Skip to main content
Erschienen in: Clinical and Experimental Nephrology 1/2011

01.02.2011 | Original Article

CD28 superagonist-induced regulatory T cell expansion ameliorates mesangioproliferative glomerulonephritis in rats

verfasst von: Kenro Miyasato, Yoshitsugu Takabatake, Junya Kaimori, Tomonori Kimura, Harumi Kitamura, Hiroshi Kawachi, Xiao-Kang Li, Thomas Hünig, Shiro Takahara, Hiromi Rakugi, Yoshitaka Isaka

Erschienen in: Clinical and Experimental Nephrology | Ausgabe 1/2011

Einloggen, um Zugang zu erhalten

Abstract

Background

Naturally occurring regulatory T cells (Treg) are essential for the prevention of autoimmunity and overshooting immune responses to pathogens; however, the involvement of Treg in mesangioproliferative glomerulonephritis, a major cause of chronic kidney disease, remains unclear. Superagonistic CD28-specific monoclonal antibodies (CD28SA) are highly effective activators of Treg in rats.

Method

To confirm our hypothesis that CD28SA reduces the severity of experimental glomerulonephritis, anti-Thy1 nephritis model rats were treated with CD28SA or saline.

Results

CD28SA significantly suppressed the increase in proteinuria and serum creatinine levels. CD28SA-treated nephritic rats exhibited an increase in the infiltration of Treg in the glomeruli accompanied by infiltration of CD163-positive macrophages (“alternatively activated” macrophages). In addition, CD28SA significantly induced interleukin-10 mRNA expression in glomeruli, thereby ameliorating mesangial cell proliferation and extracellular matrix expansion.

Conclusion

We established a new therapeutic approach to suppressing progressive glomerulonephritis. The therapeutic value of this approach warrants further attention and preclinical studies.
Literatur
1.
Zurück zum Zitat Alpers CE, Hudkins KL, Gown AM, Johnson RJ. Enhanced expression of “muscle-specific” actin in glomerulonephritis. Kidney Int. 1992;41:1134–42.CrossRefPubMed Alpers CE, Hudkins KL, Gown AM, Johnson RJ. Enhanced expression of “muscle-specific” actin in glomerulonephritis. Kidney Int. 1992;41:1134–42.CrossRefPubMed
2.
Zurück zum Zitat Striker LJ, Peten EP, Elliot SJ, Doi T, Striker GE. Mesangial cell turnover: effect of heparin and peptide growth factors. Lab Invest. 1991;64:446–56.PubMed Striker LJ, Peten EP, Elliot SJ, Doi T, Striker GE. Mesangial cell turnover: effect of heparin and peptide growth factors. Lab Invest. 1991;64:446–56.PubMed
3.
Zurück zum Zitat Mukai K, Shibata T, Kato K, Sugisaki T. Adjuvant-induced macrophage-dominant nephrotoxic serum nephritis in rats. Clin Exp Nephrol. 2005;9:15–23.CrossRefPubMed Mukai K, Shibata T, Kato K, Sugisaki T. Adjuvant-induced macrophage-dominant nephrotoxic serum nephritis in rats. Clin Exp Nephrol. 2005;9:15–23.CrossRefPubMed
4.
Zurück zum Zitat Huang XR, Tipping PG, Shuo L, Holdsworth SR. Th1 responsiveness to nephritogenic antigens determines susceptibility to crescentic glomerulonephritis in mice. Kidney Int. 1997;51:94–103.CrossRefPubMed Huang XR, Tipping PG, Shuo L, Holdsworth SR. Th1 responsiveness to nephritogenic antigens determines susceptibility to crescentic glomerulonephritis in mice. Kidney Int. 1997;51:94–103.CrossRefPubMed
5.
Zurück zum Zitat El-Shemi AG, Fujinaka H, Matsuki A, Kamiie J, Kovalenko P, Qu Z, et al. Suppression of experimental crescentic glomerulonephritis by interleukin-10 gene transfer. Kidney Int. 2004;65:1280–9.CrossRefPubMed El-Shemi AG, Fujinaka H, Matsuki A, Kamiie J, Kovalenko P, Qu Z, et al. Suppression of experimental crescentic glomerulonephritis by interleukin-10 gene transfer. Kidney Int. 2004;65:1280–9.CrossRefPubMed
6.
Zurück zum Zitat Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunol. 2005;6:345–52.CrossRef Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunol. 2005;6:345–52.CrossRef
7.
Zurück zum Zitat Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 2006;212:8–27.CrossRefPubMed Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 2006;212:8–27.CrossRefPubMed
8.
Zurück zum Zitat Beyersdorf N, Gaupp S, Balbach K, Schmidt J, Toyka KV, Lin CH, et al. Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis. J Exp Med. 2005;202:445–55.CrossRefPubMed Beyersdorf N, Gaupp S, Balbach K, Schmidt J, Toyka KV, Lin CH, et al. Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis. J Exp Med. 2005;202:445–55.CrossRefPubMed
9.
Zurück zum Zitat Luhder F, Huang Y, Dennehy KM, Guntermann C, Muller I, Winkler E, et al. Topological requirements and signaling properties of T cell-activating, anti-CD28 antibody superagonists. J Exp Med. 2003;197:955–66.CrossRefPubMed Luhder F, Huang Y, Dennehy KM, Guntermann C, Muller I, Winkler E, et al. Topological requirements and signaling properties of T cell-activating, anti-CD28 antibody superagonists. J Exp Med. 2003;197:955–66.CrossRefPubMed
10.
Zurück zum Zitat Tacke M, Clark GJ, Dallman MJ, Hunig T. Cellular distribution and costimulatory function of rat CD28. Regulated expression during thymocyte maturation and induction of cyclosporin A sensitivity of costimulated T cell responses by phorbol ester. J Immunol. 1995;154:5121–7.PubMed Tacke M, Clark GJ, Dallman MJ, Hunig T. Cellular distribution and costimulatory function of rat CD28. Regulated expression during thymocyte maturation and induction of cyclosporin A sensitivity of costimulated T cell responses by phorbol ester. J Immunol. 1995;154:5121–7.PubMed
11.
Zurück zum Zitat Lin CH, Hunig T. Efficient expansion of regulatory T cells in vitro and in vivo with a CD28 superagonist. Eur J Immunol. 2003;33:626–38.CrossRefPubMed Lin CH, Hunig T. Efficient expansion of regulatory T cells in vitro and in vivo with a CD28 superagonist. Eur J Immunol. 2003;33:626–38.CrossRefPubMed
12.
Zurück zum Zitat Kawachi H, Orikasa M, Matsui K, Iwanaga T, Toyabe S, Oite T, et al. Epitope-specific induction of mesangial lesions with proteinuria by a MoAb against mesangial cell surface antigen. Clin Exp Immunol. 1992;88:399–404.CrossRefPubMed Kawachi H, Orikasa M, Matsui K, Iwanaga T, Toyabe S, Oite T, et al. Epitope-specific induction of mesangial lesions with proteinuria by a MoAb against mesangial cell surface antigen. Clin Exp Immunol. 1992;88:399–404.CrossRefPubMed
13.
Zurück zum Zitat Yamamoto T, Wilson CB. Complement dependence of antibody-induced mesangial cell injury in the rat. J Immunol. 1987;138:3758–65.PubMed Yamamoto T, Wilson CB. Complement dependence of antibody-induced mesangial cell injury in the rat. J Immunol. 1987;138:3758–65.PubMed
14.
Zurück zum Zitat Takabatake Y, Isaka Y, Mizui M, Kawachi H, Shimizu F, Ito T, et al. Exploring RNA interference as a therapeutic strategy for renal disease. Gene Ther. 2005;12:965–73.CrossRefPubMed Takabatake Y, Isaka Y, Mizui M, Kawachi H, Shimizu F, Ito T, et al. Exploring RNA interference as a therapeutic strategy for renal disease. Gene Ther. 2005;12:965–73.CrossRefPubMed
15.
Zurück zum Zitat Azuma H, Isaka Y, Li X, Hunig T, Sakamoto T, Nohmi H, et al. Superagonistic CD28 antibody induces donor-specific tolerance in rat renal allografts. Am J Transplant. 2008;8:2004–14.CrossRefPubMed Azuma H, Isaka Y, Li X, Hunig T, Sakamoto T, Nohmi H, et al. Superagonistic CD28 antibody induces donor-specific tolerance in rat renal allografts. Am J Transplant. 2008;8:2004–14.CrossRefPubMed
16.
Zurück zum Zitat Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.CrossRefPubMed Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.CrossRefPubMed
17.
18.
Zurück zum Zitat Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 2005;105:4743–8.CrossRefPubMed Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 2005;105:4743–8.CrossRefPubMed
19.
Zurück zum Zitat Mahajan D, Wang Y, Qin X, Zheng G, Wang YM, Alexander SI, et al. CD4+CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease. J Am Soc Nephrol. 2006;17:2731–41.CrossRefPubMed Mahajan D, Wang Y, Qin X, Zheng G, Wang YM, Alexander SI, et al. CD4+CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease. J Am Soc Nephrol. 2006;17:2731–41.CrossRefPubMed
20.
Zurück zum Zitat Wang YM, Zhang GY, Wang Y, Hu M, Wu H, Watson D, et al. Foxp3-transduced polyclonal regulatory T cells protect against chronic renal injury from adriamycin. J Am Soc Nephrol. 2006;17:697–706.CrossRefPubMed Wang YM, Zhang GY, Wang Y, Hu M, Wu H, Watson D, et al. Foxp3-transduced polyclonal regulatory T cells protect against chronic renal injury from adriamycin. J Am Soc Nephrol. 2006;17:697–706.CrossRefPubMed
21.
Zurück zum Zitat Wolf D, Hochegger K, Wolf AM, Rumpold HF, Gastl G, Tilg H, et al. CD4+CD25+ regulatory T cells inhibit experimental anti-glomerular basement membrane glomerulonephritis in mice. J Am Soc Nephrol. 2005;16:1360–70.CrossRefPubMed Wolf D, Hochegger K, Wolf AM, Rumpold HF, Gastl G, Tilg H, et al. CD4+CD25+ regulatory T cells inhibit experimental anti-glomerular basement membrane glomerulonephritis in mice. J Am Soc Nephrol. 2005;16:1360–70.CrossRefPubMed
22.
Zurück zum Zitat Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA. 2007;104:19446–51.CrossRefPubMed Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA. 2007;104:19446–51.CrossRefPubMed
23.
Zurück zum Zitat Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med. 2007;13:108–16.CrossRefPubMed Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med. 2007;13:108–16.CrossRefPubMed
24.
Zurück zum Zitat Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8:523–32.CrossRefPubMed Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8:523–32.CrossRefPubMed
25.
Zurück zum Zitat Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355:1018–28.CrossRefPubMed Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355:1018–28.CrossRefPubMed
Metadaten
Titel
CD28 superagonist-induced regulatory T cell expansion ameliorates mesangioproliferative glomerulonephritis in rats
verfasst von
Kenro Miyasato
Yoshitsugu Takabatake
Junya Kaimori
Tomonori Kimura
Harumi Kitamura
Hiroshi Kawachi
Xiao-Kang Li
Thomas Hünig
Shiro Takahara
Hiromi Rakugi
Yoshitaka Isaka
Publikationsdatum
01.02.2011
Verlag
Springer Japan
Erschienen in
Clinical and Experimental Nephrology / Ausgabe 1/2011
Print ISSN: 1342-1751
Elektronische ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-010-0370-4

Weitere Artikel der Ausgabe 1/2011

Clinical and Experimental Nephrology 1/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.