Skip to main content
Erschienen in: Journal of Clinical Immunology 8/2021

14.08.2021 | Original Article

CD8 + T Cells Exhibit an Exhausted Phenotype in Hemophagocytic Lymphohistiocytosis

verfasst von: Madhura G. Kelkar, Umair Ahmad Bargir, Reetika Malik-Yadav, Maya Gupta, Aparna Dalvi, Neha Jodhawat, Shweta Shinde, Manisha R. Madkaikar

Erschienen in: Journal of Clinical Immunology | Ausgabe 8/2021

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory syndrome mainly caused by uncontrolled activation of antigen presenting cells and CD8 T cells. CD8 T cell exhaustion is a known phenomenon in chronic viral infections and cancer. However, the role of T cell exhaustion is not yet identified in HLH in the background of persistent inflammation. So, currently, we have characterized the CD8 T cells using flow cytometry to understand the phenomenon of exhaustion in these cells in HLH.

Methods

We have comprehensively evaluated lymphocyte subsets and characterized CD8 T cells using immunophenotypic markers like PD1, TIM3, LAG3, Ki67, Granzyme B, etc. in a cohort of 21 HLH patients. Effector cytokine secretion and degranulation by CD8 T cells are also studied.

Results

Our findings indicate skewed lymphocyte subsets and aberrantly activated CD8 T cells in HLH. CD8 T cells exhibit significantly increased expression of PD1, TIM3, and LAG3 prominently in primary HLH as compared to controls. PD1 + CD8 T cells express elevated levels of Granzyme B and Ki67. Moreover, CD8 T cells are hypofunctional as evidenced by significantly reduced cytokine secretion and compromised CD107a degranulation.

Conclusion

The study has revealed that CD8 + cytotoxic T lymphocytes from HLH patients exhibited high expression of exhaustion markers with overall impaired function. To the best of our understanding, this is the first report suggesting functional exhaustion of CD8 T cells in both primary and secondary HLH. Future studies to understand the association of exhaustion with disease outcome are needed for its probable therapeutic implementation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Filipovich AH. Hemophagocytic lymphohistiocytosis and related disorders. Curr Opin Allergy Clin Immunol. 2006;6(6):410–5.CrossRef Filipovich AH. Hemophagocytic lymphohistiocytosis and related disorders. Curr Opin Allergy Clin Immunol. 2006;6(6):410–5.CrossRef
2.
Zurück zum Zitat de Saint BG, Menasche G, Fischer A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol. 2010;10(8):568–79.CrossRef de Saint BG, Menasche G, Fischer A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol. 2010;10(8):568–79.CrossRef
3.
Zurück zum Zitat Cetica V, Pende D, Griffiths GM, Arico M. Molecular basis of familial hemophagocytic lymphohistiocytosis. Haematologica. 2010;95(4):538–41.CrossRef Cetica V, Pende D, Griffiths GM, Arico M. Molecular basis of familial hemophagocytic lymphohistiocytosis. Haematologica. 2010;95(4):538–41.CrossRef
4.
Zurück zum Zitat Janka GE, Lehmberg K. Hemophagocytic syndromes–an update. Blood Rev. 2014;28(4):135–42.CrossRef Janka GE, Lehmberg K. Hemophagocytic syndromes–an update. Blood Rev. 2014;28(4):135–42.CrossRef
5.
Zurück zum Zitat Madkaikar M, Shabrish S, Desai M. Current updates on classification, diagnosis and treatment of hemophagocytic lymphohistiocytosis (HLH). Indian J Pediatr. 2016;83(5):434–43.CrossRef Madkaikar M, Shabrish S, Desai M. Current updates on classification, diagnosis and treatment of hemophagocytic lymphohistiocytosis (HLH). Indian J Pediatr. 2016;83(5):434–43.CrossRef
6.
Zurück zum Zitat Chandrakasan S, Filipovich AH. Hemophagocytic lymphohistiocytosis: advances in pathophysiology, diagnosis, and treatment. J Pediatr. 2013;163(5):1253–9.CrossRef Chandrakasan S, Filipovich AH. Hemophagocytic lymphohistiocytosis: advances in pathophysiology, diagnosis, and treatment. J Pediatr. 2013;163(5):1253–9.CrossRef
7.
Zurück zum Zitat Gholam C, Grigoriadou S, Gilmour KC, Gaspar HB. Familial haemophagocytic lymphohistiocytosis: advances in the genetic basis, diagnosis and management. Clin Exp Immunol. 2011;163(3):271–83.CrossRef Gholam C, Grigoriadou S, Gilmour KC, Gaspar HB. Familial haemophagocytic lymphohistiocytosis: advances in the genetic basis, diagnosis and management. Clin Exp Immunol. 2011;163(3):271–83.CrossRef
8.
Zurück zum Zitat Put K, Avau A, Brisse E, Mitera T, Put S, Proost P, et al. Cytokines in systemic juvenile idiopathic arthritis and haemophagocytic lymphohistiocytosis: tipping the balance between interleukin-18 and interferon-gamma. Rheumatology. 2015;54(8):1507–17.CrossRef Put K, Avau A, Brisse E, Mitera T, Put S, Proost P, et al. Cytokines in systemic juvenile idiopathic arthritis and haemophagocytic lymphohistiocytosis: tipping the balance between interleukin-18 and interferon-gamma. Rheumatology. 2015;54(8):1507–17.CrossRef
9.
Zurück zum Zitat Jordan MB, Hildeman D, Kappler J, Marrack P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood. 2004;104(3):735–43.CrossRef Jordan MB, Hildeman D, Kappler J, Marrack P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood. 2004;104(3):735–43.CrossRef
10.
Zurück zum Zitat Yang C, Zhu X, Zhang T, Ye Q. EBV-HLH children with reductions in CD4+ T cells and excessive activation of CD8+ T cells. Pediatr Res. 2017;82(6):952–7.CrossRef Yang C, Zhu X, Zhang T, Ye Q. EBV-HLH children with reductions in CD4+ T cells and excessive activation of CD8+ T cells. Pediatr Res. 2017;82(6):952–7.CrossRef
12.
Zurück zum Zitat Ammann S, Lehmberg K, Zur Stadt U, Janka G, Rensing-Ehl A, Klemann C, et al. Primary and secondary hemophagocytic lymphohistiocytosis have different patterns of T-cell activation, differentiation and repertoire. Eur J Immunol. 2017;47(2):364–73.CrossRef Ammann S, Lehmberg K, Zur Stadt U, Janka G, Rensing-Ehl A, Klemann C, et al. Primary and secondary hemophagocytic lymphohistiocytosis have different patterns of T-cell activation, differentiation and repertoire. Eur J Immunol. 2017;47(2):364–73.CrossRef
13.
14.
Zurück zum Zitat Bardhan K, Anagnostou T, Boussiotis VA. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Front Immunol. 2016;7:550.CrossRef Bardhan K, Anagnostou T, Boussiotis VA. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Front Immunol. 2016;7:550.CrossRef
15.
Zurück zum Zitat Linsley PS, Long SA. Enforcing the checkpoints: harnessing T-cell exhaustion for therapy of T1D. Curr Opin Endocrinol Diabetes Obes. 2019;26(4):213–8.CrossRef Linsley PS, Long SA. Enforcing the checkpoints: harnessing T-cell exhaustion for therapy of T1D. Curr Opin Endocrinol Diabetes Obes. 2019;26(4):213–8.CrossRef
16.
Zurück zum Zitat Shabrish S, Kelkar M, Chavan N, Desai M, Bargir U, Gupta M, et al. Natural killer cell degranulation defect: a cause for impaired NK-cell cytotoxicity and hyperinflammation in Fanconi anemia patients. Front Immunol. 2019;10:490.CrossRef Shabrish S, Kelkar M, Chavan N, Desai M, Bargir U, Gupta M, et al. Natural killer cell degranulation defect: a cause for impaired NK-cell cytotoxicity and hyperinflammation in Fanconi anemia patients. Front Immunol. 2019;10:490.CrossRef
17.
Zurück zum Zitat Gao Z, Wang Y, Wang J, Zhang J, Wang Z. The inhibitory receptors on NK cells and CTLs are upregulated in adult and adolescent patients with secondary hemophagocytic lymphohistiocytosis. Clin Immunol. 2019;202:18–28.CrossRef Gao Z, Wang Y, Wang J, Zhang J, Wang Z. The inhibitory receptors on NK cells and CTLs are upregulated in adult and adolescent patients with secondary hemophagocytic lymphohistiocytosis. Clin Immunol. 2019;202:18–28.CrossRef
18.
Zurück zum Zitat Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992–1000 e3. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992–1000 e3.
19.
Zurück zum Zitat Mahmoudi S, Rezaei M, Mansouri N, Marjani M, Mansouri D. Immunologic features in coronavirus disease 2019: functional exhaustion of T cells and cytokine storm. J Clin Immunol. 2020;40(7):974–6.CrossRef Mahmoudi S, Rezaei M, Mansouri N, Marjani M, Mansouri D. Immunologic features in coronavirus disease 2019: functional exhaustion of T cells and cytokine storm. J Clin Immunol. 2020;40(7):974–6.CrossRef
20.
Zurück zum Zitat McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu Rev Immunol. 2019;37:457–95.CrossRef McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu Rev Immunol. 2019;37:457–95.CrossRef
21.
Zurück zum Zitat Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35(2):51–60.CrossRef Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35(2):51–60.CrossRef
23.
Zurück zum Zitat Kared H, Martelli S, Ng TP, Pender SL, Larbi A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol Immunother. 2016;65(4):441–52.CrossRef Kared H, Martelli S, Ng TP, Pender SL, Larbi A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol Immunother. 2016;65(4):441–52.CrossRef
24.
Zurück zum Zitat Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.CrossRef Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.CrossRef
25.
Zurück zum Zitat McKinney EF, Smith KG. T cell exhaustion and immune-mediated disease-the potential for therapeutic exhaustion. Curr Opin Immunol. 2016;43:74–80.CrossRef McKinney EF, Smith KG. T cell exhaustion and immune-mediated disease-the potential for therapeutic exhaustion. Curr Opin Immunol. 2016;43:74–80.CrossRef
26.
Zurück zum Zitat Im SJ, Ha SJ. Re-defining T-Cell Exhaustion: Subset, Function, and Regulation. Immune Netw. 2020;20(1):e2. Im SJ, Ha SJ. Re-defining T-Cell Exhaustion: Subset, Function, and Regulation. Immune Netw. 2020;20(1):e2.
27.
Zurück zum Zitat Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99.CrossRef Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99.CrossRef
28.
Zurück zum Zitat Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, et al. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 2019;20(3):326–36.CrossRef Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, et al. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 2019;20(3):326–36.CrossRef
29.
Zurück zum Zitat McKinney EF, Smith KG. T-cell exhaustion: understanding the interface of chronic viral and autoinflammatory diseases. Immunol Cell Biol. 2016;94(10):935–42.CrossRef McKinney EF, Smith KG. T-cell exhaustion: understanding the interface of chronic viral and autoinflammatory diseases. Immunol Cell Biol. 2016;94(10):935–42.CrossRef
30.
Zurück zum Zitat Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet. 2002;32(4):666–9.CrossRef Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet. 2002;32(4):666–9.CrossRef
31.
Zurück zum Zitat McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523(7562):612–6.CrossRef McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523(7562):612–6.CrossRef
32.
Zurück zum Zitat Kogl T, Muller J, Jessen B, Schmitt-Graeff A, Janka G, Ehl S, et al. Hemophagocytic lymphohistiocytosis in syntaxin-11-deficient mice: T-cell exhaustion limits fatal disease. Blood. 2013;121(4):604–13.CrossRef Kogl T, Muller J, Jessen B, Schmitt-Graeff A, Janka G, Ehl S, et al. Hemophagocytic lymphohistiocytosis in syntaxin-11-deficient mice: T-cell exhaustion limits fatal disease. Blood. 2013;121(4):604–13.CrossRef
33.
Zurück zum Zitat Henter JI, Tondini C, Pritchard J. Histiocyte disorders. Crit Rev Oncol Hematol. 2004;50(2):157–74.CrossRef Henter JI, Tondini C, Pritchard J. Histiocyte disorders. Crit Rev Oncol Hematol. 2004;50(2):157–74.CrossRef
Metadaten
Titel
CD8 + T Cells Exhibit an Exhausted Phenotype in Hemophagocytic Lymphohistiocytosis
verfasst von
Madhura G. Kelkar
Umair Ahmad Bargir
Reetika Malik-Yadav
Maya Gupta
Aparna Dalvi
Neha Jodhawat
Shweta Shinde
Manisha R. Madkaikar
Publikationsdatum
14.08.2021
Verlag
Springer US
Erschienen in
Journal of Clinical Immunology / Ausgabe 8/2021
Print ISSN: 0271-9142
Elektronische ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-021-01109-0

Weitere Artikel der Ausgabe 8/2021

Journal of Clinical Immunology 8/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.