Skip to main content
Erschienen in: Inflammation 1/2015

01.02.2015

CCR5 Blockade Promotes M2 Macrophage Activation and Improves Locomotor Recovery After Spinal Cord Injury in Mice

verfasst von: Fengtao Li, Bin Cheng, Jian Cheng, Dong Wang, Haopeng Li, Xijing He

Erschienen in: Inflammation | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Spinal cord injury (SCI) is considered to be primarily associated with loss of motor function and leads to activate diverse cellular mechanisms in the central nervous system to attempt to repair the damaged spinal cord tissue. Chemokine Receptor 5 (CCR5), a major co-receptor for macrophage-tropic human immunodeficiency viruses, is expressed on the surface of monocytes/macrophages, dendritic cells, activated T cells, and NK cells. Recent papers have indicated the important role of CCR5 in SCI, but the mechanism is still unknown. In our current study, CCR5 blockade displayed increased myelin sparring and enhanced SC repair process. The number of CD4+ T cells, CD8+ T cells, Ly6G+ neutrophils and CD11b+ macrophages were all significantly lower in the anti-CCR5 group than that in the control group after SCI. The IL-4 and IL-13 levels in anti-CCR5 group were markedly higher than that in control group after SCI. Correspondingly, the anti-CCR5-treated group showed increased numbers of Arg1- or CD206-expressing macrophages compared with the control IgG group. Furthermore, CCR5 blockade promoted PPARγ activation, and the increased numbers of M2 macrophages induced by CCR5 blockade were both reversed with additional PPARγ antagonist treatment. In conclusion, our present work provides evidence to support the concept that CCR5 blockade promotes M2 macrophage activation and improves locomotor recovery after SCI in mice.
Literatur
1.
Zurück zum Zitat Scott, J.M., D.E. Warburton, D. Williams, S. Whelan, and A. Krassioukov. 2011. Challenges, concerns and common problems: physiological consequences of spinal cord injury and microgravity. Spinal Cord 49: 4–16.CrossRefPubMed Scott, J.M., D.E. Warburton, D. Williams, S. Whelan, and A. Krassioukov. 2011. Challenges, concerns and common problems: physiological consequences of spinal cord injury and microgravity. Spinal Cord 49: 4–16.CrossRefPubMed
2.
Zurück zum Zitat Thuret, S., L.D. Moon, and F.H. Gage. 2006. Therapeutic interventions after spinal cord injury. Nature Review Neuroscience 7: 628–643.CrossRef Thuret, S., L.D. Moon, and F.H. Gage. 2006. Therapeutic interventions after spinal cord injury. Nature Review Neuroscience 7: 628–643.CrossRef
3.
Zurück zum Zitat Nakahara, S., K. Yone, T. Sakou, et al. 1999. Induction of apoptosis signal regulating kinase 1 (ASK1) after spinal cord injury in rats: possible involvement of ASK1-JNK and -p38 pathways in neuronal apoptosis. Journal of Neuropathology and Experimental Neurology 58: 442–450.CrossRefPubMed Nakahara, S., K. Yone, T. Sakou, et al. 1999. Induction of apoptosis signal regulating kinase 1 (ASK1) after spinal cord injury in rats: possible involvement of ASK1-JNK and -p38 pathways in neuronal apoptosis. Journal of Neuropathology and Experimental Neurology 58: 442–450.CrossRefPubMed
4.
Zurück zum Zitat Liu, S., G.L. Ruenes, and R.P. Yezierski. 1997. NMDA and non-NMDA receptor antagonists protect against excitotoxic injury in the rat spinal cord. Brain Research 756: 160–167.CrossRefPubMed Liu, S., G.L. Ruenes, and R.P. Yezierski. 1997. NMDA and non-NMDA receptor antagonists protect against excitotoxic injury in the rat spinal cord. Brain Research 756: 160–167.CrossRefPubMed
5.
Zurück zum Zitat Kato, H., G.K. Kanellopoulos, S. Matsuo, et al. 1997. Neuronal apoptosis and necrosis following spinal cord ischemia in the rat. Experimental Neurology 148: 464–474.CrossRefPubMed Kato, H., G.K. Kanellopoulos, S. Matsuo, et al. 1997. Neuronal apoptosis and necrosis following spinal cord ischemia in the rat. Experimental Neurology 148: 464–474.CrossRefPubMed
6.
Zurück zum Zitat Crowe, M.J., J.C. Bresnahan, S.L. Shuman, J.N. Masters, and M.S. Beattie. 1997. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nature Medicine 3: 73–76.CrossRefPubMed Crowe, M.J., J.C. Bresnahan, S.L. Shuman, J.N. Masters, and M.S. Beattie. 1997. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nature Medicine 3: 73–76.CrossRefPubMed
7.
Zurück zum Zitat Taoka, Y., K. Okajima, M. Uchiba, et al. 1997. Role of neutrophils in spinal cord injury in the rat. Neuroscience 79: 1177–1182.CrossRefPubMed Taoka, Y., K. Okajima, M. Uchiba, et al. 1997. Role of neutrophils in spinal cord injury in the rat. Neuroscience 79: 1177–1182.CrossRefPubMed
8.
Zurück zum Zitat Popovich, P.G., Z. Guan, V. McGaughy, L. Fisher, W.F. Hickey, and D.M. Basso. 2002. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. Journal of Neuropathology and Experimental Neurology 61: 623–633.PubMed Popovich, P.G., Z. Guan, V. McGaughy, L. Fisher, W.F. Hickey, and D.M. Basso. 2002. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. Journal of Neuropathology and Experimental Neurology 61: 623–633.PubMed
9.
Zurück zum Zitat Pineau, I., and S. Lacroix. 2007. Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. Journal of Comparative Neurology 500: 267–285.CrossRefPubMed Pineau, I., and S. Lacroix. 2007. Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. Journal of Comparative Neurology 500: 267–285.CrossRefPubMed
10.
Zurück zum Zitat Carlson, S.L., M.E. Parrish, J.E. Springer, K. Doty, and L. Dossett. 1998. Acute inflammatory response in spinal cord following impact injury. Experimental Neurology 151: 77–88.CrossRefPubMed Carlson, S.L., M.E. Parrish, J.E. Springer, K. Doty, and L. Dossett. 1998. Acute inflammatory response in spinal cord following impact injury. Experimental Neurology 151: 77–88.CrossRefPubMed
11.
Zurück zum Zitat Blight, A.R. 2002. Miracles and molecules—progress in spinal cord repair. Nature Neuroscience 5(Suppl): 1051–1054.CrossRefPubMed Blight, A.R. 2002. Miracles and molecules—progress in spinal cord repair. Nature Neuroscience 5(Suppl): 1051–1054.CrossRefPubMed
12.
Zurück zum Zitat Hausmann, O.N. 2003. Post-traumatic inflammation following spinal cord injury. Spinal Cord 41: 369–378.CrossRefPubMed Hausmann, O.N. 2003. Post-traumatic inflammation following spinal cord injury. Spinal Cord 41: 369–378.CrossRefPubMed
13.
Zurück zum Zitat Springer, T.A. 1995. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annual Review of Physiology 57: 827–872.CrossRefPubMed Springer, T.A. 1995. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annual Review of Physiology 57: 827–872.CrossRefPubMed
14.
Zurück zum Zitat Flach, R., N. Speidel, S. Flohe, et al. 1998. Analysis of intragraft cytokine expression during early reperfusion after liver transplantation using semi-quantitative RT-PCR. Cytokine 10: 445–451.CrossRefPubMed Flach, R., N. Speidel, S. Flohe, et al. 1998. Analysis of intragraft cytokine expression during early reperfusion after liver transplantation using semi-quantitative RT-PCR. Cytokine 10: 445–451.CrossRefPubMed
15.
Zurück zum Zitat Gu, L., S. Tseng, R.M. Horner, C. Tam, M. Loda, and B.J. Rollins. 2000. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404: 407–411.CrossRefPubMed Gu, L., S. Tseng, R.M. Horner, C. Tam, M. Loda, and B.J. Rollins. 2000. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404: 407–411.CrossRefPubMed
16.
Zurück zum Zitat Murphy, P.M., M. Baggiolini, I.F. Charo, et al. 2000. International Union of Pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacological Reviews 52: 145–176.PubMed Murphy, P.M., M. Baggiolini, I.F. Charo, et al. 2000. International Union of Pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacological Reviews 52: 145–176.PubMed
17.
Zurück zum Zitat Luster, A.D. 1998. Chemokines—chemotactic cytokines that mediate inflammation. New England Journal of Medicine 338: 436–445.CrossRefPubMed Luster, A.D. 1998. Chemokines—chemotactic cytokines that mediate inflammation. New England Journal of Medicine 338: 436–445.CrossRefPubMed
18.
Zurück zum Zitat Kiguchi, N., Y. Kobayashi, T. Maeda, F. Saika, and S. Kishioka. 2010. CC-chemokine MIP-1alpha in the spinal cord contributes to nerve injury-induced neuropathic pain. Neuroscience Letters 484: 17–21.CrossRefPubMed Kiguchi, N., Y. Kobayashi, T. Maeda, F. Saika, and S. Kishioka. 2010. CC-chemokine MIP-1alpha in the spinal cord contributes to nerve injury-induced neuropathic pain. Neuroscience Letters 484: 17–21.CrossRefPubMed
19.
Zurück zum Zitat Ma, M., T. Wei, L. Boring, I.F. Charo, R.M. Ransohoff, and L.B. Jakeman. 2002. Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. Journal of Neuroscience Research 68: 691–702.CrossRefPubMed Ma, M., T. Wei, L. Boring, I.F. Charo, R.M. Ransohoff, and L.B. Jakeman. 2002. Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. Journal of Neuroscience Research 68: 691–702.CrossRefPubMed
20.
Zurück zum Zitat Scheff, S.W., A.G. Rabchevsky, I. Fugaccia, J.A. Main, and J.J. Lumpp. 2003. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. Journal of Neurotrauma 20: 179–193.CrossRefPubMed Scheff, S.W., A.G. Rabchevsky, I. Fugaccia, J.A. Main, and J.J. Lumpp. 2003. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. Journal of Neurotrauma 20: 179–193.CrossRefPubMed
21.
Zurück zum Zitat Chawla, A., Y. Barak, L. Nagy, D. Liao, P. Tontonoz, and R.M. Evans. 2001. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Medicine 7: 48–52.CrossRefPubMed Chawla, A., Y. Barak, L. Nagy, D. Liao, P. Tontonoz, and R.M. Evans. 2001. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Medicine 7: 48–52.CrossRefPubMed
22.
Zurück zum Zitat Basso, D.M., L.C. Fisher, A.J. Anderson, L.B. Jakeman, D.M. McTigue, and P.G. Popovich. 2006. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. Journal of Neurotrauma 23: 635–659.CrossRefPubMed Basso, D.M., L.C. Fisher, A.J. Anderson, L.B. Jakeman, D.M. McTigue, and P.G. Popovich. 2006. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. Journal of Neurotrauma 23: 635–659.CrossRefPubMed
23.
Zurück zum Zitat Chen, K.B., K. Uchida, H. Nakajima, et al. 2011. Tumor necrosis factor-alpha antagonist reduces apoptosis of neurons and oligodendroglia in rat spinal cord injury. Spine (Phila Pa 1976) 36: 1350–1358.CrossRef Chen, K.B., K. Uchida, H. Nakajima, et al. 2011. Tumor necrosis factor-alpha antagonist reduces apoptosis of neurons and oligodendroglia in rat spinal cord injury. Spine (Phila Pa 1976) 36: 1350–1358.CrossRef
24.
Zurück zum Zitat Uchida, K., H. Baba, Y. Maezawa, and C. Kubota. 2002. Progressive changes in neurofilament proteins and growth-associated protein-43 immunoreactivities at the site of cervical spinal cord compression in spinal hyperostotic mice. Spine (Phila Pa 1976) 27: 480–486.CrossRef Uchida, K., H. Baba, Y. Maezawa, and C. Kubota. 2002. Progressive changes in neurofilament proteins and growth-associated protein-43 immunoreactivities at the site of cervical spinal cord compression in spinal hyperostotic mice. Spine (Phila Pa 1976) 27: 480–486.CrossRef
25.
Zurück zum Zitat Saiwai, H., Y. Ohkawa, H. Yamada, et al. 2010. The LTB4-BLT1 axis mediates neutrophil infiltration and secondary injury in experimental spinal cord injury. American Journal of Pathology 176: 2352–2366.CrossRefPubMedCentralPubMed Saiwai, H., Y. Ohkawa, H. Yamada, et al. 2010. The LTB4-BLT1 axis mediates neutrophil infiltration and secondary injury in experimental spinal cord injury. American Journal of Pathology 176: 2352–2366.CrossRefPubMedCentralPubMed
26.
Zurück zum Zitat Stirling, D.P., and V.W. Yong. 2008. Dynamics of the inflammatory response after murine spinal cord injury revealed by flow cytometry. Journal of Neuroscience Research 86: 1944–1958.CrossRefPubMed Stirling, D.P., and V.W. Yong. 2008. Dynamics of the inflammatory response after murine spinal cord injury revealed by flow cytometry. Journal of Neuroscience Research 86: 1944–1958.CrossRefPubMed
27.
Zurück zum Zitat Goerdt, S., and C.E. Orfanos. 1999. Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10: 137–142.CrossRefPubMed Goerdt, S., and C.E. Orfanos. 1999. Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10: 137–142.CrossRefPubMed
28.
Zurück zum Zitat Odegaard, J.I., R.R. Ricardo-Gonzalez, M.H. Goforth, et al. 2007. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447: 1116–1120.CrossRefPubMedCentralPubMed Odegaard, J.I., R.R. Ricardo-Gonzalez, M.H. Goforth, et al. 2007. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447: 1116–1120.CrossRefPubMedCentralPubMed
29.
Zurück zum Zitat Suzuki, Y., J. Claflin, X. Wang, A. Lengi, and T. Kikuchi. 2005. Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii. International Journal of Parasitology 35: 83–90.CrossRefPubMed Suzuki, Y., J. Claflin, X. Wang, A. Lengi, and T. Kikuchi. 2005. Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii. International Journal of Parasitology 35: 83–90.CrossRefPubMed
30.
Zurück zum Zitat Makela, J., R. Koivuniemi, L. Korhonen, and D. Lindholm. 2010. Interferon-gamma produced by microglia and the neuropeptide PACAP have opposite effects on the viability of neural progenitor cells. PloS One 5: e11091.CrossRefPubMedCentralPubMed Makela, J., R. Koivuniemi, L. Korhonen, and D. Lindholm. 2010. Interferon-gamma produced by microglia and the neuropeptide PACAP have opposite effects on the viability of neural progenitor cells. PloS One 5: e11091.CrossRefPubMedCentralPubMed
31.
Zurück zum Zitat Pouliot, P., V. Turmel, E. Gelinas, M. Laviolette, and E.Y. Bissonnette. 2005. Interleukin-4 production by human alveolar macrophages. Clinical and Experimental Allergy 35: 804–810.CrossRefPubMed Pouliot, P., V. Turmel, E. Gelinas, M. Laviolette, and E.Y. Bissonnette. 2005. Interleukin-4 production by human alveolar macrophages. Clinical and Experimental Allergy 35: 804–810.CrossRefPubMed
32.
Zurück zum Zitat Shin, W.H., D.Y. Lee, K.W. Park, et al. 2004. Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia 46: 142–152.CrossRefPubMed Shin, W.H., D.Y. Lee, K.W. Park, et al. 2004. Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia 46: 142–152.CrossRefPubMed
33.
Zurück zum Zitat Popovich, P.G., P. Wei, and B.T. Stokes. 1997. Cellular inflammatory response after spinal cord injury in Sprague–Dawley and Lewis rats. Journal of Comparative Neurology 377: 443–464.CrossRefPubMed Popovich, P.G., P. Wei, and B.T. Stokes. 1997. Cellular inflammatory response after spinal cord injury in Sprague–Dawley and Lewis rats. Journal of Comparative Neurology 377: 443–464.CrossRefPubMed
34.
Zurück zum Zitat Stout, R.D., C. Jiang, B. Matta, I. Tietzel, S.K. Watkins, and J. Suttles. 2005. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. Journal of Immunology 175: 342–349.CrossRef Stout, R.D., C. Jiang, B. Matta, I. Tietzel, S.K. Watkins, and J. Suttles. 2005. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. Journal of Immunology 175: 342–349.CrossRef
35.
Zurück zum Zitat Martinez, F.O., L. Helming, and S. Gordon. 2009. Alternative activation of macrophages: an immunologic functional perspective. Annual Review of Immunology 27: 451–483.CrossRefPubMed Martinez, F.O., L. Helming, and S. Gordon. 2009. Alternative activation of macrophages: an immunologic functional perspective. Annual Review of Immunology 27: 451–483.CrossRefPubMed
36.
Zurück zum Zitat Bouhlel, M.A., B. Derudas, E. Rigamonti, et al. 2007. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metabolism 6: 137–143.CrossRefPubMed Bouhlel, M.A., B. Derudas, E. Rigamonti, et al. 2007. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metabolism 6: 137–143.CrossRefPubMed
37.
Zurück zum Zitat Kigerl, K.A., J.C. Gensel, D.P. Ankeny, J.K. Alexander, D.J. Donnelly, and P.G. Popovich. 2009. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. Journal of Neuroscience 29: 13435–13444.CrossRefPubMedCentralPubMed Kigerl, K.A., J.C. Gensel, D.P. Ankeny, J.K. Alexander, D.J. Donnelly, and P.G. Popovich. 2009. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. Journal of Neuroscience 29: 13435–13444.CrossRefPubMedCentralPubMed
Metadaten
Titel
CCR5 Blockade Promotes M2 Macrophage Activation and Improves Locomotor Recovery After Spinal Cord Injury in Mice
verfasst von
Fengtao Li
Bin Cheng
Jian Cheng
Dong Wang
Haopeng Li
Xijing He
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2015
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-0014-z

Weitere Artikel der Ausgabe 1/2015

Inflammation 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Neu im Fachgebiet Innere Medizin

22.04.2024 | DGIM 2024 | Kongressbericht | Nachrichten

Krebspatienten impfen: Was? Wen? Und wann nicht?

22.04.2024 | DGIM 2024 | Kongressbericht | Nachrichten

Nierenultraschall: Tipps vom Profi

22.04.2024 | DGIM 2024 | Kongressbericht | Nachrichten

„KI sieht, was wir nicht sehen“

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.