Skip to main content
Erschienen in:

26.03.2020 | Review Article

Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy

verfasst von: Aishika Datta, Deepaneeta Sarmah, Leela Mounica, Harpreet Kaur, Radhika Kesharwani, Geetesh Verma, Pabbala Veeresh, Vignesh Kotian, Kiran Kalia, Anupom Borah, Xin Wang, Kunjan R. Dave, Dileep R. Yavagal, Pallab Bhattacharya

Erschienen in: Translational Stroke Research | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten

Abstract

Ischemic stroke is one of the significant causes of morbidity and mortality, affecting millions of people across the globe. Cell injury in the infarct region is an inevitable consequence of focal cerebral ischemia. Subsequent reperfusion exacerbates the harmful effect and increases the infarct volume. These cellular injuries follow either a regulated pathway involving tightly structured signaling cascades and molecularly defined effector mechanisms or a non-regulated pathway, also known as accidental cell death, where the process is biologically uncontrolled. Classical cell death pathways are long established and well reported in several articles that majorly define apoptotic cell death. A recent focus on cell death study also considers investigation on non-classical pathways that are tightly regulated, may or may not involve caspases, but non-apoptotic. Pathological cell death is a cardinal feature of different neurodegenerative diseases. Although ischemia cannot be classified as a neurodegenerative disease, it is a cerebrovascular event where the infarct region exhibits aberrant cell death. Over the past few decades, several therapeutic options have been implicated for ischemic stroke. However, their use has been hampered owing to the number of limitations that they possess. Ischemic penumbral neurons undergo apoptosis and become dysfunctional; however, they are salvageable. Thus, understanding the role of different cell death pathways is crucial to aid in the modern treatment of protecting apoptotic neurons.
Literatur
1.
Zurück zum Zitat Nakajima K, Fujimoto, Kenta and Yaoita, Yoshio Programmed cell death during amphibian metamorphosis. Semin Cell Dev Biol 2005;16(2):271–280. Nakajima K, Fujimoto, Kenta and Yaoita, Yoshio Programmed cell death during amphibian metamorphosis. Semin Cell Dev Biol 2005;16(2):271–280.
2.
Zurück zum Zitat Godlewski M, Kobylińska A. Programmed cell death-strategy for maintenance cellular organisms homeostasis. Postepy higieny i medycyny doswiadczalnej (Online). 2016;70:1229–44. Godlewski M, Kobylińska A. Programmed cell death-strategy for maintenance cellular organisms homeostasis. Postepy higieny i medycyny doswiadczalnej (Online). 2016;70:1229–44.
3.
Zurück zum Zitat Kierszenbaum AL, Tres L. Histology and cell biology: an introduction to pathology E-book. Elsevier Health Sciences; 2015. Kierszenbaum AL, Tres L. Histology and cell biology: an introduction to pathology E-book. Elsevier Health Sciences; 2015.
4.
Zurück zum Zitat Deb P, Sharma S, Hassan K. Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology. 2010;17(3):197–218.PubMed Deb P, Sharma S, Hassan K. Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology. 2010;17(3):197–218.PubMed
5.
Zurück zum Zitat Bhattacharya P, Pandey AK, Paul S, Patnaik R, Yavagal DR. Aquaporin-4 inhibition mediates piroxicam-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rodents. PLoS One. 2013;8(9):e73481.PubMedPubMedCentral Bhattacharya P, Pandey AK, Paul S, Patnaik R, Yavagal DR. Aquaporin-4 inhibition mediates piroxicam-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rodents. PLoS One. 2013;8(9):e73481.PubMedPubMedCentral
6.
Zurück zum Zitat Ginsberg MD. Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis lecture. Stroke. 2003;34(1):214–23.PubMed Ginsberg MD. Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis lecture. Stroke. 2003;34(1):214–23.PubMed
7.
Zurück zum Zitat Mergenthaler P, Dirnagl U, Meisel A. Pathophysiology of stroke: lessons from animal models. Metab Brain Dis. 2004;19(3–4):151–67.PubMed Mergenthaler P, Dirnagl U, Meisel A. Pathophysiology of stroke: lessons from animal models. Metab Brain Dis. 2004;19(3–4):151–67.PubMed
8.
Zurück zum Zitat Sekerdag E, Solaroglu I, Gursoy-Ozdemir Y. Cell death mechanisms in stroke and novel molecular and cellular treatment options. Curr Neuropharmacol. 2018;16(9):1396–415.PubMedPubMedCentral Sekerdag E, Solaroglu I, Gursoy-Ozdemir Y. Cell death mechanisms in stroke and novel molecular and cellular treatment options. Curr Neuropharmacol. 2018;16(9):1396–415.PubMedPubMedCentral
9.
Zurück zum Zitat Roy-O’Reilly M, McCullough LD. Age and sex are critical factors in ischemic stroke pathology. Endocrinology. 2018;159(8):3120–31.PubMedPubMedCentral Roy-O’Reilly M, McCullough LD. Age and sex are critical factors in ischemic stroke pathology. Endocrinology. 2018;159(8):3120–31.PubMedPubMedCentral
10.
Zurück zum Zitat Bushnell CD, Reeves MJ, Zhao X, Pan W, Prvu-Bettger J, Zimmer L, et al. Sex differences in quality of life after ischemic stroke. Neurology. 2014;82(11):922–31.PubMedPubMedCentral Bushnell CD, Reeves MJ, Zhao X, Pan W, Prvu-Bettger J, Zimmer L, et al. Sex differences in quality of life after ischemic stroke. Neurology. 2014;82(11):922–31.PubMedPubMedCentral
11.
Zurück zum Zitat Gattringer T, Ferrari J, Knoflach M, Seyfang L, Horner S, Niederkorn K, et al. Sex-related differences of acute stroke unit care: results from the Austrian stroke unit registry. Stroke. 2014;45(6):1632–8.PubMed Gattringer T, Ferrari J, Knoflach M, Seyfang L, Horner S, Niederkorn K, et al. Sex-related differences of acute stroke unit care: results from the Austrian stroke unit registry. Stroke. 2014;45(6):1632–8.PubMed
12.
Zurück zum Zitat Gillum LA, Mamidipudi SK, Johnston SC. Ischemic stroke risk with oral contraceptives: a meta-analysis. Jama. 2000;284(1):72–8.PubMed Gillum LA, Mamidipudi SK, Johnston SC. Ischemic stroke risk with oral contraceptives: a meta-analysis. Jama. 2000;284(1):72–8.PubMed
13.
Zurück zum Zitat Kim T, Chelluboina B, Chokkalla AK, Vemuganti R. Age and sex differences in the pathophysiology of acute CNS injury. Neurochem Int. 2019;127:22–8.PubMedPubMedCentral Kim T, Chelluboina B, Chokkalla AK, Vemuganti R. Age and sex differences in the pathophysiology of acute CNS injury. Neurochem Int. 2019;127:22–8.PubMedPubMedCentral
14.
Zurück zum Zitat Sarmah D, Kaur H, Saraf J, Pravalika K, Goswami A, Kalia K, et al. Getting closer to an effective intervention of ischemic stroke: the big promise of stem cell. Transl Stroke Res. 2018;9(4):356–74.PubMed Sarmah D, Kaur H, Saraf J, Pravalika K, Goswami A, Kalia K, et al. Getting closer to an effective intervention of ischemic stroke: the big promise of stem cell. Transl Stroke Res. 2018;9(4):356–74.PubMed
15.
Zurück zum Zitat Bursch W, Ellinger A, Kienzl H, Török L, Pandey S, Sikorska M et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. 1996;17(8):1595–607. Bursch W, Ellinger A, Kienzl H, Török L, Pandey S, Sikorska M et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. 1996;17(8):1595–607.
16.
Zurück zum Zitat Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol. 1990;181(3):195–213. Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol. 1990;181(3):195–213.
17.
18.
Zurück zum Zitat Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res Bull. 1998;46(4):281–309.PubMed Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res Bull. 1998;46(4):281–309.PubMed
19.
Zurück zum Zitat Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79(4):1431–568.PubMed Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79(4):1431–568.PubMed
20.
Zurück zum Zitat Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40(5):e331–e9.PubMed Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40(5):e331–e9.PubMed
21.
Zurück zum Zitat Culmsee C, Mattson MP. p53 in neuronal apoptosis. Biochem Biophys Res Commun. 2005;331(3):761–77.PubMed Culmsee C, Mattson MP. p53 in neuronal apoptosis. Biochem Biophys Res Commun. 2005;331(3):761–77.PubMed
22.
Zurück zum Zitat Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45(6):487–98.PubMedPubMedCentral Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45(6):487–98.PubMedPubMedCentral
23.
Zurück zum Zitat Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, et al. Mitochondrial dysfunction in stroke: implications of stem cell therapy. Transl Stroke Res. 2019;10(2):121–36. Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, et al. Mitochondrial dysfunction in stroke: implications of stem cell therapy. Transl Stroke Res. 2019;10(2):121–36.
24.
Zurück zum Zitat Vats K, Sarmah D, Kaur H, Wanve M, Kalia K, Borah A, et al. Inflammasomes in stroke: a triggering role for acid-sensing ion channels. Ann N Y Acad Sci. 2018;1431(1):14–24.PubMed Vats K, Sarmah D, Kaur H, Wanve M, Kalia K, Borah A, et al. Inflammasomes in stroke: a triggering role for acid-sensing ion channels. Ann N Y Acad Sci. 2018;1431(1):14–24.PubMed
25.
Zurück zum Zitat Li H, Zhu H, Xu C-j, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94(4):491–501.PubMed Li H, Zhu H, Xu C-j, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94(4):491–501.PubMed
26.
Zurück zum Zitat Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, et al. Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx. 2004;1(1):17–25.PubMedPubMedCentral Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, et al. Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx. 2004;1(1):17–25.PubMedPubMedCentral
27.
Zurück zum Zitat Polster BM, Fiskum G. Mitochondrial mechanisms of neural cell apoptosis. J Neurochem. 2004;90(6):1281–9.PubMed Polster BM, Fiskum G. Mitochondrial mechanisms of neural cell apoptosis. J Neurochem. 2004;90(6):1281–9.PubMed
29.
Zurück zum Zitat Nakka VP, Gusain A, Mehta SL, Raghubir R. Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol. 2008;37(1):7–38.PubMed Nakka VP, Gusain A, Mehta SL, Raghubir R. Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol. 2008;37(1):7–38.PubMed
30.
Zurück zum Zitat Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer. 2002;2(6):420.PubMed Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer. 2002;2(6):420.PubMed
31.
Zurück zum Zitat Naismith JH, Sprang SR. Modularity in the TNF-receptor family. Trends Biochem Sci. 1998;23(2):74–9.PubMed Naismith JH, Sprang SR. Modularity in the TNF-receptor family. Trends Biochem Sci. 1998;23(2):74–9.PubMed
32.
Zurück zum Zitat Lawen A. Apoptosis—an introduction. Bioessays. 2003;25(9):888–96.PubMed Lawen A. Apoptosis—an introduction. Bioessays. 2003;25(9):888–96.PubMed
33.
Zurück zum Zitat Love S. Apoptosis and brain ischaemia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27(2):267–82. Love S. Apoptosis and brain ischaemia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27(2):267–82.
34.
Zurück zum Zitat Velier JJ, Ellison JA, Kikly KK, Spera PA, Barone FC, Feuerstein GZ. Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J Neurosci. 1999;19(14):5932–41.PubMedPubMedCentral Velier JJ, Ellison JA, Kikly KK, Spera PA, Barone FC, Feuerstein GZ. Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J Neurosci. 1999;19(14):5932–41.PubMedPubMedCentral
35.
Zurück zum Zitat Rupalla K, Allegrini PR, Sauer D, Wiessner C. Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice. Acta Neuropathol. 1998;96(2):172–8.PubMed Rupalla K, Allegrini PR, Sauer D, Wiessner C. Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice. Acta Neuropathol. 1998;96(2):172–8.PubMed
36.
Zurück zum Zitat Botchkina GI, Geimonen E, Bilof ML, Villarreal O, Tracey KJ. Loss of NF-κB activity during cerebral ischemia and TNF cytotoxicity. Mol Med. 1999;5(6):372–81.PubMedPubMedCentral Botchkina GI, Geimonen E, Bilof ML, Villarreal O, Tracey KJ. Loss of NF-κB activity during cerebral ischemia and TNF cytotoxicity. Mol Med. 1999;5(6):372–81.PubMedPubMedCentral
37.
Zurück zum Zitat Cregan SP, Arbour NA, MacLaurin JG, Callaghan SM, Fortin A, Cheung EC, et al. p53 activation domain 1 is essential for PUMA upregulation and p53-mediated neuronal cell death. J Neurosci. 2004;24(44):10003–12.PubMedPubMedCentral Cregan SP, Arbour NA, MacLaurin JG, Callaghan SM, Fortin A, Cheung EC, et al. p53 activation domain 1 is essential for PUMA upregulation and p53-mediated neuronal cell death. J Neurosci. 2004;24(44):10003–12.PubMedPubMedCentral
38.
Zurück zum Zitat Soussi T. The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann N Y Acad Sci. 2000;910(1):121–39.PubMed Soussi T. The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann N Y Acad Sci. 2000;910(1):121–39.PubMed
39.
Zurück zum Zitat Prives C, Hall PA. The p53 pathway. J Pathol. 1999;187(1):112–26.PubMed Prives C, Hall PA. The p53 pathway. J Pathol. 1999;187(1):112–26.PubMed
40.
Zurück zum Zitat Morrison RS, Kinoshita Y, Johnson MD, Guo W, Garden GA. p53-dependent cell death signaling in neurons. Neurochem Res. 2003;28(1):15–27.PubMed Morrison RS, Kinoshita Y, Johnson MD, Guo W, Garden GA. p53-dependent cell death signaling in neurons. Neurochem Res. 2003;28(1):15–27.PubMed
41.
Zurück zum Zitat Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol. 2000;1(2):120.PubMed Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol. 2000;1(2):120.PubMed
42.
Zurück zum Zitat Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7(3):683–94.PubMed Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7(3):683–94.PubMed
43.
Zurück zum Zitat Xue L, Chu F, Cheng Y, Sun X, Borthakur A, Ramarao M, et al. Siva-1 binds to and inhibits BCL-XL-mediated protection against UV radiation-induced apoptosis. Proc Natl Acad Sci. 2002;99(10):6925–30.PubMedPubMedCentral Xue L, Chu F, Cheng Y, Sun X, Borthakur A, Ramarao M, et al. Siva-1 binds to and inhibits BCL-XL-mediated protection against UV radiation-induced apoptosis. Proc Natl Acad Sci. 2002;99(10):6925–30.PubMedPubMedCentral
44.
Zurück zum Zitat Nozaki K, Nishimura M, Hashimoto N. Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol. 2001;23(1):1–19.PubMed Nozaki K, Nishimura M, Hashimoto N. Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol. 2001;23(1):1–19.PubMed
45.
Zurück zum Zitat Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochimica et Biophysica Acta (BBA)-molecular Cell Res 2007;1773(8):1213–1226. Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochimica et Biophysica Acta (BBA)-molecular Cell Res 2007;1773(8):1213–1226.
46.
Zurück zum Zitat Kim EK, Choi E-J. Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2010;1802(4):396–405. Kim EK, Choi E-J. Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2010;1802(4):396–405.
47.
Zurück zum Zitat Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK Cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochimica et Biophysica Acta (BBA)-molecular. Cell Res. 2011;1813(9):1619–33. Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK Cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochimica et Biophysica Acta (BBA)-molecular. Cell Res. 2011;1813(9):1619–33.
48.
Zurück zum Zitat Irving EA, Bamford M. Role of mitogen-and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab. 2002;22(6):631–47.PubMed Irving EA, Bamford M. Role of mitogen-and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab. 2002;22(6):631–47.PubMed
49.
Zurück zum Zitat Gao Y, Signore AP, Yin W, Cao G, Yin X-M, Sun F, et al. Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway. J Cereb Blood Flow Metab. 2005;25(6):694–712.PubMed Gao Y, Signore AP, Yin W, Cao G, Yin X-M, Sun F, et al. Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway. J Cereb Blood Flow Metab. 2005;25(6):694–712.PubMed
50.
Zurück zum Zitat Kuan C-Y, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, et al. A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci. 2003;100(25):15184–9.PubMedPubMedCentral Kuan C-Y, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, et al. A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci. 2003;100(25):15184–9.PubMedPubMedCentral
51.
Zurück zum Zitat Donovan N, Becker EB, Konishi Y, Bonni A. JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem. 2002;277(43):40944–9.PubMed Donovan N, Becker EB, Konishi Y, Bonni A. JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem. 2002;277(43):40944–9.PubMed
52.
Zurück zum Zitat Becker EB, Howell J, Kodama Y, Barker PA, Bonni A. Characterization of the c-Jun N-terminal kinase-BimEL signaling pathway in neuronal apoptosis. J Neurosci. 2004;24(40):8762–70.PubMedPubMedCentral Becker EB, Howell J, Kodama Y, Barker PA, Bonni A. Characterization of the c-Jun N-terminal kinase-BimEL signaling pathway in neuronal apoptosis. J Neurosci. 2004;24(40):8762–70.PubMedPubMedCentral
53.
Zurück zum Zitat Barone F, Irving E, Ray A, Lee J, Kassis S, Kumar S, et al. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev. 2001;21(2):129–45.PubMed Barone F, Irving E, Ray A, Lee J, Kassis S, Kumar S, et al. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev. 2001;21(2):129–45.PubMed
54.
Zurück zum Zitat Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochimica et Biophysica Acta (BBA)-molecular. Cell Res. 2007;1773(8):1358–75. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochimica et Biophysica Acta (BBA)-molecular. Cell Res. 2007;1773(8):1358–75.
55.
Zurück zum Zitat Takeda K, Ichijo H. Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes Cells. 2002;7(11):1099–111.PubMed Takeda K, Ichijo H. Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes Cells. 2002;7(11):1099–111.PubMed
56.
Zurück zum Zitat Zervos AS, Faccio L, Gatto JP, Kyriakis JM, Brent R. Mxi2, a mitogen-activated protein kinase that recognizes and phosphorylates max protein. Proc Natl Acad Sci. 1995;92(23):10531–4.PubMedPubMedCentral Zervos AS, Faccio L, Gatto JP, Kyriakis JM, Brent R. Mxi2, a mitogen-activated protein kinase that recognizes and phosphorylates max protein. Proc Natl Acad Sci. 1995;92(23):10531–4.PubMedPubMedCentral
57.
Zurück zum Zitat Janknecht R, Hunter T. Convergence of MAP kinase pathways on the ternary complex factor sap-1a. EMBO J. 1997;16(7):1620–7.PubMedPubMedCentral Janknecht R, Hunter T. Convergence of MAP kinase pathways on the ternary complex factor sap-1a. EMBO J. 1997;16(7):1620–7.PubMedPubMedCentral
58.
Zurück zum Zitat Porras A, Guerrero Arroyo MdC. Role of p38α in apoptosis: implication in cancer development and therapy. 2011. Porras A, Guerrero Arroyo MdC. Role of p38α in apoptosis: implication in cancer development and therapy. 2011.
59.
Zurück zum Zitat Lou Y-L, Guo F, Liu F, Gao F-L, Zhang P-Q, Niu X, et al. miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem. 2012;370(1–2):45–51.PubMed Lou Y-L, Guo F, Liu F, Gao F-L, Zhang P-Q, Niu X, et al. miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem. 2012;370(1–2):45–51.PubMed
60.
Zurück zum Zitat Corada M, Morini MF, Dejana E. Signaling pathways in the specification of arteries and veins. Arterioscler Thromb Vasc Biol. 2014;34(11):2372–7.PubMed Corada M, Morini MF, Dejana E. Signaling pathways in the specification of arteries and veins. Arterioscler Thromb Vasc Biol. 2014;34(11):2372–7.PubMed
61.
Zurück zum Zitat Grieskamp T, Rudat C, Lüdtke TH-W, Norden J, Kispert A. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res. 2011;108(7):813–23.PubMed Grieskamp T, Rudat C, Lüdtke TH-W, Norden J, Kispert A. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res. 2011;108(7):813–23.PubMed
62.
Zurück zum Zitat Quillien A, Moore JC, Shin M, Siekmann AF, Smith T, Pan L, et al. Distinct notch signaling outputs pattern the developing arterial system. Development. 2014;141(7):1544–52.PubMedPubMedCentral Quillien A, Moore JC, Shin M, Siekmann AF, Smith T, Pan L, et al. Distinct notch signaling outputs pattern the developing arterial system. Development. 2014;141(7):1544–52.PubMedPubMedCentral
63.
Zurück zum Zitat Zacharek A, Chen J, Cui X, Yang Y, Chopp M. Simvastatin increases notch signaling activity and promotes arteriogenesis after stroke. Stroke. 2009;40(1):254–60.PubMed Zacharek A, Chen J, Cui X, Yang Y, Chopp M. Simvastatin increases notch signaling activity and promotes arteriogenesis after stroke. Stroke. 2009;40(1):254–60.PubMed
64.
Zurück zum Zitat Cheng Y-L, Park J-S, Manzanero S, Choi Y, Baik S-H, Okun E, et al. Evidence that collaboration between HIF-1α and Notch-1 promotes neuronal cell death in ischemic stroke. Neurobiol Dis. 2014;62:286–95.PubMed Cheng Y-L, Park J-S, Manzanero S, Choi Y, Baik S-H, Okun E, et al. Evidence that collaboration between HIF-1α and Notch-1 promotes neuronal cell death in ischemic stroke. Neurobiol Dis. 2014;62:286–95.PubMed
65.
Zurück zum Zitat Zhao Y, Deng B, Li Y, Zhou L, Yang L, Gou X, et al. Electroacupuncture pretreatment attenuates cerebral ischemic injury via notch pathway-mediated up-regulation of hypoxia inducible factor-1α in rats. Cell Mol Neurobiol. 2015;35(8):1093–103.PubMedPubMedCentral Zhao Y, Deng B, Li Y, Zhou L, Yang L, Gou X, et al. Electroacupuncture pretreatment attenuates cerebral ischemic injury via notch pathway-mediated up-regulation of hypoxia inducible factor-1α in rats. Cell Mol Neurobiol. 2015;35(8):1093–103.PubMedPubMedCentral
66.
Zurück zum Zitat Yang X, Klein R, Tian X, Cheng H-T, Kopan R, Shen J. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev Biol. 2004;269(1):81–94.PubMed Yang X, Klein R, Tian X, Cheng H-T, Kopan R, Shen J. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev Biol. 2004;269(1):81–94.PubMed
67.
Zurück zum Zitat Mumm JS, Kopan R. Notch signaling: from the outside in. Dev Biol. 2000;228(2):151–65.PubMed Mumm JS, Kopan R. Notch signaling: from the outside in. Dev Biol. 2000;228(2):151–65.PubMed
68.
Zurück zum Zitat Albéri L, Chi Z, Kadam SD, Mulholland JD, Dawson VL, Gaiano N, et al. Neonatal stroke in mice causes long-term changes in neuronal Notch-2 expression that may contribute to prolonged injury. Stroke. 2010;41(10_suppl_1):S64–71.PubMedPubMedCentral Albéri L, Chi Z, Kadam SD, Mulholland JD, Dawson VL, Gaiano N, et al. Neonatal stroke in mice causes long-term changes in neuronal Notch-2 expression that may contribute to prolonged injury. Stroke. 2010;41(10_suppl_1):S64–71.PubMedPubMedCentral
69.
Zurück zum Zitat Meng S, Su Z, Liu Z, Wang N, Wang Z. Rac1 contributes to cerebral ischemia reperfusion-induced injury in mice by regulation of Notch2. Neuroscience. 2015;306:100–14.PubMed Meng S, Su Z, Liu Z, Wang N, Wang Z. Rac1 contributes to cerebral ischemia reperfusion-induced injury in mice by regulation of Notch2. Neuroscience. 2015;306:100–14.PubMed
70.
Zurück zum Zitat Ma M, Wang X, Ding X, Teng J, Shao F, Zhang J. Numb/notch signaling plays an important role in cerebral ischemia-induced apoptosis. Neurochem Res. 2013;38(2):254–61.PubMed Ma M, Wang X, Ding X, Teng J, Shao F, Zhang J. Numb/notch signaling plays an important role in cerebral ischemia-induced apoptosis. Neurochem Res. 2013;38(2):254–61.PubMed
71.
Zurück zum Zitat Park JS, Manzanero S, Chang JW, Choi Y, Baik SH, Cheng YL, et al. Calsenilin contributes to neuronal cell death in ischemic stroke. Brain Pathol. 2013;23(4):402–12.PubMed Park JS, Manzanero S, Chang JW, Choi Y, Baik SH, Cheng YL, et al. Calsenilin contributes to neuronal cell death in ischemic stroke. Brain Pathol. 2013;23(4):402–12.PubMed
72.
Zurück zum Zitat Tang S-C, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, et al. Pivotal role for neuronal toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci. 2007;104(34):13798–803.PubMedPubMedCentral Tang S-C, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, et al. Pivotal role for neuronal toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci. 2007;104(34):13798–803.PubMedPubMedCentral
73.
Zurück zum Zitat Ang HL, Tergaonkar VJB. Notch and NFκB signaling pathways: do they collaborate in normal vertebrate brain development and function? 2007;29(10):1039–47. Ang HL, Tergaonkar VJB. Notch and NFκB signaling pathways: do they collaborate in normal vertebrate brain development and function? 2007;29(10):1039–47.
74.
Zurück zum Zitat Yin J, Li H, Feng C, Zuo Z. Inhibition of brain ischemia-caused notch activation in microglia may contribute to isoflurane postconditioning-induced neuroprotection in male rats. CNS Neurol Disord Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2014;13(4):718–32. Yin J, Li H, Feng C, Zuo Z. Inhibition of brain ischemia-caused notch activation in microglia may contribute to isoflurane postconditioning-induced neuroprotection in male rats. CNS Neurol Disord Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2014;13(4):718–32.
75.
Zurück zum Zitat Arumugam TV, Chan SL, Jo D-G, Yilmaz G, Tang S-C, Cheng A, et al. Gamma secretase–mediated notch signaling worsens brain damage and functional outcome in ischemic stroke. Nat Med. 2006;12(6):621.PubMed Arumugam TV, Chan SL, Jo D-G, Yilmaz G, Tang S-C, Cheng A, et al. Gamma secretase–mediated notch signaling worsens brain damage and functional outcome in ischemic stroke. Nat Med. 2006;12(6):621.PubMed
76.
Zurück zum Zitat Kalimo H, Ruchoux MM, Viitanen M, Kalaria RN. CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol. 2002;12(3):371–84.PubMed Kalimo H, Ruchoux MM, Viitanen M, Kalaria RN. CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol. 2002;12(3):371–84.PubMed
77.
Zurück zum Zitat Wang S, Yuan Y, Xia W, Li F, Huang Y, Zhou Y, et al. Neuronal apoptosis and synaptic density in the dentate gyrus of ischemic rats’ response to chronic mild stress and the effects of notch signaling. PLoS One. 2012;7(8):e42828.PubMedPubMedCentral Wang S, Yuan Y, Xia W, Li F, Huang Y, Zhou Y, et al. Neuronal apoptosis and synaptic density in the dentate gyrus of ischemic rats’ response to chronic mild stress and the effects of notch signaling. PLoS One. 2012;7(8):e42828.PubMedPubMedCentral
78.
Zurück zum Zitat Zhang H-p, Sun Y-y, Chen X-m, Yuan L-b, Su B-x, Ma R, et al. The neuroprotective effects of isoflurane preconditioning in a murine transient global cerebral ischemia–reperfusion model: the role of the notch signaling pathway. NeuroMolecular Med. 2014;16(1):191–204.PubMed Zhang H-p, Sun Y-y, Chen X-m, Yuan L-b, Su B-x, Ma R, et al. The neuroprotective effects of isoflurane preconditioning in a murine transient global cerebral ischemia–reperfusion model: the role of the notch signaling pathway. NeuroMolecular Med. 2014;16(1):191–204.PubMed
79.
Zurück zum Zitat Yang Q, Yan W, Li X, Hou L, Dong H, Wang Q, et al. Activation of canonical notch signaling pathway is involved in the ischemic tolerance induced by sevoflurane preconditioning in mice. Anesthesiology. 2012;117(5):996–1005.PubMed Yang Q, Yan W, Li X, Hou L, Dong H, Wang Q, et al. Activation of canonical notch signaling pathway is involved in the ischemic tolerance induced by sevoflurane preconditioning in mice. Anesthesiology. 2012;117(5):996–1005.PubMed
80.
Zurück zum Zitat Yao J, Qian C. Over-activated Notch-1 protects gastric carcinoma BGC-823 cells from TNFα-induced apoptosis. Dig Liver Dis. 2009;41(12):867–74.PubMed Yao J, Qian C. Over-activated Notch-1 protects gastric carcinoma BGC-823 cells from TNFα-induced apoptosis. Dig Liver Dis. 2009;41(12):867–74.PubMed
83.
Zurück zum Zitat Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev. 1995;9(1):15–30.PubMed Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev. 1995;9(1):15–30.PubMed
84.
Zurück zum Zitat Kawai T, Nomura F, Hoshino K, Copeland NG, Gilbert DJ, Jenkins NA, et al. Death-associated protein kinase 2 is a new calcium/calmodulin-dependent protein kinase that signals apoptosis through its catalytic activity. Oncogene. 1999;18(23):3471.PubMed Kawai T, Nomura F, Hoshino K, Copeland NG, Gilbert DJ, Jenkins NA, et al. Death-associated protein kinase 2 is a new calcium/calmodulin-dependent protein kinase that signals apoptosis through its catalytic activity. Oncogene. 1999;18(23):3471.PubMed
85.
Zurück zum Zitat Inbal B, Shani G, Cohen O, Kissil JL, Kimchi A. Death-associated protein kinase-related protein 1, a novel serine/threonine kinase involved in apoptosis. Mol Cell Biol. 2000;20(3):1044–54.PubMedPubMedCentral Inbal B, Shani G, Cohen O, Kissil JL, Kimchi A. Death-associated protein kinase-related protein 1, a novel serine/threonine kinase involved in apoptosis. Mol Cell Biol. 2000;20(3):1044–54.PubMedPubMedCentral
86.
Zurück zum Zitat Kawai T, Matsumoto M, Takeda K, Sanjo H, Akira S. ZIP kinase, a novel serine/threonine kinase which mediates apoptosis. Mol Cell Biol. 1998;18(3):1642–51.PubMedPubMedCentral Kawai T, Matsumoto M, Takeda K, Sanjo H, Akira S. ZIP kinase, a novel serine/threonine kinase which mediates apoptosis. Mol Cell Biol. 1998;18(3):1642–51.PubMedPubMedCentral
87.
Zurück zum Zitat Sanjo H, Kawai T, Akira S. DRAKs, novel serine/threonine kinases related to death-associated protein kinase that trigger apoptosis. J Biol Chem. 1998;273(44):29066–71.PubMed Sanjo H, Kawai T, Akira S. DRAKs, novel serine/threonine kinases related to death-associated protein kinase that trigger apoptosis. J Biol Chem. 1998;273(44):29066–71.PubMed
88.
Zurück zum Zitat Cohen O, Feinstein E, Kimchi A. DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J. 1997;16(5):998–1008.PubMedPubMedCentral Cohen O, Feinstein E, Kimchi A. DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J. 1997;16(5):998–1008.PubMedPubMedCentral
89.
Zurück zum Zitat Kögel D, Bierbaum H, Preuss U, Scheidtmann KH. C-terminal truncation of Dlk/ZIP kinase leads to abrogation of nuclear transport and high apoptotic activity. Oncogene. 1999;18(51):7212.PubMed Kögel D, Bierbaum H, Preuss U, Scheidtmann KH. C-terminal truncation of Dlk/ZIP kinase leads to abrogation of nuclear transport and high apoptotic activity. Oncogene. 1999;18(51):7212.PubMed
90.
Zurück zum Zitat Inbal B, Cohen O, Polak-Charcon S, Kopolovic J, Vadai E, Eisenbach L, et al. DAP kinase links the control of apoptosis to metastasis. Nature. 1997;390(6656):180.PubMed Inbal B, Cohen O, Polak-Charcon S, Kopolovic J, Vadai E, Eisenbach L, et al. DAP kinase links the control of apoptosis to metastasis. Nature. 1997;390(6656):180.PubMed
91.
Zurück zum Zitat Cohen O, Inbal B, Kissil JL, Raveh T, Berissi H, Spivak-Kroizaman T, et al. DAP-kinase participates in TNF-α–and Fas-induced apoptosis and its function requires the death domain. J Cell Biol. 1999;146(1):141–8.PubMedPubMedCentral Cohen O, Inbal B, Kissil JL, Raveh T, Berissi H, Spivak-Kroizaman T, et al. DAP-kinase participates in TNF-α–and Fas-induced apoptosis and its function requires the death domain. J Cell Biol. 1999;146(1):141–8.PubMedPubMedCentral
92.
Zurück zum Zitat Yamamoto M, Takahashi H, Nakamura T, Hioki T, Nagayama S, Ooashi N, et al. Developmental changes in distribution of death-associated protein kinase mRNAs. J Neurosci Res. 1999;58(5):674–83.PubMed Yamamoto M, Takahashi H, Nakamura T, Hioki T, Nagayama S, Ooashi N, et al. Developmental changes in distribution of death-associated protein kinase mRNAs. J Neurosci Res. 1999;58(5):674–83.PubMed
93.
Zurück zum Zitat Baffy G, Miyashita T, Williamson J, Reed J. Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production. J Biol Chem. 1993;268(9):6511–9.PubMed Baffy G, Miyashita T, Williamson J, Reed J. Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production. J Biol Chem. 1993;268(9):6511–9.PubMed
94.
Zurück zum Zitat Pinton P, Ferrari D, Magalhães P, Schulze-Osthoff K, Di Virgilio F, Pozzan T, et al. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2–overexpressing cells. J Cell Biol. 2000;148(5):857–62.PubMedPubMedCentral Pinton P, Ferrari D, Magalhães P, Schulze-Osthoff K, Di Virgilio F, Pozzan T, et al. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2–overexpressing cells. J Cell Biol. 2000;148(5):857–62.PubMedPubMedCentral
98.
Zurück zum Zitat Chi S-W. Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep. 2014;47(3):167.PubMedPubMedCentral Chi S-W. Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep. 2014;47(3):167.PubMedPubMedCentral
99.
Zurück zum Zitat Pei L, Shang Y, Jin H, Wang S, Wei N, Yan H, et al. DAPK1–p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J Neurosci. 2014;34(19):6546–56.PubMedPubMedCentral Pei L, Shang Y, Jin H, Wang S, Wei N, Yan H, et al. DAPK1–p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J Neurosci. 2014;34(19):6546–56.PubMedPubMedCentral
100.
Zurück zum Zitat Wang S, Shi X, Li H, Pang P, Pei L, Shen H, et al. DAPK1 signaling pathways in stroke: from mechanisms to therapies. Mol Neurobiol. 2017;54(6):4716–22.PubMed Wang S, Shi X, Li H, Pang P, Pei L, Shen H, et al. DAPK1 signaling pathways in stroke: from mechanisms to therapies. Mol Neurobiol. 2017;54(6):4716–22.PubMed
102.
Zurück zum Zitat Doyle KM, Kennedy D, Gorman AM, Gupta S, Healy SJ, Samali A. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J Cell Mol Med. 2011;15(10):2025–39.PubMedPubMedCentral Doyle KM, Kennedy D, Gorman AM, Gupta S, Healy SJ, Samali A. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J Cell Mol Med. 2011;15(10):2025–39.PubMedPubMedCentral
103.
Zurück zum Zitat Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7(9):880–5.PubMedPubMedCentral Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7(9):880–5.PubMedPubMedCentral
104.
Zurück zum Zitat Li J, Lee B, Lee AS. Endoplasmic reticulum stress-induced apoptosis multiple pathways and activation of p53-up-regulated modulator of apoptosis (puma) and noxa by p53. J Biol Chem. 2006;281(11):7260–70.PubMed Li J, Lee B, Lee AS. Endoplasmic reticulum stress-induced apoptosis multiple pathways and activation of p53-up-regulated modulator of apoptosis (puma) and noxa by p53. J Biol Chem. 2006;281(11):7260–70.PubMed
106.
Zurück zum Zitat Pandey AK, Shukla SC, Bhattacharya P, Patnaik R. A possible therapeutic potential of quercetin through inhibition of μ-calpain in hypoxia induced neuronal injury: a molecular dynamics simulation study. Neural Regen Res. 2016;11(8):1247.PubMedPubMedCentral Pandey AK, Shukla SC, Bhattacharya P, Patnaik R. A possible therapeutic potential of quercetin through inhibition of μ-calpain in hypoxia induced neuronal injury: a molecular dynamics simulation study. Neural Regen Res. 2016;11(8):1247.PubMedPubMedCentral
107.
Zurück zum Zitat Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. International review of cell and molecular biology. Elsevier; 2012. p. 229–317. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. International review of cell and molecular biology. Elsevier; 2012. p. 229–317.
109.
Zurück zum Zitat Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH. Molecular biology of apoptosis in ischemia and reperfusion. J Investig Surg. 2005;18(6):335–50. Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH. Molecular biology of apoptosis in ischemia and reperfusion. J Investig Surg. 2005;18(6):335–50.
110.
Zurück zum Zitat Wu M-y, Yiang G-t, Liao W-T, Tsai AP-Y, Cheng Y-L, Cheng P-W, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 2018;46(4):1650–67.PubMed Wu M-y, Yiang G-t, Liao W-T, Tsai AP-Y, Cheng Y-L, Cheng P-W, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 2018;46(4):1650–67.PubMed
112.
Zurück zum Zitat Dabrowska S, Andrzejewska A, Strzemecki D, Muraca M, Janowski M, Lukomska B. Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J Neuroinflammation. 2019;16(1):216.PubMedPubMedCentral Dabrowska S, Andrzejewska A, Strzemecki D, Muraca M, Janowski M, Lukomska B. Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J Neuroinflammation. 2019;16(1):216.PubMedPubMedCentral
113.
Zurück zum Zitat Tripathi AK, Dhanesha N, Kumar S. Stroke Induced Blood-Brain Barrier Disruption. Advancement in the Pathophysiology of Cerebral Stroke. Springer; 2019. p. 23–41. Tripathi AK, Dhanesha N, Kumar S. Stroke Induced Blood-Brain Barrier Disruption. Advancement in the Pathophysiology of Cerebral Stroke. Springer; 2019. p. 23–41.
114.
Zurück zum Zitat Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004;16(6):663–9.PubMed Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004;16(6):663–9.PubMed
115.
Zurück zum Zitat Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke E, et al. Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ. 2009;16(1):3.PubMed Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke E, et al. Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ. 2009;16(1):3.PubMed
116.
Zurück zum Zitat Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci. 2007;32(1):37–43.PubMed Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci. 2007;32(1):37–43.PubMed
117.
Zurück zum Zitat Festjens N, Berghe TV, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2006;1757(9–10):1371–87. Festjens N, Berghe TV, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2006;1757(9–10):1371–87.
118.
Zurück zum Zitat Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, et al. Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1(6):489.PubMed Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, et al. Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1(6):489.PubMed
119.
Zurück zum Zitat Weber K, Roelandt R, Bruggeman I, Estornes Y, Vandenabeele P. Nuclear RIPK3 and MLKL contribute to cytosolic necrosome formation and necroptosis. Commun Biol. 2018;1(1):6.PubMedPubMedCentral Weber K, Roelandt R, Bruggeman I, Estornes Y, Vandenabeele P. Nuclear RIPK3 and MLKL contribute to cytosolic necrosome formation and necroptosis. Commun Biol. 2018;1(1):6.PubMedPubMedCentral
120.
121.
Zurück zum Zitat Vieira M, Fernandes J, Carreto L, Anuncibay-Soto B, Santos M, Han J, et al. Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous RIP3. Neurobiol Dis. 2014;68:26–36.PubMed Vieira M, Fernandes J, Carreto L, Anuncibay-Soto B, Santos M, Han J, et al. Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous RIP3. Neurobiol Dis. 2014;68:26–36.PubMed
122.
Zurück zum Zitat Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148(1–2):213–27.PubMed Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148(1–2):213–27.PubMed
123.
Zurück zum Zitat Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15(2):135–47. Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15(2):135–47.
124.
Zurück zum Zitat Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 2014;7(4):971–81.PubMed Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 2014;7(4):971–81.PubMed
125.
Zurück zum Zitat Wang H, Sun L, Su L, Rizo J, Liu L, Wang L-F, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014;54(1):133–46.PubMed Wang H, Sun L, Su L, Rizo J, Liu L, Wang L-F, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014;54(1):133–46.PubMed
126.
Zurück zum Zitat Galluzzi L, Kepp O, Kroemer G. MLKL regulates necrotic plasma membrane permeabilization. Cell Res. 2014;24(2):139.PubMedPubMedCentral Galluzzi L, Kepp O, Kroemer G. MLKL regulates necrotic plasma membrane permeabilization. Cell Res. 2014;24(2):139.PubMedPubMedCentral
127.
Zurück zum Zitat Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–41.PubMed Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–41.PubMed
128.
129.
130.
Zurück zum Zitat Solenski NJ, di Pierro CG, Trimmer PA, Kwan A-L, Helms GA. Ultrastructural changes of neuronal mitochondria after transient and permanent cerebral ischemia. Stroke. 2002;33(3):816–24.PubMed Solenski NJ, di Pierro CG, Trimmer PA, Kwan A-L, Helms GA. Ultrastructural changes of neuronal mitochondria after transient and permanent cerebral ischemia. Stroke. 2002;33(3):816–24.PubMed
131.
Zurück zum Zitat Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell. 2000;103(2):253–62.PubMed Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell. 2000;103(2):253–62.PubMed
132.
Zurück zum Zitat Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr Biol. 1997;7(4):261–9.PubMed Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr Biol. 1997;7(4):261–9.PubMed
133.
Zurück zum Zitat Inoki K, Zhu T, Guan K-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.PubMed Inoki K, Zhu T, Guan K-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.PubMed
134.
Zurück zum Zitat Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell. 2002;10(1):151–62.PubMed Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell. 2002;10(1):151–62.PubMed
135.
Zurück zum Zitat Hardie DG. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25(18):1895–908.PubMedPubMedCentral Hardie DG. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25(18):1895–908.PubMedPubMedCentral
136.
Zurück zum Zitat Liang J, Shao SH, Xu Z-X, Hennessy B, Ding Z, Larrea M, et al. The energy sensing LKB1–AMPK pathway regulates p27 kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol. 2007;9(2):218.PubMed Liang J, Shao SH, Xu Z-X, Hennessy B, Ding Z, Larrea M, et al. The energy sensing LKB1–AMPK pathway regulates p27 kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol. 2007;9(2):218.PubMed
137.
Zurück zum Zitat Oberstein A, Jeffrey PD, Shi Y. Crystal structure of the Bcl-XL-Beclin 1 peptide complex Beclin 1 is a novel BH3-only protein. J Biol Chem. 2007;282(17):13123–32.PubMed Oberstein A, Jeffrey PD, Shi Y. Crystal structure of the Bcl-XL-Beclin 1 peptide complex Beclin 1 is a novel BH3-only protein. J Biol Chem. 2007;282(17):13123–32.PubMed
138.
Zurück zum Zitat Marquez RT, Xu L. Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res. 2012;2(2):214.PubMedPubMedCentral Marquez RT, Xu L. Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res. 2012;2(2):214.PubMedPubMedCentral
139.
140.
Zurück zum Zitat Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–39.PubMed Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–39.PubMed
141.
Zurück zum Zitat Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126(1):121–34.PubMed Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126(1):121–34.PubMed
142.
Zurück zum Zitat Liu L, Sakakibara K, Chen Q, Okamoto K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 2014;24(7):787.PubMedPubMedCentral Liu L, Sakakibara K, Chen Q, Okamoto K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 2014;24(7):787.PubMedPubMedCentral
144.
Zurück zum Zitat Kesharwani R, Sarmah D, Kaur H, Mounika L, Verma G, Pabbala V, et al. Interplay between mitophagy and inflammasomes in neurological disorders. ACS Chem Neurosci. 2019;10(5):2195–208.PubMed Kesharwani R, Sarmah D, Kaur H, Mounika L, Verma G, Pabbala V, et al. Interplay between mitophagy and inflammasomes in neurological disorders. ACS Chem Neurosci. 2019;10(5):2195–208.PubMed
145.
Zurück zum Zitat Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2013;1833(12):3460–70. Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2013;1833(12):3460–70.
146.
Zurück zum Zitat Matute C. Mechanisms of glial death and protection. Primer on cerebrovascular diseases. Elsevier; 2017. p. 215–219. Matute C. Mechanisms of glial death and protection. Primer on cerebrovascular diseases. Elsevier; 2017. p. 215–219.
147.
Zurück zum Zitat Fern RF, Matute C, Stys PK. White matter injury: ischemic and nonischemic. Glia. 2014;62(11):1780–9.PubMed Fern RF, Matute C, Stys PK. White matter injury: ischemic and nonischemic. Glia. 2014;62(11):1780–9.PubMed
148.
Zurück zum Zitat Matute C, Domercq M, Pérez-Samartín A, Ransom BR. Protecting white matter from stroke injury. Stroke. 2013;44(4):1204–11.PubMed Matute C, Domercq M, Pérez-Samartín A, Ransom BR. Protecting white matter from stroke injury. Stroke. 2013;44(4):1204–11.PubMed
149.
Zurück zum Zitat Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol. 2016;144:103–20.PubMed Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol. 2016;144:103–20.PubMed
150.
Zurück zum Zitat Kenny EM, Fidan E, Yang Q, Anthonymuthu TS, New LA, Meyer EA, et al. Ferroptosis contributes to neuronal death and functional outcome after traumatic brain injury. Crit Care Med. 2019;47(3):410–8.PubMedPubMedCentral Kenny EM, Fidan E, Yang Q, Anthonymuthu TS, New LA, Meyer EA, et al. Ferroptosis contributes to neuronal death and functional outcome after traumatic brain injury. Crit Care Med. 2019;47(3):410–8.PubMedPubMedCentral
151.
Zurück zum Zitat Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234–45.PubMedPubMedCentral Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234–45.PubMedPubMedCentral
152.
Zurück zum Zitat Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. The role of ferroptosis in cancer development and treatment response. Front Pharmacol. 2018;8:992.PubMedPubMedCentral Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. The role of ferroptosis in cancer development and treatment response. Front Pharmacol. 2018;8:992.PubMedPubMedCentral
153.
Zurück zum Zitat Wu J-r, Q-z T, Lei P. Ferroptosis, a recent defined form of critical cell death in neurological disorders. J Mol Neurosci. 2018;66(2):197–206.PubMed Wu J-r, Q-z T, Lei P. Ferroptosis, a recent defined form of critical cell death in neurological disorders. J Mol Neurosci. 2018;66(2):197–206.PubMed
155.
Zurück zum Zitat Conrad M, Friedmann Angeli JP. Glutathione peroxidase 4 (Gpx4) and ferroptosis: what’s so special about it? Mol Cell Oncol. 2015;2(3):e995047.PubMedPubMedCentral Conrad M, Friedmann Angeli JP. Glutathione peroxidase 4 (Gpx4) and ferroptosis: what’s so special about it? Mol Cell Oncol. 2015;2(3):e995047.PubMedPubMedCentral
156.
Zurück zum Zitat Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26(3):165–76.PubMed Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26(3):165–76.PubMed
157.
Zurück zum Zitat Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, et al. The cystine/glutamate antiporter system xc− in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 2013;18(5):522–55.PubMedPubMedCentral Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, et al. The cystine/glutamate antiporter system xc− in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 2013;18(5):522–55.PubMedPubMedCentral
158.
Zurück zum Zitat Tan S, Sagara Y, Liu Y, Maher P, Schubert D. The regulation of reactive oxygen species production during programmed cell death. J Cell Biol. 1998;141(6):1423–32.PubMedPubMedCentral Tan S, Sagara Y, Liu Y, Maher P, Schubert D. The regulation of reactive oxygen species production during programmed cell death. J Cell Biol. 1998;141(6):1423–32.PubMedPubMedCentral
159.
Zurück zum Zitat Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014;171(8):2000–16.PubMedPubMedCentral Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014;171(8):2000–16.PubMedPubMedCentral
160.
Zurück zum Zitat Krietsch J, Rouleau M, Pic É, Ethier C, Dawson TM, Dawson VL, et al. Reprogramming cellular events by poly (ADP-ribose)-binding proteins. Mol Asp Med. 2013;34(6):1066–87. Krietsch J, Rouleau M, Pic É, Ethier C, Dawson TM, Dawson VL, et al. Reprogramming cellular events by poly (ADP-ribose)-binding proteins. Mol Asp Med. 2013;34(6):1066–87.
161.
Zurück zum Zitat Andrabi SA, Dawson TM, Dawson VL. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann N Y Acad Sci. 2008;1147:233.PubMedPubMedCentral Andrabi SA, Dawson TM, Dawson VL. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann N Y Acad Sci. 2008;1147:233.PubMedPubMedCentral
162.
Zurück zum Zitat Dong Z, Pan K, Pan J, Peng Q, Wang Y. The possibility and molecular mechanisms of cell pyroptosis after cerebral ischemia. Neurosci Bull. 2018;34(6):1131–6.PubMedPubMedCentral Dong Z, Pan K, Pan J, Peng Q, Wang Y. The possibility and molecular mechanisms of cell pyroptosis after cerebral ischemia. Neurosci Bull. 2018;34(6):1131–6.PubMedPubMedCentral
163.
Zurück zum Zitat Kono H, Kimura Y, Latz E. Inflammasome activation in response to dead cells and their metabolites. Curr Opin Immunol. 2014;30:91–8.PubMed Kono H, Kimura Y, Latz E. Inflammasome activation in response to dead cells and their metabolites. Curr Opin Immunol. 2014;30:91–8.PubMed
164.
Zurück zum Zitat Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407.PubMed Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407.PubMed
165.
Zurück zum Zitat Poh L, Kang S-W, Baik S-H, Ng GYQ, She DT, Balaganapathy P, et al. Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav Immun. 2019;75:34–47.PubMed Poh L, Kang S-W, Baik S-H, Ng GYQ, She DT, Balaganapathy P, et al. Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav Immun. 2019;75:34–47.PubMed
166.
Zurück zum Zitat Haas S, Weidner N, Winkler J. Adult stem cell therapy in stroke. Curr Opin Neurol. 2005;18(1):59–64.PubMed Haas S, Weidner N, Winkler J. Adult stem cell therapy in stroke. Curr Opin Neurol. 2005;18(1):59–64.PubMed
167.
Zurück zum Zitat Yu ZF, Bruce-Keller AJ, Goodman Y, Mattson MP. Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J Neurosci Res. 1998;53(5):613–25.PubMed Yu ZF, Bruce-Keller AJ, Goodman Y, Mattson MP. Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J Neurosci Res. 1998;53(5):613–25.PubMed
168.
Zurück zum Zitat Cheng B, Christakos S, Mattson MP. Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron. 1994;12(1):139–53.PubMed Cheng B, Christakos S, Mattson MP. Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron. 1994;12(1):139–53.PubMed
169.
Zurück zum Zitat Nicole O, Ali C, Docagne F, Plawinski L, MacKenzie ET, Vivien D, et al. Neuroprotection mediated by glial cell line-derived neurotrophic factor: involvement of a reduction of NMDA-induced calcium influx by the mitogen-activated protein kinase pathway. J Neurosci. 2001;21(9):3024–33.PubMedPubMedCentral Nicole O, Ali C, Docagne F, Plawinski L, MacKenzie ET, Vivien D, et al. Neuroprotection mediated by glial cell line-derived neurotrophic factor: involvement of a reduction of NMDA-induced calcium influx by the mitogen-activated protein kinase pathway. J Neurosci. 2001;21(9):3024–33.PubMedPubMedCentral
170.
Zurück zum Zitat Kilic U, Kilic E, Dietz GP, Bähr M. Intravenous TAT-GDNF is protective after focal cerebral ischemia in mice. Stroke. 2003;34(5):1304–10.PubMed Kilic U, Kilic E, Dietz GP, Bähr M. Intravenous TAT-GDNF is protective after focal cerebral ischemia in mice. Stroke. 2003;34(5):1304–10.PubMed
171.
Zurück zum Zitat Sumbria RK, Boado RJ, Pardridge WM. Combination stroke therapy in the mouse with blood–brain barrier penetrating IgG–GDNF and IgG–TNF decoy receptor fusion proteins. Brain Res. 2013;1507:91–6.PubMed Sumbria RK, Boado RJ, Pardridge WM. Combination stroke therapy in the mouse with blood–brain barrier penetrating IgG–GDNF and IgG–TNF decoy receptor fusion proteins. Brain Res. 2013;1507:91–6.PubMed
172.
Zurück zum Zitat Zhang Y, Pardridge WM. Blood–brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Res 2006;1111(1):227–229. Zhang Y, Pardridge WM. Blood–brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Res 2006;1111(1):227–229.
173.
Zurück zum Zitat Rabuffetti M, Sciorati C, Tarozzo G, Clementi E, Manfredi A, Beltramo M. Inhibition of caspase-1-like activity by ac-Tyr-Val-Ala-asp-chloromethyl ketone induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proinflammatory cytokines. J Neurosci. 2000;20(12):4398–404.PubMedPubMedCentral Rabuffetti M, Sciorati C, Tarozzo G, Clementi E, Manfredi A, Beltramo M. Inhibition of caspase-1-like activity by ac-Tyr-Val-Ala-asp-chloromethyl ketone induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proinflammatory cytokines. J Neurosci. 2000;20(12):4398–404.PubMedPubMedCentral
174.
Zurück zum Zitat Ray AM, Owen DE, Evans ML, Davis JB, Benham CD. Caspase inhibitors are functionally neuroprotective against oxygen glucose deprivation induced CA1 death in rat organotypic hippocampal slices. Brain Res. 2000;867(1–2):62–9.PubMed Ray AM, Owen DE, Evans ML, Davis JB, Benham CD. Caspase inhibitors are functionally neuroprotective against oxygen glucose deprivation induced CA1 death in rat organotypic hippocampal slices. Brain Res. 2000;867(1–2):62–9.PubMed
175.
Zurück zum Zitat Xu X, Chua K-W, Chua CC, Liu C-F, Hamdy RC, Chua BH. Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury. Brain Res. 2010;1355:189–94.PubMedPubMedCentral Xu X, Chua K-W, Chua CC, Liu C-F, Hamdy RC, Chua BH. Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury. Brain Res. 2010;1355:189–94.PubMedPubMedCentral
176.
Zurück zum Zitat Yang X, Tang X, Sun P, Shi Y, Liu K, Hassan SH, et al. MicroRNA-15a/16-1 antagomir ameliorates ischemic brain injury in experimental stroke. Stroke. 2017;48(7):1941–7.PubMedPubMedCentral Yang X, Tang X, Sun P, Shi Y, Liu K, Hassan SH, et al. MicroRNA-15a/16-1 antagomir ameliorates ischemic brain injury in experimental stroke. Stroke. 2017;48(7):1941–7.PubMedPubMedCentral
177.
Zurück zum Zitat Wang X, Figueroa BE, Stavrovskaya IG, Zhang Y, Sirianni AC, Zhu S, et al. Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke. 2009;40(5):1877–85.PubMedPubMedCentral Wang X, Figueroa BE, Stavrovskaya IG, Zhang Y, Sirianni AC, Zhu S, et al. Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke. 2009;40(5):1877–85.PubMedPubMedCentral
178.
Zurück zum Zitat Zhou H, Wang J, Jiang J, Stavrovskaya IG, Li M, Li W, et al. N-acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic activation in experimental models of ischemic injury. J Neurosci. 2014;34(8):2967–78.PubMedPubMedCentral Zhou H, Wang J, Jiang J, Stavrovskaya IG, Li M, Li W, et al. N-acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic activation in experimental models of ischemic injury. J Neurosci. 2014;34(8):2967–78.PubMedPubMedCentral
179.
Zurück zum Zitat Zhang W-h, Wang H, Wang X, Narayanan MV, Stavrovskaya IG, Kristal BS, et al. Nortriptyline protects mitochondria and reduces cerebral ischemia/hypoxia injury. Stroke. 2008;39(2):455–62.PubMedPubMedCentral Zhang W-h, Wang H, Wang X, Narayanan MV, Stavrovskaya IG, Kristal BS, et al. Nortriptyline protects mitochondria and reduces cerebral ischemia/hypoxia injury. Stroke. 2008;39(2):455–62.PubMedPubMedCentral
180.
Zurück zum Zitat Zhang Y, Wang X, Baranov SV, Zhu S, Huang Z, Fellows-Mayle W, et al. Dipyrone inhibits neuronal cell death and diminishes hypoxic/ischemic brain injury. Neurosurgery. 2011;69(4):942–56.PubMed Zhang Y, Wang X, Baranov SV, Zhu S, Huang Z, Fellows-Mayle W, et al. Dipyrone inhibits neuronal cell death and diminishes hypoxic/ischemic brain injury. Neurosurgery. 2011;69(4):942–56.PubMed
181.
Zurück zum Zitat Yu Z, Luo H, Fu W, Mattson MP. The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol. 1999;155(2):302–14.PubMed Yu Z, Luo H, Fu W, Mattson MP. The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol. 1999;155(2):302–14.PubMed
182.
Zurück zum Zitat Kang S-J, Wang S, Hara H, Peterson EP, Namura S, Amin-Hanjani S, et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol. 2000;149(3):613–22.PubMedPubMedCentral Kang S-J, Wang S, Hara H, Peterson EP, Namura S, Amin-Hanjani S, et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol. 2000;149(3):613–22.PubMedPubMedCentral
183.
Zurück zum Zitat Zhang X, Yuan Y, Jiang L, Zhang J, Gao J, Shen Z, et al. Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: involvement of PARK2-dependent mitophagy. Autophagy. 2014;10(10):1801–13.PubMedPubMedCentral Zhang X, Yuan Y, Jiang L, Zhang J, Gao J, Shen Z, et al. Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: involvement of PARK2-dependent mitophagy. Autophagy. 2014;10(10):1801–13.PubMedPubMedCentral
184.
Zurück zum Zitat Zheng Y-q, Liu J-x, Li X-z, Xu L, Xu Y-g. RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats. Acta Pharmacol Sin. 2009;30(7):919.PubMedPubMedCentral Zheng Y-q, Liu J-x, Li X-z, Xu L, Xu Y-g. RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats. Acta Pharmacol Sin. 2009;30(7):919.PubMedPubMedCentral
185.
Zurück zum Zitat Zivin JA. Acute stroke therapy with tissue plasminogen activator (tPA) since it was approved by the US Food and Drug Administration (FDA). Ann Neurol. 2009;66(1):6–10.PubMed Zivin JA. Acute stroke therapy with tissue plasminogen activator (tPA) since it was approved by the US Food and Drug Administration (FDA). Ann Neurol. 2009;66(1):6–10.PubMed
186.
Zurück zum Zitat Meurer WJ, Barth BE, Gaddis G, Vilke GM, Lam SH. Rapid systematic review: intra-arterial thrombectomy (“clot retrieval”) for selected patients with acute ischemic stroke. J Emerg Med. 2017;52(2):255–61.PubMed Meurer WJ, Barth BE, Gaddis G, Vilke GM, Lam SH. Rapid systematic review: intra-arterial thrombectomy (“clot retrieval”) for selected patients with acute ischemic stroke. J Emerg Med. 2017;52(2):255–61.PubMed
187.
Zurück zum Zitat Fonarow GC, Smith EE, Saver JL, Reeves MJ, Bhatt DL, Grau-Sepulveda MV et al. Timeliness of tissue-type plasminogen activator therapy in acute ischemic stroke: patient characteristics, hospital factors, and outcomes associated with door-to-needle times within 60 minutes. Circulation. 2011;123(7):750–758. Fonarow GC, Smith EE, Saver JL, Reeves MJ, Bhatt DL, Grau-Sepulveda MV et al. Timeliness of tissue-type plasminogen activator therapy in acute ischemic stroke: patient characteristics, hospital factors, and outcomes associated with door-to-needle times within 60 minutes. Circulation. 2011;123(7):750–758.
188.
Zurück zum Zitat Tomkins AJ, Schleicher N, Murtha L, Kaps M, Levi CR, Nedelmann M, et al. Platelet rich clots are resistant to lysis by thrombolytic therapy in a rat model of embolic stroke. Exp Transl Stroke Med. 2015;7(1):2.PubMedPubMedCentral Tomkins AJ, Schleicher N, Murtha L, Kaps M, Levi CR, Nedelmann M, et al. Platelet rich clots are resistant to lysis by thrombolytic therapy in a rat model of embolic stroke. Exp Transl Stroke Med. 2015;7(1):2.PubMedPubMedCentral
189.
Zurück zum Zitat Yoo AJ, Andersson T. Thrombectomy in acute ischemic stroke: challenges to procedural success. J Stroke. 2017;19(2):121.PubMedPubMedCentral Yoo AJ, Andersson T. Thrombectomy in acute ischemic stroke: challenges to procedural success. J Stroke. 2017;19(2):121.PubMedPubMedCentral
190.
Zurück zum Zitat Sarmah D, Agrawal V, Rane P, Bhute S, Watanabe M, Kalia K, et al. Mesenchymal stem cell therapy in ischemic stroke: a meta-analysis of preclinical studies. Clin Pharmacol Ther. 2018;103(6):990–8.PubMed Sarmah D, Agrawal V, Rane P, Bhute S, Watanabe M, Kalia K, et al. Mesenchymal stem cell therapy in ischemic stroke: a meta-analysis of preclinical studies. Clin Pharmacol Ther. 2018;103(6):990–8.PubMed
191.
Zurück zum Zitat van Velthoven CT, Van De Looij Y, Kavelaars A, Zijlstra J, van Bel F, Huppi PS, et al. Mesenchymal stem cells restore cortical rewiring after neonatal ischemia in mice. Ann Neurol. 2012;71(6):785–96.PubMed van Velthoven CT, Van De Looij Y, Kavelaars A, Zijlstra J, van Bel F, Huppi PS, et al. Mesenchymal stem cells restore cortical rewiring after neonatal ischemia in mice. Ann Neurol. 2012;71(6):785–96.PubMed
192.
Zurück zum Zitat Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Molr Brain. 2015;8(1):65. Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Molr Brain. 2015;8(1):65.
194.
Zurück zum Zitat Tang YH, Ma YY, Zhang ZJ, Wang YT, Yang GY. Opportunities and challenges: stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci Ther. 2015;21(4):337–47.PubMedPubMedCentral Tang YH, Ma YY, Zhang ZJ, Wang YT, Yang GY. Opportunities and challenges: stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci Ther. 2015;21(4):337–47.PubMedPubMedCentral
195.
Zurück zum Zitat Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis J. IV infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience. 2005;136(1):161–9.PubMed Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis J. IV infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience. 2005;136(1):161–9.PubMed
196.
Zurück zum Zitat Toyama K, Honmou O, Harada K, Suzuki J, Houkin K, Hamada H, et al. Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol. 2009;216(1):47–55.PubMed Toyama K, Honmou O, Harada K, Suzuki J, Houkin K, Hamada H, et al. Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol. 2009;216(1):47–55.PubMed
197.
Zurück zum Zitat Hanabusa K, Nagaya N, Iwase T, Itoh T, Murakami S, Shimizu Y, et al. Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats. Stroke. 2005;36(4):853–8.PubMed Hanabusa K, Nagaya N, Iwase T, Itoh T, Murakami S, Shimizu Y, et al. Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats. Stroke. 2005;36(4):853–8.PubMed
198.
Zurück zum Zitat Pang A-L, Xiong L-L, Xia Q-J, Liu F, Wang Y-C, Liu F, et al. Neural stem cell transplantation is associated with inhibition of apoptosis, Bcl-xL upregulation, and recovery of neurological function in a rat model of traumatic brain injury. Cell Transplant. 2017;26(7):1262–75.PubMedPubMedCentral Pang A-L, Xiong L-L, Xia Q-J, Liu F, Wang Y-C, Liu F, et al. Neural stem cell transplantation is associated with inhibition of apoptosis, Bcl-xL upregulation, and recovery of neurological function in a rat model of traumatic brain injury. Cell Transplant. 2017;26(7):1262–75.PubMedPubMedCentral
199.
Zurück zum Zitat Li C, Jiao G, Wu W, Wang H, Ren S, Zhang L, et al. Exosomes from bone marrow mesenchymal stem cells inhibit neuronal apoptosis and promote motor function recovery via the Wnt/β-catenin signaling pathway. Cell Transplant. 2019;28(11):1373–83.PubMedPubMedCentral Li C, Jiao G, Wu W, Wang H, Ren S, Zhang L, et al. Exosomes from bone marrow mesenchymal stem cells inhibit neuronal apoptosis and promote motor function recovery via the Wnt/β-catenin signaling pathway. Cell Transplant. 2019;28(11):1373–83.PubMedPubMedCentral
200.
Zurück zum Zitat Ji Y, Ma Y, Chen X, Ji X, Gao J, Zhang L, et al. Microvesicles released from human embryonic stem cell derived-mesenchymal stem cells inhibit proliferation of leukemia cells. Oncol Rep. 2017;38(2):1013–20.PubMed Ji Y, Ma Y, Chen X, Ji X, Gao J, Zhang L, et al. Microvesicles released from human embryonic stem cell derived-mesenchymal stem cells inhibit proliferation of leukemia cells. Oncol Rep. 2017;38(2):1013–20.PubMed
Metadaten
Titel
Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy
verfasst von
Aishika Datta
Deepaneeta Sarmah
Leela Mounica
Harpreet Kaur
Radhika Kesharwani
Geetesh Verma
Pabbala Veeresh
Vignesh Kotian
Kiran Kalia
Anupom Borah
Xin Wang
Kunjan R. Dave
Dileep R. Yavagal
Pallab Bhattacharya
Publikationsdatum
26.03.2020
Verlag
Springer US
Erschienen in
Translational Stroke Research / Ausgabe 6/2020
Print ISSN: 1868-4483
Elektronische ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-020-00806-z

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

CGRP-Antikörper auch bei älteren Migränekranken sicher

Beginnen ältere Migränekranke eine Prophylaxe mit CGRP-Antikörpern, kommt es anschließend nicht häufiger zu kardiovaskulären Problemen als unter einer Prophylaxe mit Botulinumtoxin. Darauf deutet eine US-Analyse von Medicare-Versicherten.

Frühwarnzeichen für multiple Sklerose bei Kindern und Jugendlichen

Ein Forschungsteam aus Deutschland und Kanada hat eine Reihe metabolischer, okulärer, muskuloskelettaler, gastrointestinaler und kardiovaskulärer Symptome identifiziert, die bei Kindern und Jugendlichen der Diagnose einer multiplen Sklerose (MS) vorausgehen können.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.