose
24 to 66
6
161 ± 27 (SD) ng/dL
hypogonadal
Raynaud 2008 [68]
open-label
patch
2.5 mg T/day
12 months
40.7 ± 10.5 (SD)
131
43 ng/dL (mean)
hypogonadal
Franchimont 1978 [86]
 
oral
120 to 240 mg TU/day
9 weeks
16 to 51
10
120 ng/dL (mean)
hypogonadal
Roth 2011 [87]
open-label
oral
400 mg TU/day
1 day
18 to52
11
405 ± 14 (SD) ng/dL
eugonadal
Schubert 2003 [69]
open-label
oral
160 mg TU/day
12 months
34.5 ± 3.9 (SD)
13
63.6 ng/dL ±14 (SD)
hypogonadal
Van Coevorden 1986 [88]
RCT
oral
240 mg TU/day
12 weeks
40 ± 11 (SD)
19
161 ± 86 (SD) ng/dL
hypogonadal, renal insufficiency
BPH, benign prostate hyperplasia; RCT, randomized clinical trial; SD, standard deviation; TE, testosterone enanthate; TU, testosterone undecanoate.
Table 3
Change in serum testosterone (T) and dihydrotestosterone (DHT) when assessed by testosterone replacement therapy (TRT) administration route
  
Testosterone
DHT
Route of administration
Number of studies
Pre-treatment T (nmol/L) (95% CI)
Post-treatment T (nmol/L) (95% CI)
Pre-Post treatment fold increase in T (95% CI)
Pre-treatment DHT (nmol/L) (95% CI)
Post-treatment DHT (nmol/L) (95% CI)
Pre-Post treatment fold increase in DHT (95% CI)
Intramuscular
8
9.27 (5.68 to 12.85)
23.11 (15.38 to 34.72)
2.91 (2.19 to 3.86)
1.02 (0.69 to 1.34)
1.62 (1.2 to 2.19)
2.20 (1.74 to 2.77)
Transdermal (patch and gel)
20
7.28 (6.09 to 8.42)
16.69 (12.62 to 21.98)
2.53 (1.83 to 3.50)
0.99 (0.78 to 1.20)
3.43 (2.37 to 4.98)
5.46 (4.51 to 6.60)
Gel
13
8.90 (7.67 to 10.13)
18.3 (15.18 to 23.12)
1.98 (1.70 to 2.30)
1.19 (0.93 to 1.46)
3.81 (2.57 to 5.63)
5.12 (4.07 to 6.45)
Patch
7
4.20 (2.78 to 5.23)
9.73 (4.01 to 23.62)
4.43 (2.99 to 6.54)
0.62 (0.36 to 0.88)
2.16 (0.68 to 6.87)
6.61 (3.08 to 14.16)
Orala
4
6.66
21.88
2.80
0.90
3.92
4.46
(14.05, 2.9, 5.6, 4.1)
(59.2, 5.70, 7.6, 14.96)
(4.20, 2.20, 1.4, 3.6)
(1.1, 1.8, 0.30, 0.41)
(9.89, 3.30, 1.13, 1.35)
9.0, 1.8, 3.8, 3.3
aEffects of oral TRT on T and DHT concentrations were not statistically analyzed because only four studies were identified that met our a priori inclusionary criteria, which resulted in sufficient data. For oral studies, the mean and individual values for each of the four studies are listed. Transdermal (patch or gel) TRT produces a greater elevation of serum DHT than intramuscular TRT. Means are adjusted for sample size.

Discussion

This meta-analysis of 35 eligible studies and more than 3,700 patients receiving TRT is the largest consolidation of RCT data thus far. Our main finding is that no significant increase in CV event risk was noted among studies of various TRT administration routes when analyzed together. Further, when the risk of CV events was analyzed based on the mode of administration, only oral TRT was associated with elevated CV risk when compared with placebo. The increase in CV risk resulting from transdermal TRT and the decrease in CV risk seen with intramuscular TRT did not achieve statistical significance. A second important finding in this meta-analysis is that the oral and transdermal administration methods of TRT are associated with greater DHT elevations than intramuscular administration. Because there is emerging data demonstrating an association between elevated DHT (rather than serum T) and adverse CV events, these two findings may have important implications for our current understanding of the mechanisms of CV risk in TRT recipients.

Mode of administration and CV risk

Our finding that there are varying CV risks based on the type of TRT formulation helps reconcile seemingly disparate observations across various studies regarding testosterone’s CV effects. While three prior meta-analyses suggested no significant increase in CV risk across TRT RCTs [4]-[6], a more recent meta-analysis by Xu et al. [10] indicated higher CV risk with TRT. The present meta-analysis is the most extensive thus far. Although we included all reported CV AEs in this meta-analysis, we have included newer studies exclusive to this review which may reflect less publication bias, more rigorous patient screening practices and more attention to the reporting of hard CV endpoints rather than nonspecific CV events that may have driven AE rates in previous studies.
The increased CV risk of the oral formulation subgroup is a novel finding in our analysis. While no significant effects on CV risk were observed with either injected or transdermal TRT, the point estimates suggest that further research is needed to establish whether administration by these routes is protective or detrimental, respectively. To the best of our knowledge, differing CV risk specific to varying testosterone formulations has not been previously reported.

DHT elevation and increased CV risk

The greater elevation of DHT that occurs with oral or transdermal TRT may be due to the high expression of 5-α reductase in skin [20] and liver [21] in comparison to lower 5-α reductase in skeletal muscle [89]. The finding of differential DHT elevation may be critical to our understanding of adverse CV risk, because elevated serum DHT (not elevated T) has recently been found to be associated with CV risk in several observational studies. Shores et al. published two studies of 1,032 older men which reported significant associations between the serum DHT concentration and both the 10-year rate of incident ischemic stroke [23] and the 9-year rate of incident CV disease and all-cause mortality [16] (see Figure 4). Interestingly, similar relationships did not exist for serum total or free T, suggesting that CV risk resulting from TRT may result from the 5α-reduction of T to DHT. In both studies by Shores et al., the lowest risk was associated with a serum DHT concentration of approximately 60 ng/dL, while greater risk was associated with both higher and lower DHT concentrations.
In Figure 4, the left panel represents data from our meta-analysis showing the elevation of serum DHT with intramuscular, transdermal and oral TRT. In the center and right panels, we have superimposed that data on top of the previously published data from the two papers by Shores et al. Taken together, these data appear to indicate that intramuscular TRT elevates the serum DHT concentration into a range that is associated with reduced CV disease (CVD) and stroke risks. In contrast, transdermal and oral TRT appear to elevate serum DHT into a range that is associated with unchanged CVD risk and increased ischemic stroke risk.

Limitations

Reporting of AEs may be open to interpretation and so may vary somewhat among trials. Using the most serious CV events (stroke, myocardial infarction, and CV-related death) might be more unambiguous. Because of very long follow-up periods, such events are common enough to assess in observational studies [16],[22],[23]. However, due to shorter study duration, serious CV events are not common enough to study in clinical trials of TRT. As a result, our analyses are based on all CV events, serious or not.
The data on oral TRT must be interpreted with caution, since only four studies met the inclusion criteria. Of those, two had very low rates of CV events in both the treated and placebo groups [61],[64] and one study had very high post-treatment serum T concentrations [32], possibly due to the presence of liver disease in the study subjects. The latter study was not included in the analysis of TRT-induced elevations of T/DHT because DHT was not measured. However, among the four studies analyzed for T/DHT, there was considerable variation in serum concentrations. Variation may result from the fact that serum T concentrations are not sustained following oral TRT and the time of blood acquisition is therefore critical.
Two studies included in the analysis of CV risk were stopped early. One study of oral TRT was stopped because of lack of evidence for efficacy unrelated to CV [32] and one study of gel TRT was stopped early for excess CV events in the group receiving testosterone [7]. The first study, whose stopping was uninfluenced by CV has no bias associated with early stopping. The second, may actually be associated with a slight bias estimate away from the null, actually strengthening the null conclusion. There is no way to adjust for this without serial patient level data and the exact stopping rules used.
Interpretation of the data on TRT-induced elevations of T and DHT may be limited by the fact that DHT was assayed by several methods in the included studies. The latter include mass spectroscopy (MS) based methods and various radioimmunoassays (RIAs). MS-based assays provide highly accurate measurements of DHT. RIAs are specific for DHT [90] but the values are somewhat higher than those obtained with MS-based assays [91]. The enzyme-linked immunosorbant assay (EIA) for DHT is not valid as we have recently shown [24] and studies using this method were excluded. The current analysis is based on clinical trials that have a high rate of compliance. An additional limitation in extending our findings to a clinical setting is that compliance may be lower. Schoenfeld et al. have shown that TRT gel adherence is only 37.4% at six months [92]. Similarly, Donatucci et al. [93] reported that at three months, adherence to transdermal TRT was 52% and adherence to injected TRT was 32%.

Potential cardiovascular benefits of testosterone

Although this paper encompasses a discussion of adverse CV risk of TRT, assessment of the CV risk-to-benefit should be considered. Numerous studies have demonstrated positive CV effects of TRT. English et al. [17] have shown that, in men with stable angina, treatment with low-dose T (5 mg/day by patch) for 12 weeks caused a significant 17% increase in time to 1-mm ST segment depression during treadmill exercise testing. Stout et al. [94] have shown that TRT administration to men with chronic heart failure increases maximal oxygen consumption (VO2max) and improves physical performance. Toma et al. [18] published a meta-analysis of the four studies showing that TRT improved exercise capacity in heart failure patients. Empen et al. [95] reported that T deficiency is associated with impaired arterial flow-mediated dilation (FMD), a marker of vascular endothelial function. Cardiovascular improvement with TRT is thought to result from increased coronary blood flow, peripheral vasodilation, positive remodeling of skeletal muscle and reduced insulin resistance, without marked effects on left ventricular ejection fraction [18].

Conclusions

The potential CV risks of TRT are currently being debated. This updated meta-analysis indicates oral TRT produces increased CV risk, while TRT administered by all routes may cause an increase in CV adverse events, but the effect is not statistically significant. On the latter point, a definitive answer awaits further clinical trials. More studies are also needed to assess whether increased CV risk occurs with the transdermal formulations and decreased CV risk with the intramuscular formulation. This early indicator that intramuscular T may be safer than transdermal TRT may be surprising, considering that intramuscular TRT doses are typically several-fold higher than transdermal doses. However, our data indicate that transdermal TRT produces a significantly greater elevation of serum DHT than intramuscular T, possibly due to the expression of 5-alpha reductase in the skin. Interestingly, serum DHT concentrations following intramuscular TRT correspond to DHT levels that are associated with reduced CV risk in other large observational studies, suggesting that: 1) CV risks of TRT administration may result from excessive elevation of serum DHT; and 2) intramuscular TRT may produce less CV risk than transdermal or oral TRT. Given our unique findings, future RCTs, meta-analyses and retrospective database studies evaluating the health risks associated with TRT should carefully control for the change in serum DHT and evaluate the TRT administration route as potential confounding factors in their data analysis.

Authors’ contributions

SEB participated in study conception and design, performed searches, contacted authors for additional information and drafted the manuscript. JJS and BZ performed statistical analysis and participated in revisions of the manuscript. FY performed searches, contacted authors for additional information, and participated in revisions of the manuscript. HJ participated in revision of the manuscript. AW assessed descriptions of cardiovascular events and participated in revisions of the manuscript. JFY participated in study conception and design and in revisions of the manuscript. All authors read and approved the final manuscript.

Additional files

Acknowledgements

This work was partially supported by a VA Merit Award to SEB and by NIH grant 1UL1TR000064 from the National Center for Advancing Translational Sciences.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.
Literatur
1.
Zurück zum Zitat Spitzer M, Huang G, Basaria S, Travison TG, Bhasin S: Risks and benefits of testosterone therapy in older men. Nat Rev Endocrinol. 2013, 9: 414-424. 10.1038/nrendo.2013.73.CrossRefPubMed Spitzer M, Huang G, Basaria S, Travison TG, Bhasin S: Risks and benefits of testosterone therapy in older men. Nat Rev Endocrinol. 2013, 9: 414-424. 10.1038/nrendo.2013.73.CrossRefPubMed
2.
Zurück zum Zitat Tracz MJ, Sideras K, Bolona ER, Haddad RM, Kennedy CC, Uraga MV, Caples SM, Erwin PJ, Montori VM: Testosterone use in men and its effects on bone health: A systematic review and meta-analysis of randomized placebo-controlled trials. J Clin Endocrinol Metabol. 2006, 91: 2011-2016. 10.1210/jc.2006-0036.CrossRef Tracz MJ, Sideras K, Bolona ER, Haddad RM, Kennedy CC, Uraga MV, Caples SM, Erwin PJ, Montori VM: Testosterone use in men and its effects on bone health: A systematic review and meta-analysis of randomized placebo-controlled trials. J Clin Endocrinol Metabol. 2006, 91: 2011-2016. 10.1210/jc.2006-0036.CrossRef
3.
Zurück zum Zitat Traish AM: Outcomes of testosterone therapy in men with testosterone deficiency (TD): Part II. Steroids. 2014, 88: 117-126. 10.1016/j.steroids.2014.05.004.CrossRefPubMed Traish AM: Outcomes of testosterone therapy in men with testosterone deficiency (TD): Part II. Steroids. 2014, 88: 117-126. 10.1016/j.steroids.2014.05.004.CrossRefPubMed
4.
Zurück zum Zitat Calof OM, Singh AB, Lee ML, Kenny AM, Urban RJ, Tenover JL, Bhasin S: Adverse events associated with testosterone replacement in middle-aged and older men: a meta-analysis of randomized, placebo-controlled trials. J Gerontol A Biol Sci Med Sci. 2005, 60: 1451-1457. 10.1093/gerona/60.11.1451.CrossRefPubMed Calof OM, Singh AB, Lee ML, Kenny AM, Urban RJ, Tenover JL, Bhasin S: Adverse events associated with testosterone replacement in middle-aged and older men: a meta-analysis of randomized, placebo-controlled trials. J Gerontol A Biol Sci Med Sci. 2005, 60: 1451-1457. 10.1093/gerona/60.11.1451.CrossRefPubMed
5.
Zurück zum Zitat Fernandez-Balsells MM, Murad MH, Lane M, Lampropulos JF, Albuquerque F, Mullan RJ, Agrwal N, Elamin MB, Gallegos-Orozco JF, Wang AT, Erwin PJ, Bhasin S, Montori VM: Clinical review 1: Adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2010, 95: 2560-2575. 10.1210/jc.2009-2575.CrossRefPubMed Fernandez-Balsells MM, Murad MH, Lane M, Lampropulos JF, Albuquerque F, Mullan RJ, Agrwal N, Elamin MB, Gallegos-Orozco JF, Wang AT, Erwin PJ, Bhasin S, Montori VM: Clinical review 1: Adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2010, 95: 2560-2575. 10.1210/jc.2009-2575.CrossRefPubMed
6.
Zurück zum Zitat Haddad RM, Kennedy CC, Caples SM, Tracz MJ, Bolona ER, Sideras K, Uraga MV, Erwin PJ, Montori VM: Testosterone and cardiovascular risk in men: a systematic review and meta-analysis of randomized placebo-controlled trials. Mayo Clin Proc. 2007, 82: 29-39. 10.1016/S0025-6196(11)60964-6.CrossRefPubMed Haddad RM, Kennedy CC, Caples SM, Tracz MJ, Bolona ER, Sideras K, Uraga MV, Erwin PJ, Montori VM: Testosterone and cardiovascular risk in men: a systematic review and meta-analysis of randomized placebo-controlled trials. Mayo Clin Proc. 2007, 82: 29-39. 10.1016/S0025-6196(11)60964-6.CrossRefPubMed
7.
Zurück zum Zitat Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jette AM, Eder R, Tennstedt S, Ulloor J, Zhang A, Choong K, Lakshman KM, Mazer NA, Miciek R, Krasnoff J, Elmi A, Knapp PE, Brooks B, Appleman E, Aggarwal S, Bhasin G, Hede-Brierley L, Bhatia A, Collins L, LeBrasseur N, Fiore LD, Bhasin S: Adverse events associated with testosterone administration. N Engl J Med. 2010, 363: 109-122. 10.1056/NEJMoa1000485.CrossRefPubMedPubMedCentral Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jette AM, Eder R, Tennstedt S, Ulloor J, Zhang A, Choong K, Lakshman KM, Mazer NA, Miciek R, Krasnoff J, Elmi A, Knapp PE, Brooks B, Appleman E, Aggarwal S, Bhasin G, Hede-Brierley L, Bhatia A, Collins L, LeBrasseur N, Fiore LD, Bhasin S: Adverse events associated with testosterone administration. N Engl J Med. 2010, 363: 109-122. 10.1056/NEJMoa1000485.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Vigen R, O'Donnell CI, Baron AE, Grunwald GK, Maddox TM, Bradley SM, Barqawi A, Woning G, Wierman ME, Plomondon ME, Rumsfeld JS, Ho PM: Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA. 2013, 310: 1829-1836. 10.1001/jama.2013.280386.CrossRefPubMed Vigen R, O'Donnell CI, Baron AE, Grunwald GK, Maddox TM, Bradley SM, Barqawi A, Woning G, Wierman ME, Plomondon ME, Rumsfeld JS, Ho PM: Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA. 2013, 310: 1829-1836. 10.1001/jama.2013.280386.CrossRefPubMed
9.
Zurück zum Zitat Finkle WD, Greenland S, Ridgeway GK, Adams JL, Frasco MA, Cook MB, Fraumeni JF, Hoover RN: Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men. PLoS One. 2014, 9: e85805-10.1371/journal.pone.0085805.CrossRefPubMedPubMedCentral Finkle WD, Greenland S, Ridgeway GK, Adams JL, Frasco MA, Cook MB, Fraumeni JF, Hoover RN: Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men. PLoS One. 2014, 9: e85805-10.1371/journal.pone.0085805.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Xu L, Freeman G, Cowling BJ, Schooling CM: Testosterone therapy and cardiovascular events among men: a systematic review and meta-analysis of placebo-controlled randomized trials. BMC Med. 2013, 11: 108-10.1186/1741-7015-11-108.CrossRefPubMedPubMedCentral Xu L, Freeman G, Cowling BJ, Schooling CM: Testosterone therapy and cardiovascular events among men: a systematic review and meta-analysis of placebo-controlled randomized trials. BMC Med. 2013, 11: 108-10.1186/1741-7015-11-108.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Shuster JJ, Guo JD, Skyler JS: Meta-analysis of safety for low event-rate binomial trials. Res Synth Meth. 2012, 3:10.1002/jrsm.1039. doi:10.1002/jrsm.1039. Shuster JJ, Guo JD, Skyler JS: Meta-analysis of safety for low event-rate binomial trials. Res Synth Meth. 2012, 3:10.1002/jrsm.1039. doi:10.1002/jrsm.1039.
12.
Zurück zum Zitat Corona G, Maseroli E, Rastrelli G, Isidori AM, Sforza A, Mannucci E, Maggi M: Cardiovascular risk associated with testosterone-boosting medications: a systematic review and meta-analysis. Expert Opin Drug Saf. 2014, 13: 1327-1351. 10.1517/14740338.2014.950653.CrossRefPubMed Corona G, Maseroli E, Rastrelli G, Isidori AM, Sforza A, Mannucci E, Maggi M: Cardiovascular risk associated with testosterone-boosting medications: a systematic review and meta-analysis. Expert Opin Drug Saf. 2014, 13: 1327-1351. 10.1517/14740338.2014.950653.CrossRefPubMed
16.
Zurück zum Zitat Shores MM, Smith NL, Forsberg CW, Anawalt BD, Matsumoto AM: Testosterone treatment and mortality in men with low testosterone levels. J Clin Endocrinol Metab. 2012, 97: 2050-2058. 10.1210/jc.2011-2591.CrossRefPubMed Shores MM, Smith NL, Forsberg CW, Anawalt BD, Matsumoto AM: Testosterone treatment and mortality in men with low testosterone levels. J Clin Endocrinol Metab. 2012, 97: 2050-2058. 10.1210/jc.2011-2591.CrossRefPubMed
17.
Zurück zum Zitat English KM, Steeds RP, Jones TH, Diver MJ, Channer KS: Low-dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina: a randomized, double-blind, placebo-controlled study. Circulation. 2000, 102: 1906-1911. 10.1161/01.CIR.102.16.1906.CrossRefPubMed English KM, Steeds RP, Jones TH, Diver MJ, Channer KS: Low-dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina: a randomized, double-blind, placebo-controlled study. Circulation. 2000, 102: 1906-1911. 10.1161/01.CIR.102.16.1906.CrossRefPubMed
18.
Zurück zum Zitat Toma M, McAlister FA, Coglianese EE, Vidi V, Vasaiwala S, Bakal JA, Armstrong PW, Ezekowitz JA: Testosterone supplementation in heart failure: a meta-analysis. Circ Heart Fail. 2012, 5: 315-321. 10.1161/CIRCHEARTFAILURE.111.965632.CrossRefPubMed Toma M, McAlister FA, Coglianese EE, Vidi V, Vasaiwala S, Bakal JA, Armstrong PW, Ezekowitz JA: Testosterone supplementation in heart failure: a meta-analysis. Circ Heart Fail. 2012, 5: 315-321. 10.1161/CIRCHEARTFAILURE.111.965632.CrossRefPubMed
19.
Zurück zum Zitat Baillargeon J, Urban RJ, Kuo YF, Ottenbacher KJ, Raji MA, Du F, Lin YL, Goodwin JS: Risk of myocardial infarction in older men receiving testosterone therapy. Ann Pharmacother. 2014, 48: 1138-1144. 10.1177/1060028014539918.CrossRefPubMedPubMedCentral Baillargeon J, Urban RJ, Kuo YF, Ottenbacher KJ, Raji MA, Du F, Lin YL, Goodwin JS: Risk of myocardial infarction in older men receiving testosterone therapy. Ann Pharmacother. 2014, 48: 1138-1144. 10.1177/1060028014539918.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Inui S, Itami S: Androgen actions on the human hair follicle: perspectives. Exp Dermatol. 2013, 22: 168-171. 10.1111/exd.12024.CrossRefPubMed Inui S, Itami S: Androgen actions on the human hair follicle: perspectives. Exp Dermatol. 2013, 22: 168-171. 10.1111/exd.12024.CrossRefPubMed
21.
Zurück zum Zitat Thigpen AE, Silver RI, Guileyardo JM, Casey ML, McConnell JD, Russell DW: Tissue distribution and ontogeny of steroid 5 alpha-reductase isozyme expression. J Clin Invest. 1993, 92: 903-910. 10.1172/JCI116665.CrossRefPubMedPubMedCentral Thigpen AE, Silver RI, Guileyardo JM, Casey ML, McConnell JD, Russell DW: Tissue distribution and ontogeny of steroid 5 alpha-reductase isozyme expression. J Clin Invest. 1993, 92: 903-910. 10.1172/JCI116665.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Shores MM, Biggs ML, Arnold AM, Smith NL, Longstreth WT, Kizer JR, Hirsch CH, Cappola AR, Matsumoto AM: Testosterone, dihydrotestosterone and incident cardiovascular disease and mortality in the cardiovascular health study. J Clin Endocrinol Metab. 2014, 99: 2061-2068. 10.1210/jc.2013-3576.CrossRefPubMedPubMedCentral Shores MM, Biggs ML, Arnold AM, Smith NL, Longstreth WT, Kizer JR, Hirsch CH, Cappola AR, Matsumoto AM: Testosterone, dihydrotestosterone and incident cardiovascular disease and mortality in the cardiovascular health study. J Clin Endocrinol Metab. 2014, 99: 2061-2068. 10.1210/jc.2013-3576.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Shores MM, Arnold AM, Biggs ML, Longstreth WT, Smith NL, Kizer JR, Cappola AR, Hirsch CH, Marck BT, Matsumoto AM: Testosterone and dihydrotestosterone and incident ischaemic stroke in men in the Cardiovascular Health Study. Clin Endocrinol (Oxf). 2014, 81: 746-753. 10.1111/cen.12452.CrossRef Shores MM, Arnold AM, Biggs ML, Longstreth WT, Smith NL, Kizer JR, Cappola AR, Hirsch CH, Marck BT, Matsumoto AM: Testosterone and dihydrotestosterone and incident ischaemic stroke in men in the Cardiovascular Health Study. Clin Endocrinol (Oxf). 2014, 81: 746-753. 10.1111/cen.12452.CrossRef
24.
Zurück zum Zitat Yarrow JF, Beck DT, Conover CF, Beggs LA, Goldberger BA, Borst SE: Invalidation of a commercially available human 5alpha-dihydrotestosterone immunoassay. Steroids. 2013, 78: 1220-1225. 10.1016/j.steroids.2013.08.013.CrossRefPubMed Yarrow JF, Beck DT, Conover CF, Beggs LA, Goldberger BA, Borst SE: Invalidation of a commercially available human 5alpha-dihydrotestosterone immunoassay. Steroids. 2013, 78: 1220-1225. 10.1016/j.steroids.2013.08.013.CrossRefPubMed
25.
Zurück zum Zitat Gooren LJ, Saad F, Haide A, Yassin A: Decline of plasma 5alpha-dihydrotestosterone (DHT) levels upon testosterone administration to elderly men with subnormal plasma testosterone and high DHT levels. Andrologia. 2008, 40: 298-302. 10.1111/j.1439-0272.2008.00857.x.CrossRefPubMed Gooren LJ, Saad F, Haide A, Yassin A: Decline of plasma 5alpha-dihydrotestosterone (DHT) levels upon testosterone administration to elderly men with subnormal plasma testosterone and high DHT levels. Andrologia. 2008, 40: 298-302. 10.1111/j.1439-0272.2008.00857.x.CrossRefPubMed
26.
Zurück zum Zitat Verhagen AP, de Vet HC, de Bie RA, Kessels AG, Boers M, Bouter LM, Knipschild PG: The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. 1998, 51: 1235-1241. 10.1016/S0895-4356(98)00131-0.CrossRefPubMed Verhagen AP, de Vet HC, de Bie RA, Kessels AG, Boers M, Bouter LM, Knipschild PG: The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. 1998, 51: 1235-1241. 10.1016/S0895-4356(98)00131-0.CrossRefPubMed
27.
Zurück zum Zitat Borenstein M, Hedges LV, Higgins J, Rothstein HR: A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Meth. 2010, 1: 97-111. 10.1002/jrsm.12.CrossRef Borenstein M, Hedges LV, Higgins J, Rothstein HR: A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Meth. 2010, 1: 97-111. 10.1002/jrsm.12.CrossRef
28.
Zurück zum Zitat Cochrane Handbook for Systematic Reviews for Interventions, Version 5.1.0. 2011, Wiley Publications, Chichester, UK Cochrane Handbook for Systematic Reviews for Interventions, Version 5.1.0. 2011, Wiley Publications, Chichester, UK
29.
Zurück zum Zitat DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7: 177-188. 10.1016/0197-2456(86)90046-2.CrossRefPubMed DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7: 177-188. 10.1016/0197-2456(86)90046-2.CrossRefPubMed
30.
Zurück zum Zitat Hedges LV, Vevea JL: Fixed - and random-effects models in meta-analysis. Psychol Methods. 1998, 3: 486-504. 10.1037/1082-989X.3.4.486.CrossRef Hedges LV, Vevea JL: Fixed - and random-effects models in meta-analysis. Psychol Methods. 1998, 3: 486-504. 10.1037/1082-989X.3.4.486.CrossRef
32.
Zurück zum Zitat Amory JK, Watts NB, Easley KA, Sutton PR, Anawalt BD, Matsumoto AM, Bremner WJ, Tenover JL: Exogenous testosterone or testosterone with finasteride increases bone mineral density in older men with low serum testosterone. J Clin Endocrinol Metab. 2004, 89: 503-510. 10.1210/jc.2003-031110.CrossRefPubMed Amory JK, Watts NB, Easley KA, Sutton PR, Anawalt BD, Matsumoto AM, Bremner WJ, Tenover JL: Exogenous testosterone or testosterone with finasteride increases bone mineral density in older men with low serum testosterone. J Clin Endocrinol Metab. 2004, 89: 503-510. 10.1210/jc.2003-031110.CrossRefPubMed
33.
Zurück zum Zitat Aversa A, Bruzziches R, Francomano D, Rosano G, Isidori AM, Lenzi A, Spera G: Effects of testosterone undecanoate on cardiovascular risk factors and atherosclerosis in middle-aged men with late-onset hypogonadism and metabolic syndrome: results from a 24-month, randomized, double-blind, placebo-controlled study. J Sex Med. 2010, 7: 3495-3503. 10.1111/j.1743-6109.2010.01931.x.CrossRefPubMed Aversa A, Bruzziches R, Francomano D, Rosano G, Isidori AM, Lenzi A, Spera G: Effects of testosterone undecanoate on cardiovascular risk factors and atherosclerosis in middle-aged men with late-onset hypogonadism and metabolic syndrome: results from a 24-month, randomized, double-blind, placebo-controlled study. J Sex Med. 2010, 7: 3495-3503. 10.1111/j.1743-6109.2010.01931.x.CrossRefPubMed
34.
Zurück zum Zitat Borst SE, Yarrow JF, Conover CF, Nseyo U, Meuleman JR, Lipinska JA, Braith RW, Beck DT, Martin JS, Morrow M, Roessner S, Beggs LA, McCoy SC, Cannady DF, Shuster JJ: Musculoskeletal and prostate effects of combined testosterone and finasteride administration in older hypogonadal men: a randomized, controlled trial. Am J Physiol Endocrinol Metab. 2014, 306: E433-E442. 10.1152/ajpendo.00592.2013.CrossRefPubMed Borst SE, Yarrow JF, Conover CF, Nseyo U, Meuleman JR, Lipinska JA, Braith RW, Beck DT, Martin JS, Morrow M, Roessner S, Beggs LA, McCoy SC, Cannady DF, Shuster JJ: Musculoskeletal and prostate effects of combined testosterone and finasteride administration in older hypogonadal men: a randomized, controlled trial. Am J Physiol Endocrinol Metab. 2014, 306: E433-E442. 10.1152/ajpendo.00592.2013.CrossRefPubMed
35.
Zurück zum Zitat Caminiti G, Volterrani M, Iellamo F, Marazzi G, Massaro R, Miceli M, Mammi C, Piepoli M, Fini M, Rosano GM: Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol. 2009, 54: 919-927. 10.1016/j.jacc.2009.04.078.CrossRefPubMed Caminiti G, Volterrani M, Iellamo F, Marazzi G, Massaro R, Miceli M, Mammi C, Piepoli M, Fini M, Rosano GM: Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol. 2009, 54: 919-927. 10.1016/j.jacc.2009.04.078.CrossRefPubMed
36.
Zurück zum Zitat Ferrando AA, Sheffield-Moore M, Yeckel CW, Gilkison C, Jiang J, Achacosa A, Lieberman SA, Tipton K, Wolfe RR, Urban RJ: Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am J Physiol Endocrinol Metab. 2002, 282: E601-E607.CrossRefPubMed Ferrando AA, Sheffield-Moore M, Yeckel CW, Gilkison C, Jiang J, Achacosa A, Lieberman SA, Tipton K, Wolfe RR, Urban RJ: Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am J Physiol Endocrinol Metab. 2002, 282: E601-E607.CrossRefPubMed
37.
Zurück zum Zitat Hackett G, Cole N, Bhartia M, Kennedy D, Raju J, Wilkinson P, Saghir A: The response to testosterone undecanoate in men with type 2 diabetes is dependent on achieving threshold serum levels (the BLAST study). Int J Clin Pract. 2014, 68: 203-215. 10.1111/ijcp.12235.CrossRefPubMed Hackett G, Cole N, Bhartia M, Kennedy D, Raju J, Wilkinson P, Saghir A: The response to testosterone undecanoate in men with type 2 diabetes is dependent on achieving threshold serum levels (the BLAST study). Int J Clin Pract. 2014, 68: 203-215. 10.1111/ijcp.12235.CrossRefPubMed
38.
Zurück zum Zitat Hall GM, Larbre JP, Spector TD, Perry LA, Da Silva JA: A randomized trial of testosterone therapy in males with rheumatoid arthritis. Br J Rheumatol. 1996, 35: 568-573. 10.1093/rheumatology/35.6.568.CrossRefPubMed Hall GM, Larbre JP, Spector TD, Perry LA, Da Silva JA: A randomized trial of testosterone therapy in males with rheumatoid arthritis. Br J Rheumatol. 1996, 35: 568-573. 10.1093/rheumatology/35.6.568.CrossRefPubMed
39.
Zurück zum Zitat Ho CC, Tong SF, Low WY, Ng CJ, Khoo EM, Lee VK, Zainuddin ZM, Tan HM: A randomized, double-blind, placebo-controlled trial on the effect of long-acting testosterone treatment as assessed by the Aging Male Symptoms scale. BJU Int. 2012, 110: 260-265. 10.1111/j.1464-410X.2011.10755.x.CrossRefPubMed Ho CC, Tong SF, Low WY, Ng CJ, Khoo EM, Lee VK, Zainuddin ZM, Tan HM: A randomized, double-blind, placebo-controlled trial on the effect of long-acting testosterone treatment as assessed by the Aging Male Symptoms scale. BJU Int. 2012, 110: 260-265. 10.1111/j.1464-410X.2011.10755.x.CrossRefPubMed
40.
Zurück zum Zitat Hoyos CM, Yee BJ, Phillips CL, Machan EA, Grunstein RR, Liu PY: Body compositional and cardiometabolic effects of testosterone therapy in obese men with severe obstructive sleep apnoea: a randomised placebo-controlled trial. Eur J Endocrinol. 2012, 167: 531-541. 10.1530/EJE-12-0525.CrossRefPubMed Hoyos CM, Yee BJ, Phillips CL, Machan EA, Grunstein RR, Liu PY: Body compositional and cardiometabolic effects of testosterone therapy in obese men with severe obstructive sleep apnoea: a randomised placebo-controlled trial. Eur J Endocrinol. 2012, 167: 531-541. 10.1530/EJE-12-0525.CrossRefPubMed
41.
Zurück zum Zitat Kalinchenko SY, Tishova YA, Mskhalaya GJ, Gooren LJ, Giltay EJ, Saad F: Effects of testosterone supplementation on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: the double-blinded placebo-controlled Moscow study. Clin Endocrinol (Oxf). 2010, 73: 602-612. 10.1111/j.1365-2265.2010.03845.x.CrossRef Kalinchenko SY, Tishova YA, Mskhalaya GJ, Gooren LJ, Giltay EJ, Saad F: Effects of testosterone supplementation on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: the double-blinded placebo-controlled Moscow study. Clin Endocrinol (Oxf). 2010, 73: 602-612. 10.1111/j.1365-2265.2010.03845.x.CrossRef
42.
Zurück zum Zitat Kenny AM, Fabregas G, Song C, Biskup B, Bellantonio S: Effects of testosterone on behavior, depression, and cognitive function in older men with mild cognitive loss. J Gerontol A Biol Sci Med Sci. 2004, 59: 75-78. 10.1093/gerona/59.1.M75.CrossRefPubMed Kenny AM, Fabregas G, Song C, Biskup B, Bellantonio S: Effects of testosterone on behavior, depression, and cognitive function in older men with mild cognitive loss. J Gerontol A Biol Sci Med Sci. 2004, 59: 75-78. 10.1093/gerona/59.1.M75.CrossRefPubMed
43.
Zurück zum Zitat Sih R, Morley JE, Kaiser FE, Perry HM, Patrick P, Ross C: Testosterone replacement in older hypogonadal men: a 12-month randomized controlled trial. J Clin Endocrinol Metab. 1997, 82: 1661-1667. 10.1210/jcem.82.6.3988.CrossRefPubMed Sih R, Morley JE, Kaiser FE, Perry HM, Patrick P, Ross C: Testosterone replacement in older hypogonadal men: a 12-month randomized controlled trial. J Clin Endocrinol Metab. 1997, 82: 1661-1667. 10.1210/jcem.82.6.3988.CrossRefPubMed
44.
Zurück zum Zitat Svartberg J, Aasebo U, Hjalmarsen A, Sundsfjord J, Jorde R: Testosterone treatment improves body composition and sexual function in men with COPD, in a 6-month randomized controlled trial. Respir Med. 2004, 98: 906-913. 10.1016/j.rmed.2004.02.015.CrossRefPubMed Svartberg J, Aasebo U, Hjalmarsen A, Sundsfjord J, Jorde R: Testosterone treatment improves body composition and sexual function in men with COPD, in a 6-month randomized controlled trial. Respir Med. 2004, 98: 906-913. 10.1016/j.rmed.2004.02.015.CrossRefPubMed
45.
Zurück zum Zitat Svartberg J, Agledahl I, Figenschau Y, Sildnes T, Waterloo K, Jorde R: Testosterone treatment in elderly men with subnormal testosterone levels improves body composition and BMD in the hip. Int J Impot Res. 2008, 20: 378-387. 10.1038/ijir.2008.19.CrossRefPubMed Svartberg J, Agledahl I, Figenschau Y, Sildnes T, Waterloo K, Jorde R: Testosterone treatment in elderly men with subnormal testosterone levels improves body composition and BMD in the hip. Int J Impot Res. 2008, 20: 378-387. 10.1038/ijir.2008.19.CrossRefPubMed
46.
Zurück zum Zitat Sheffield-Moore M, Dillon EL, Casperson SL, Gilkison CR, Paddon-Jones D, Durham WJ, Grady JJ, Urban RJ: A randomized pilot study of monthly cycled testosterone replacement or continuous testosterone replacement versus placebo in older men. J Clin Endocrinol Metab. 2011, 96: E1831-E1837. 10.1210/jc.2011-1262.CrossRefPubMedPubMedCentral Sheffield-Moore M, Dillon EL, Casperson SL, Gilkison CR, Paddon-Jones D, Durham WJ, Grady JJ, Urban RJ: A randomized pilot study of monthly cycled testosterone replacement or continuous testosterone replacement versus placebo in older men. J Clin Endocrinol Metab. 2011, 96: E1831-E1837. 10.1210/jc.2011-1262.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Tan WS, Low WY, Ng CJ, Tan WK, Tong SF, Ho C, Khoo EM, Lee G, Lee BC, Lee V, Tan HM: Efficacy and safety of long-acting intramuscular testosterone undecanoate in aging men: a randomised controlled study. BJU Int. 2013, 111: 1130-1140. 10.1111/bju.12037.CrossRefPubMed Tan WS, Low WY, Ng CJ, Tan WK, Tong SF, Ho C, Khoo EM, Lee G, Lee BC, Lee V, Tan HM: Efficacy and safety of long-acting intramuscular testosterone undecanoate in aging men: a randomised controlled study. BJU Int. 2013, 111: 1130-1140. 10.1111/bju.12037.CrossRefPubMed
48.
Zurück zum Zitat Brockenbrough AT, Dittrich MO, Page ST, Smith T, Stivelman JC, Bremner WJ: Transdermal androgen therapy to augment EPO in the treatment of anemia of chronic renal disease. Am J Kidney Dis. 2006, 47: 251-262. 10.1053/j.ajkd.2005.10.022.CrossRefPubMed Brockenbrough AT, Dittrich MO, Page ST, Smith T, Stivelman JC, Bremner WJ: Transdermal androgen therapy to augment EPO in the treatment of anemia of chronic renal disease. Am J Kidney Dis. 2006, 47: 251-262. 10.1053/j.ajkd.2005.10.022.CrossRefPubMed
49.
Zurück zum Zitat Glintborg D, Christensen LL, Kvorning T, Larsen R, Brixen K, Hougaard DM, Richelsen B, Bruun JM, Andersen M: Strength training and testosterone treatment have opposing effects on migration inhibitor factor levels in ageing men. Mediators Inflamm. 2013, 2013: 539156-10.1155/2013/539156.CrossRefPubMedPubMedCentral Glintborg D, Christensen LL, Kvorning T, Larsen R, Brixen K, Hougaard DM, Richelsen B, Bruun JM, Andersen M: Strength training and testosterone treatment have opposing effects on migration inhibitor factor levels in ageing men. Mediators Inflamm. 2013, 2013: 539156-10.1155/2013/539156.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Hildreth KL, Barry DW, Moreau KL, Vande Griend J, Meacham RB, Nakamura T, Wolfe P, Kohrt WM, Ruscin JM, Kittelson J, Cress ME, Ballard R, Schwartz RS: Effects of testosterone and progressive resistance exercise in healthy, highly functioning older men with low-normal testosterone levels. J Clin Endocrinol Metab. 2013, 98: 1891-1900. 10.1210/jc.2012-3695.CrossRefPubMedPubMedCentral Hildreth KL, Barry DW, Moreau KL, Vande Griend J, Meacham RB, Nakamura T, Wolfe P, Kohrt WM, Ruscin JM, Kittelson J, Cress ME, Ballard R, Schwartz RS: Effects of testosterone and progressive resistance exercise in healthy, highly functioning older men with low-normal testosterone levels. J Clin Endocrinol Metab. 2013, 98: 1891-1900. 10.1210/jc.2012-3695.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Jones TH, Arver S, Behre HM, Buvat J, Meuleman E, Moncada I, Morales AM, Volterrani M, Yellowlees A, Howell JD, Channer KS: Testosterone replacement in hypogonadal men with type 2 diabetes and/or metabolic syndrome (the TIMES2 study). Diabetes Care. 2011, 34: 828-837. 10.2337/dc10-1233.CrossRefPubMedPubMedCentral Jones TH, Arver S, Behre HM, Buvat J, Meuleman E, Moncada I, Morales AM, Volterrani M, Yellowlees A, Howell JD, Channer KS: Testosterone replacement in hypogonadal men with type 2 diabetes and/or metabolic syndrome (the TIMES2 study). Diabetes Care. 2011, 34: 828-837. 10.2337/dc10-1233.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Kaufman JM, Miller MG, Garwin JL, Fitzpatrick S, McWhirter C, Brennan JJ: Efficacy and safety study of 1.62% testosterone gel for the treatment of hypogonadal men. J Sex Med. 2011, 8: 2079-2089. 10.1111/j.1743-6109.2011.02265.x.CrossRefPubMed Kaufman JM, Miller MG, Garwin JL, Fitzpatrick S, McWhirter C, Brennan JJ: Efficacy and safety study of 1.62% testosterone gel for the treatment of hypogonadal men. J Sex Med. 2011, 8: 2079-2089. 10.1111/j.1743-6109.2011.02265.x.CrossRefPubMed
53.
Zurück zum Zitat Kenny AM, Kleppinger A, Annis K, Rathier M, Browner B, Judge JO, McGee D: Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels, low bone mass, and physical frailty. J Am Geriatr Soc. 2010, 58: 1134-1143. 10.1111/j.1532-5415.2010.02865.x.CrossRefPubMedPubMedCentral Kenny AM, Kleppinger A, Annis K, Rathier M, Browner B, Judge JO, McGee D: Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels, low bone mass, and physical frailty. J Am Geriatr Soc. 2010, 58: 1134-1143. 10.1111/j.1532-5415.2010.02865.x.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Marin P, Holmang S, Gustafsson C, Jonsson L, Kvist H, Elander A, Eldh J, Sjostrom L, Holm G, Bjorntorp P: Androgen treatment of abdominally obese men. Obes Res. 1993, 1: 245-251. 10.1002/j.1550-8528.1993.tb00618.x.CrossRefPubMed Marin P, Holmang S, Gustafsson C, Jonsson L, Kvist H, Elander A, Eldh J, Sjostrom L, Holm G, Bjorntorp P: Androgen treatment of abdominally obese men. Obes Res. 1993, 1: 245-251. 10.1002/j.1550-8528.1993.tb00618.x.CrossRefPubMed
55.
Zurück zum Zitat Spitzer M, Basaria S, Travison TG, Davda MN, Paley A, Cohen B, Mazer NA, Knapp PE, Hanka S, Lakshman KM, Ulloor J, Zhang A, Orwoll K, Eder R, Collins L, Mohammed N, Rosen RC, DeRogatis L, Bhasin S: Effect of testosterone replacement on response to sildenafil citrate in men with erectile dysfunction: a parallel, randomized trial. Ann Intern Med. 2012, 157: 681-691. 10.7326/0003-4819-157-10-201211200-00004.CrossRefPubMed Spitzer M, Basaria S, Travison TG, Davda MN, Paley A, Cohen B, Mazer NA, Knapp PE, Hanka S, Lakshman KM, Ulloor J, Zhang A, Orwoll K, Eder R, Collins L, Mohammed N, Rosen RC, DeRogatis L, Bhasin S: Effect of testosterone replacement on response to sildenafil citrate in men with erectile dysfunction: a parallel, randomized trial. Ann Intern Med. 2012, 157: 681-691. 10.7326/0003-4819-157-10-201211200-00004.CrossRefPubMed
56.
Zurück zum Zitat Srinivas-Shankar U, Roberts SA, Connolly MJ, O'Connell MD, Adams JE, Oldham JA, Wu FC: Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2010, 95: 639-650. 10.1210/jc.2009-1251.CrossRefPubMed Srinivas-Shankar U, Roberts SA, Connolly MJ, O'Connell MD, Adams JE, Oldham JA, Wu FC: Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2010, 95: 639-650. 10.1210/jc.2009-1251.CrossRefPubMed
57.
Zurück zum Zitat Malkin CJ, Pugh PJ, West JN, van Beek EJ, Jones TH, Channer KS: Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur Heart J. 2006, 27: 57-64. 10.1093/eurheartj/ehi443.CrossRefPubMed Malkin CJ, Pugh PJ, West JN, van Beek EJ, Jones TH, Channer KS: Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur Heart J. 2006, 27: 57-64. 10.1093/eurheartj/ehi443.CrossRefPubMed
58.
Zurück zum Zitat Merza Z, Blumsohn A, Mah PM, Meads DM, McKenna SP, Wylie K, Eastell R, Wu F, Ross RJ: Double-blind placebo-controlled study of testosterone patch therapy on bone turnover in men with borderline hypogonadism. Int J Androl. 2006, 29: 381-391. 10.1111/j.1365-2605.2005.00612.x.CrossRefPubMed Merza Z, Blumsohn A, Mah PM, Meads DM, McKenna SP, Wylie K, Eastell R, Wu F, Ross RJ: Double-blind placebo-controlled study of testosterone patch therapy on bone turnover in men with borderline hypogonadism. Int J Androl. 2006, 29: 381-391. 10.1111/j.1365-2605.2005.00612.x.CrossRefPubMed
59.
Zurück zum Zitat Nair KS, Rizza RA, O'Brien P, Dhatariya K, Short KR, Nehra A, Vittone JL, Klee GG, Basu A, Basu R, Cobelli C, Toffolo G, Dalla Man C, Tindall DJ, Melton LJ, Smith GE, Khosla S, Jensen MD: DHEA in elderly women and DHEA or testosterone in elderly men. N Engl J Med. 2006, 355: 1647-1659. 10.1056/NEJMoa054629.CrossRefPubMed Nair KS, Rizza RA, O'Brien P, Dhatariya K, Short KR, Nehra A, Vittone JL, Klee GG, Basu A, Basu R, Cobelli C, Toffolo G, Dalla Man C, Tindall DJ, Melton LJ, Smith GE, Khosla S, Jensen MD: DHEA in elderly women and DHEA or testosterone in elderly men. N Engl J Med. 2006, 355: 1647-1659. 10.1056/NEJMoa054629.CrossRefPubMed
60.
Zurück zum Zitat Snyder PJ, Peachey H, Berlin JA, Rader D, Usher D, Loh L, Hannoush P, Dlewati A, Holmes JH, Santanna J, Strom BL: Effect of transdermal testosterone treatment on serum lipid and apolipoprotein levels in men more than 65 years of age. Am J Med. 2001, 111: 255-260. 10.1016/S0002-9343(01)00813-0.CrossRefPubMed Snyder PJ, Peachey H, Berlin JA, Rader D, Usher D, Loh L, Hannoush P, Dlewati A, Holmes JH, Santanna J, Strom BL: Effect of transdermal testosterone treatment on serum lipid and apolipoprotein levels in men more than 65 years of age. Am J Med. 2001, 111: 255-260. 10.1016/S0002-9343(01)00813-0.CrossRefPubMed
61.
Zurück zum Zitat Chapman IM, Visvanathan R, Hammond AJ, Morley JE, Field JB, Tai K, Belobrajdic DP, Chen RY, Horowitz M: Effect of testosterone and a nutritional supplement, alone and in combination, on hospital admissions in undernourished older men and women. Am J Clin Nutr. 2009, 89: 880-889. 10.3945/ajcn.2008.26538.CrossRefPubMed Chapman IM, Visvanathan R, Hammond AJ, Morley JE, Field JB, Tai K, Belobrajdic DP, Chen RY, Horowitz M: Effect of testosterone and a nutritional supplement, alone and in combination, on hospital admissions in undernourished older men and women. Am J Clin Nutr. 2009, 89: 880-889. 10.3945/ajcn.2008.26538.CrossRefPubMed
62.
Zurück zum Zitat Testosterone treatment of men with alcoholic cirrhosis: a double-blind study: the Copenhagen Study Group for Liver Diseases. Hepatology 1986, 6:807-813.. Testosterone treatment of men with alcoholic cirrhosis: a double-blind study: the Copenhagen Study Group for Liver Diseases. Hepatology 1986, 6:807-813..
63.
Zurück zum Zitat Emmelot-Vonk MH, Verhaar HJ, Nakhai Pour HR, Aleman A, Lock TM, Bosch JL, Grobbee DE, van der Schouw YT: Effect of testosterone supplementation on functional mobility, cognition, and other parameters in older men: a randomized controlled trial. JAMA. 2008, 299: 39-52.PubMed Emmelot-Vonk MH, Verhaar HJ, Nakhai Pour HR, Aleman A, Lock TM, Bosch JL, Grobbee DE, van der Schouw YT: Effect of testosterone supplementation on functional mobility, cognition, and other parameters in older men: a randomized controlled trial. JAMA. 2008, 299: 39-52.PubMed
64.
Zurück zum Zitat Legros JJ, Meuleman EJ, Elbers JM, Geurts TB, Kaspers MJ, Bouloux PM: Oral testosterone replacement in symptomatic late-onset hypogonadism: effects on rating scales and general safety in a randomized, placebo-controlled study. Eur J Endocrinol. 2009, 160: 821-831. 10.1530/EJE-08-0634.CrossRefPubMed Legros JJ, Meuleman EJ, Elbers JM, Geurts TB, Kaspers MJ, Bouloux PM: Oral testosterone replacement in symptomatic late-onset hypogonadism: effects on rating scales and general safety in a randomized, placebo-controlled study. Eur J Endocrinol. 2009, 160: 821-831. 10.1530/EJE-08-0634.CrossRefPubMed
65.
Zurück zum Zitat Arver S, Dobs AS, Meikle AW, Caramelli KE, Rajaram L, Sanders SW, Mazer NA: Long-term efficacy and safety of a permeation-enhanced testosterone transdermal system in hypogonadal men. Clin Endocrinol (Oxf). 1997, 47: 727-737. 10.1046/j.1365-2265.1997.3071113.x.CrossRef Arver S, Dobs AS, Meikle AW, Caramelli KE, Rajaram L, Sanders SW, Mazer NA: Long-term efficacy and safety of a permeation-enhanced testosterone transdermal system in hypogonadal men. Clin Endocrinol (Oxf). 1997, 47: 727-737. 10.1046/j.1365-2265.1997.3071113.x.CrossRef
66.
Zurück zum Zitat Bhasin S, Travison TG, Storer TW, Lakshman K, Kaushik M, Mazer NA, Ngyuen AH, Davda MN, Jara H, Aakil A, Anderson S, Knapp PE, Hanka S, Mohammed N, Daou P, Miciek R, Ulloor J, Zhang A, Brooks B, Orwoll K, Hede-Brierley L, Eder R, Elmi A, Bhasin G, Collins L, Singh R, Basaria S: Effect of testosterone supplementation with and without a dual 5alpha-reductase inhibitor on fat-free mass in men with suppressed testosterone production: a randomized controlled trial. JAMA. 2012, 307: 931-939. 10.1001/jama.2012.227.CrossRefPubMed Bhasin S, Travison TG, Storer TW, Lakshman K, Kaushik M, Mazer NA, Ngyuen AH, Davda MN, Jara H, Aakil A, Anderson S, Knapp PE, Hanka S, Mohammed N, Daou P, Miciek R, Ulloor J, Zhang A, Brooks B, Orwoll K, Hede-Brierley L, Eder R, Elmi A, Bhasin G, Collins L, Singh R, Basaria S: Effect of testosterone supplementation with and without a dual 5alpha-reductase inhibitor on fat-free mass in men with suppressed testosterone production: a randomized controlled trial. JAMA. 2012, 307: 931-939. 10.1001/jama.2012.227.CrossRefPubMed
67.
Zurück zum Zitat Lakshman KM, Kaplan B, Travison TG, Basaria S, Knapp PE, Singh AB, LaValley MP, Mazer NA, Bhasin S: The effects of injected testosterone dose and age on the conversion of testosterone to estradiol and dihydrotestosterone in young and older men. J Clin Endocrinol Metab. 2010, 95: 3955-3964. 10.1210/jc.2010-0102.CrossRefPubMedPubMedCentral Lakshman KM, Kaplan B, Travison TG, Basaria S, Knapp PE, Singh AB, LaValley MP, Mazer NA, Bhasin S: The effects of injected testosterone dose and age on the conversion of testosterone to estradiol and dihydrotestosterone in young and older men. J Clin Endocrinol Metab. 2010, 95: 3955-3964. 10.1210/jc.2010-0102.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Raynaud JP, Legros JJ, Rollet J, Auges M, Bunouf P, Sournac M, Fiet J: Efficacy and safety of a new testosterone-in-adhesive matrix patch applied every 2 days for 1 year to hypogonadal men. J Steroid Biochem Mol Biol. 2008, 109: 168-176. 10.1016/j.jsbmb.2007.10.010.CrossRefPubMed Raynaud JP, Legros JJ, Rollet J, Auges M, Bunouf P, Sournac M, Fiet J: Efficacy and safety of a new testosterone-in-adhesive matrix patch applied every 2 days for 1 year to hypogonadal men. J Steroid Biochem Mol Biol. 2008, 109: 168-176. 10.1016/j.jsbmb.2007.10.010.CrossRefPubMed
69.
Zurück zum Zitat Schubert M, Bullmann C, Minnemann T, Reiners C, Krone W, Jockenhovel F: Osteoporosis in male hypogonadism: responses to androgen substitution differ among men with primary and secondary hypogonadism. Horm Res. 2003, 60: 21-28. 10.1159/000070823.CrossRefPubMed Schubert M, Bullmann C, Minnemann T, Reiners C, Krone W, Jockenhovel F: Osteoporosis in male hypogonadism: responses to androgen substitution differ among men with primary and secondary hypogonadism. Horm Res. 2003, 60: 21-28. 10.1159/000070823.CrossRefPubMed
70.
Zurück zum Zitat Wang C, Harnett M, Dobs AS, Swerdloff RS: Pharmacokinetics and safety of long-acting testosterone undecanoate injections in hypogonadal men: an 84-week phase III clinical trial. J Androl. 2010, 31: 457-465. 10.2164/jandrol.109.009597.CrossRefPubMed Wang C, Harnett M, Dobs AS, Swerdloff RS: Pharmacokinetics and safety of long-acting testosterone undecanoate injections in hypogonadal men: an 84-week phase III clinical trial. J Androl. 2010, 31: 457-465. 10.2164/jandrol.109.009597.CrossRefPubMed
71.
Zurück zum Zitat Cherrier MM, Craft S, Matsumoto AH: Cognitive changes associated with supplementation of testosterone or dihydrotestosterone in mildly hypogonadal men: a preliminary report. J Androl. 2003, 24: 568-576.CrossRefPubMed Cherrier MM, Craft S, Matsumoto AH: Cognitive changes associated with supplementation of testosterone or dihydrotestosterone in mildly hypogonadal men: a preliminary report. J Androl. 2003, 24: 568-576.CrossRefPubMed
72.
Zurück zum Zitat Chiang HS, Hwang TI, Hsui YS, Lin YC, Chen HE, Chen GC, Liao CH: Transdermal testosterone gel increases serum testosterone levels in hypogonadal men in Taiwan with improvements in sexual function. Int J Impot Res. 2007, 19: 411-417. 10.1038/sj.ijir.3901562.CrossRefPubMed Chiang HS, Hwang TI, Hsui YS, Lin YC, Chen HE, Chen GC, Liao CH: Transdermal testosterone gel increases serum testosterone levels in hypogonadal men in Taiwan with improvements in sexual function. Int J Impot Res. 2007, 19: 411-417. 10.1038/sj.ijir.3901562.CrossRefPubMed
73.
Zurück zum Zitat Dean JD, Carnegie C, Rodzvilla J, Smith T: Long-term effects of testim(r) 1% testosterone gel in hypogonadal men. Rev Urol. 2004, 6: S22-S29.PubMedPubMedCentral Dean JD, Carnegie C, Rodzvilla J, Smith T: Long-term effects of testim(r) 1% testosterone gel in hypogonadal men. Rev Urol. 2004, 6: S22-S29.PubMedPubMedCentral
74.
Zurück zum Zitat Di Luigi L, Sgro P, Aversa A, Migliaccio S, Bianchini S, Botre F, Romanelli F, Lenzi A: Concerns about serum androgens monitoring during testosterone replacement treatments in hypogonadal male athletes: a pilot study. J Sex Med. 2012, 9: 873-886. 10.1111/j.1743-6109.2011.02600.x.CrossRefPubMed Di Luigi L, Sgro P, Aversa A, Migliaccio S, Bianchini S, Botre F, Romanelli F, Lenzi A: Concerns about serum androgens monitoring during testosterone replacement treatments in hypogonadal male athletes: a pilot study. J Sex Med. 2012, 9: 873-886. 10.1111/j.1743-6109.2011.02600.x.CrossRefPubMed
75.
Zurück zum Zitat Juang PS, Peng S, Allehmazedeh K, Shah A, Coviello AD, Herbst KL: Testosterone with dutasteride, but not anastrazole, improves insulin sensitivity in young obese men: a randomized controlled trial. J Sex Med. 2014, 11: 563-573. 10.1111/jsm.12368.CrossRefPubMed Juang PS, Peng S, Allehmazedeh K, Shah A, Coviello AD, Herbst KL: Testosterone with dutasteride, but not anastrazole, improves insulin sensitivity in young obese men: a randomized controlled trial. J Sex Med. 2014, 11: 563-573. 10.1111/jsm.12368.CrossRefPubMed
76.
Zurück zum Zitat Mazer N, Bell D, Wu J, Fischer J, Cosgrove M, Eilers B, Bs RN: Comparison of the steady-state pharmacokinetics, metabolism, and variability of a transdermal testosterone patch versus a transdermal testosterone gel in hypogonadal men. J Sex Med. 2005, 2: 213-226. 10.1111/j.1743-6109.2005.20231.x.CrossRefPubMed Mazer N, Bell D, Wu J, Fischer J, Cosgrove M, Eilers B, Bs RN: Comparison of the steady-state pharmacokinetics, metabolism, and variability of a transdermal testosterone patch versus a transdermal testosterone gel in hypogonadal men. J Sex Med. 2005, 2: 213-226. 10.1111/j.1743-6109.2005.20231.x.CrossRefPubMed
77.
Zurück zum Zitat Page ST, Hirano L, Gilchriest J, Dighe M, Amory JK, Marck BT, Matsumoto AM: Dutasteride reduces prostate size and prostate specific antigen in older hypogonadal men with benign prostatic hyperplasia undergoing testosterone replacement therapy. J Urol. 2011, 186: 191-197. 10.1016/j.juro.2011.03.026.CrossRefPubMedPubMedCentral Page ST, Hirano L, Gilchriest J, Dighe M, Amory JK, Marck BT, Matsumoto AM: Dutasteride reduces prostate size and prostate specific antigen in older hypogonadal men with benign prostatic hyperplasia undergoing testosterone replacement therapy. J Urol. 2011, 186: 191-197. 10.1016/j.juro.2011.03.026.CrossRefPubMedPubMedCentral
78.
Zurück zum Zitat Swerdloff RS, Wang C, Cunningham G, Dobs A, Iranmanesh A, Matsumoto AM, Snyder PJ, Weber T, Longstreth J, Berman N: Long-term pharmacokinetics of transdermal testosterone gel in hypogonadal men. J Clin Endocrinol Metab. 2000, 85: 4500-4510.PubMed Swerdloff RS, Wang C, Cunningham G, Dobs A, Iranmanesh A, Matsumoto AM, Snyder PJ, Weber T, Longstreth J, Berman N: Long-term pharmacokinetics of transdermal testosterone gel in hypogonadal men. J Clin Endocrinol Metab. 2000, 85: 4500-4510.PubMed
79.
Zurück zum Zitat Wang C, Berman N, Longstreth JA, Chuapoco B, Hull L, Steiner B, Faulkner S, Dudley RE, Swerdloff RS: Pharmacokinetics of transdermal testosterone gel in hypogonadal men: application of gel at one site versus four sites: a General Clinical Research Center Study. J Clin Endocrinol Metab. 2000, 85: 964-969.PubMed Wang C, Berman N, Longstreth JA, Chuapoco B, Hull L, Steiner B, Faulkner S, Dudley RE, Swerdloff RS: Pharmacokinetics of transdermal testosterone gel in hypogonadal men: application of gel at one site versus four sites: a General Clinical Research Center Study. J Clin Endocrinol Metab. 2000, 85: 964-969.PubMed
80.
Zurück zum Zitat Wang C, Ilani N, Arver S, McLachlan RI, Soulis T, Watkinson A: Efficacy and safety of the 2% formulation of testosterone topical solution applied to the axillae in androgen-deficient men. Clin Endocrinol (Oxf). 2011, 75: 836-843. 10.1111/j.1365-2265.2011.04152.x.CrossRef Wang C, Ilani N, Arver S, McLachlan RI, Soulis T, Watkinson A: Efficacy and safety of the 2% formulation of testosterone topical solution applied to the axillae in androgen-deficient men. Clin Endocrinol (Oxf). 2011, 75: 836-843. 10.1111/j.1365-2265.2011.04152.x.CrossRef
81.
Zurück zum Zitat Ahmed SR, Boucher AE, Manni A, Santen RJ, Bartholomew M, Demers LM: Transdermal testosterone therapy in the treatment of male hypogonadism. J Clin Endocrinol Metab. 1988, 66: 546-551. 10.1210/jcem-66-3-546.CrossRefPubMed Ahmed SR, Boucher AE, Manni A, Santen RJ, Bartholomew M, Demers LM: Transdermal testosterone therapy in the treatment of male hypogonadism. J Clin Endocrinol Metab. 1988, 66: 546-551. 10.1210/jcem-66-3-546.CrossRefPubMed
82.
Zurück zum Zitat Bals-Pratsch M, Langer K, Place VA, Nieschlag E: Substitution therapy of hypogonadal men with transdermal testosterone over one year. Acta Endocrinol. 1988, 118: 7-13. 10.1677/joe.0.1180007.CrossRefPubMed Bals-Pratsch M, Langer K, Place VA, Nieschlag E: Substitution therapy of hypogonadal men with transdermal testosterone over one year. Acta Endocrinol. 1988, 118: 7-13. 10.1677/joe.0.1180007.CrossRefPubMed
83.
Zurück zum Zitat Behre HM, von Eckardstein S, Kliesch S, Nieschlag E: Long-term substitution therapy of hypogonadal men with transscrotal testosterone over 7-10 years. Clin Endocrinol (Oxf). 1999, 50: 629-635. 10.1046/j.1365-2265.1999.00705.x.CrossRef Behre HM, von Eckardstein S, Kliesch S, Nieschlag E: Long-term substitution therapy of hypogonadal men with transscrotal testosterone over 7-10 years. Clin Endocrinol (Oxf). 1999, 50: 629-635. 10.1046/j.1365-2265.1999.00705.x.CrossRef
84.
Zurück zum Zitat Cunningham GR, Cordero E, Thornby JI: Testosterone replacement with transdermal therapeutic systems: physiological serum testosterone and elevated dihydrotestosterone levels. JAMA. 1989, 261: 2525-2530. 10.1001/jama.1989.03420170069032.CrossRefPubMed Cunningham GR, Cordero E, Thornby JI: Testosterone replacement with transdermal therapeutic systems: physiological serum testosterone and elevated dihydrotestosterone levels. JAMA. 1989, 261: 2525-2530. 10.1001/jama.1989.03420170069032.CrossRefPubMed
85.
Zurück zum Zitat Meikle AW, Mazer NA, Moellmer JF, Stringham JD, Tolman KG, Sanders SW, Odell WD: Enhanced transdermal delivery of testosterone across nonscrotal skin produces physiological concentrations of testosterone and its metabolites in hypogonadal men. J Clin Endocrinol Metab. 1992, 74: 623-628.PubMed Meikle AW, Mazer NA, Moellmer JF, Stringham JD, Tolman KG, Sanders SW, Odell WD: Enhanced transdermal delivery of testosterone across nonscrotal skin produces physiological concentrations of testosterone and its metabolites in hypogonadal men. J Clin Endocrinol Metab. 1992, 74: 623-628.PubMed
86.
Zurück zum Zitat Franchimont P, Kicovic PM, Mattei A, Roulier R: Effects of oral testosterone undecanoate in hypogonadal male patients. Clin Endocrinol (Oxf). 1978, 9: 313-320. 10.1111/j.1365-2265.1978.tb02216.x.CrossRef Franchimont P, Kicovic PM, Mattei A, Roulier R: Effects of oral testosterone undecanoate in hypogonadal male patients. Clin Endocrinol (Oxf). 1978, 9: 313-320. 10.1111/j.1365-2265.1978.tb02216.x.CrossRef
87.
Zurück zum Zitat Roth MY, Dudley RE, Hull L, Leung A, Christenson P, Wang C, Swerdloff R, Amory JK: Steady-state pharmacokinetics of oral testosterone undecanoate with concomitant inhibition of 5alpha-reductase by finasteride. Int J Androl. 2011, 34: 541-547. 10.1111/j.1365-2605.2010.01120.x.CrossRefPubMed Roth MY, Dudley RE, Hull L, Leung A, Christenson P, Wang C, Swerdloff R, Amory JK: Steady-state pharmacokinetics of oral testosterone undecanoate with concomitant inhibition of 5alpha-reductase by finasteride. Int J Androl. 2011, 34: 541-547. 10.1111/j.1365-2605.2010.01120.x.CrossRefPubMed
88.
Zurück zum Zitat van Coevorden A, Stolear JC, Dhaene M, van Herweghem JL, Mockel J: Effect of chronic oral testosterone undecanoate administration on the pituitary-testicular axes of hemodialyzed male patients. Clin Nephrol. 1986, 26: 48-54.PubMed van Coevorden A, Stolear JC, Dhaene M, van Herweghem JL, Mockel J: Effect of chronic oral testosterone undecanoate administration on the pituitary-testicular axes of hemodialyzed male patients. Clin Nephrol. 1986, 26: 48-54.PubMed
89.
Zurück zum Zitat Yarrow JF, McCoy SC, Borst SE: Intracrine and myotrophic roles of 5alpha-reductase and androgens: a review. Med Sci Sports Exerc. 2012, 44: 818-826. 10.1249/MSS.0b013e31823bfcbf.CrossRefPubMed Yarrow JF, McCoy SC, Borst SE: Intracrine and myotrophic roles of 5alpha-reductase and androgens: a review. Med Sci Sports Exerc. 2012, 44: 818-826. 10.1249/MSS.0b013e31823bfcbf.CrossRefPubMed
90.
Zurück zum Zitat Stanczyk FZ, Azen CG, Pike MC: Effect of finasteride on serum levels of androstenedione, testosterone and their 5alpha-reduced metabolites in men at risk for prostate cancer. J Steroid Biochem Mol Biol. 2013, 138: 10-16. 10.1016/j.jsbmb.2013.02.015.CrossRefPubMed Stanczyk FZ, Azen CG, Pike MC: Effect of finasteride on serum levels of androstenedione, testosterone and their 5alpha-reduced metabolites in men at risk for prostate cancer. J Steroid Biochem Mol Biol. 2013, 138: 10-16. 10.1016/j.jsbmb.2013.02.015.CrossRefPubMed
91.
Zurück zum Zitat Wang C, Shiraishi S, Leung A, Baravarian S, Hull L, Goh V, Lee PW, Swerdloff RS: Validation of a testosterone and dihydrotestosterone liquid chromatography tandem mass spectrometry assay: interference and comparison with established methods. Steroids. 2008, 73: 1345-1352. 10.1016/j.steroids.2008.05.004.CrossRefPubMedPubMedCentral Wang C, Shiraishi S, Leung A, Baravarian S, Hull L, Goh V, Lee PW, Swerdloff RS: Validation of a testosterone and dihydrotestosterone liquid chromatography tandem mass spectrometry assay: interference and comparison with established methods. Steroids. 2008, 73: 1345-1352. 10.1016/j.steroids.2008.05.004.CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Schoenfeld MJ, Shortridge E, Cui Z, Muram D: Medication adherence and treatment patterns for hypogonadal patients treated with topical testosterone therapy: a retrospective medical claims analysis. J Sex Med. 2013, 10: 1401-1409. 10.1111/jsm.12114.CrossRefPubMed Schoenfeld MJ, Shortridge E, Cui Z, Muram D: Medication adherence and treatment patterns for hypogonadal patients treated with topical testosterone therapy: a retrospective medical claims analysis. J Sex Med. 2013, 10: 1401-1409. 10.1111/jsm.12114.CrossRefPubMed
93.
Zurück zum Zitat Donatucci C, Cui Z, Fang Y, Muram D: Long-term treatment patterns of testosterone replacement medications. J Sex Med. 2014, 11: 2092-2099.CrossRefPubMed Donatucci C, Cui Z, Fang Y, Muram D: Long-term treatment patterns of testosterone replacement medications. J Sex Med. 2014, 11: 2092-2099.CrossRefPubMed
94.
Zurück zum Zitat Stout M, Tew GA, Doll H, Zwierska I, Woodroofe N, Channer KS, Saxton JM: Testosterone therapy during exercise rehabilitation in male patients with chronic heart failure who have low testosterone status: a double-blind randomized controlled feasibility study. Am Heart J. 2012, 164: 893-901. 10.1016/j.ahj.2012.09.016.CrossRefPubMed Stout M, Tew GA, Doll H, Zwierska I, Woodroofe N, Channer KS, Saxton JM: Testosterone therapy during exercise rehabilitation in male patients with chronic heart failure who have low testosterone status: a double-blind randomized controlled feasibility study. Am Heart J. 2012, 164: 893-901. 10.1016/j.ahj.2012.09.016.CrossRefPubMed
95.
Zurück zum Zitat Empen K, Lorbeer R, Dorr M, Haring R, Nauck M, Glaser S, Krebs A, Reffelmann T, Ewert R, Volzke H, Wallaschofski H, Felix SB: Association of testosterone levels with endothelial function in men: results from a population-based study. Arterioscler Thromb Vasc Biol. 2012, 32: 481-486. 10.1161/ATVBAHA.111.232876.CrossRefPubMed Empen K, Lorbeer R, Dorr M, Haring R, Nauck M, Glaser S, Krebs A, Reffelmann T, Ewert R, Volzke H, Wallaschofski H, Felix SB: Association of testosterone levels with endothelial function in men: results from a population-based study. Arterioscler Thromb Vasc Biol. 2012, 32: 481-486. 10.1161/ATVBAHA.111.232876.CrossRefPubMed
Metadaten
Titel
Cardiovascular risks and elevation of serum DHT vary by route of testosterone administration: a systematic review and meta-analysis
verfasst von
Stephen E Borst
Jonathan J Shuster
Baiming Zou
Fan Ye
Huanguang Jia
Anita Wokhlu
Joshua F Yarrow
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2014
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-014-0211-5

Weitere Artikel der Ausgabe 1/2014

BMC Medicine 1/2014 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.