Skip to main content
Erschienen in: Heart and Vessels 1/2011

01.01.2011 | Original Article

Cell membrane stretch activates intermediate-conductance Ca2+-activated K+ channels in arterial smooth muscle cells

verfasst von: Yasunobu Hayabuchi, Yutaka Nakaya, Kazuaki Mawatari, Miki Inoue, Miho Sakata, Shoji Kagami

Erschienen in: Heart and Vessels | Ausgabe 1/2011

Einloggen, um Zugang zu erhalten

Abstract

The aim of this study is to determine the signal transduction of membrane stretch on intermediate-conductance Ca2+-activated K+ (IKca) channels in rat aorta smooth muscle cells using the patch-clamp technique. To stretch the cell membrane, both suction to the rear end of patch pipette and hypotonic shock were used. In cell-attached and inside-out patch configurations, the open probability of IKca channels increased when 20- to 45-mmHg suction was applied. Hyposmotic swelling efficiently increased IKca channel current. When the Ca2+-free solution was superfused, the activation of IKca current by the hyposmotic swelling was reduced. Furthermore, gadolinium (Gd3+) attenuated the activation of IKca channels induced by hyposmotic swelling, whereas nicardipine did not. In the experiments with Ca2+-free bath solution, pretreatment with GF109203X, a protein kinase C (PKC) inhibitor, completely abolished the stretch-induced activation of IKca currents. The stretch-induced activation of IKca channels was strongly inhibited by cytochalasin D, indicating a role for the F-actin in modulation of IKca channels by changes in cell stretching. These data suggest that cell membrane stretch activates IKca channels. In addition, the activation is associated with extracellular Ca2+ influx through stretch-activated nonselective cation channels, and is also modulated by the F-actin cytoskeleton and the activation of PKC.
Literatur
1.
Zurück zum Zitat Williams B (1998) Mechanical influences on vascular smooth muscle cell function. J Hypertens 16:1921–1926CrossRefPubMed Williams B (1998) Mechanical influences on vascular smooth muscle cell function. J Hypertens 16:1921–1926CrossRefPubMed
2.
Zurück zum Zitat Ninomiya Y, Hamasaki S, Saihara K, Ishida S, Kataoka T, Ogawa M, Orihara K, Oketani N, Fukudome T, Okui H, Ichiki T, Shinsato T, Kubozono T, Mizoguchi E, Ichiki H, Tei C (2008) Comparison of effect between nitrates and calcium channel antagonist on vascular function in patients with normal or mildly diseased coronary arteries. Heart Vessels 23:83–90CrossRefPubMed Ninomiya Y, Hamasaki S, Saihara K, Ishida S, Kataoka T, Ogawa M, Orihara K, Oketani N, Fukudome T, Okui H, Ichiki T, Shinsato T, Kubozono T, Mizoguchi E, Ichiki H, Tei C (2008) Comparison of effect between nitrates and calcium channel antagonist on vascular function in patients with normal or mildly diseased coronary arteries. Heart Vessels 23:83–90CrossRefPubMed
3.
Zurück zum Zitat Fernandes-Santos C, de Souza Mendonça L, Mandarim-de-Lacerda CA (2009) Favorable cardiac and aortic remodeling in olmesartan-treated spontaneously hypertensive rats. Heart Vessels 24:219–227CrossRefPubMed Fernandes-Santos C, de Souza Mendonça L, Mandarim-de-Lacerda CA (2009) Favorable cardiac and aortic remodeling in olmesartan-treated spontaneously hypertensive rats. Heart Vessels 24:219–227CrossRefPubMed
4.
Zurück zum Zitat Biselli PM, Guerzoni AR, de Godoy MF, Pavarino-Bertelli EC, Goloni-Bertollo EM (2008) Vascular endothelial growth factor genetic variability and coronary artery disease in Brazilian population. Heart Vessels 23:371–375CrossRefPubMed Biselli PM, Guerzoni AR, de Godoy MF, Pavarino-Bertelli EC, Goloni-Bertollo EM (2008) Vascular endothelial growth factor genetic variability and coronary artery disease in Brazilian population. Heart Vessels 23:371–375CrossRefPubMed
5.
Zurück zum Zitat Meluzín J, Vasků A, Kincl V, Panovský R, Srámková T (2009) Association of coronary artery disease, erectile dysfunction, and endothelial nitric oxide synthase polymorphisms. Heart Vessels 24:157–163CrossRefPubMed Meluzín J, Vasků A, Kincl V, Panovský R, Srámková T (2009) Association of coronary artery disease, erectile dysfunction, and endothelial nitric oxide synthase polymorphisms. Heart Vessels 24:157–163CrossRefPubMed
6.
Zurück zum Zitat Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79:387–423PubMed Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79:387–423PubMed
7.
Zurück zum Zitat Wu X, Davis MJ (2001) Characterization of stretch-activated cation current in coronary smooth muscle cells. Am J Physiol Heart Circ Physiol 280:H1751–H1761PubMed Wu X, Davis MJ (2001) Characterization of stretch-activated cation current in coronary smooth muscle cells. Am J Physiol Heart Circ Physiol 280:H1751–H1761PubMed
8.
Zurück zum Zitat Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268:C799–C822PubMed Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268:C799–C822PubMed
9.
Zurück zum Zitat Latorre R, Oberhauser A, Labarca P, Alvarez O (1989) Varieties of calcium-activated potassium channels. Annu Rev Physiol 51:385–399CrossRefPubMed Latorre R, Oberhauser A, Labarca P, Alvarez O (1989) Varieties of calcium-activated potassium channels. Annu Rev Physiol 51:385–399CrossRefPubMed
10.
Zurück zum Zitat Schwab A (2001) Function and spatial distribution of ion channels and transporters in cell migration. Am J Physiol 28:F739–F747 Schwab A (2001) Function and spatial distribution of ion channels and transporters in cell migration. Am J Physiol 28:F739–F747
11.
Zurück zum Zitat Fioretti B, Pietrangelo T, Catacuzzeno L, Franciolini F (2005) Intermediate-conductance Ca2+-activated K+ channel is expressed in C2C12 myoblasts and is downregulated during myogenesis. Am J Physiol 289:C89–C96CrossRef Fioretti B, Pietrangelo T, Catacuzzeno L, Franciolini F (2005) Intermediate-conductance Ca2+-activated K+ channel is expressed in C2C12 myoblasts and is downregulated during myogenesis. Am J Physiol 289:C89–C96CrossRef
12.
Zurück zum Zitat Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch A, Joury N, Prevarskaya N (2004) Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: association with cell cycle progression. Am J Physiol 287:C125–C134CrossRef Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch A, Joury N, Prevarskaya N (2004) Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: association with cell cycle progression. Am J Physiol 287:C125–C134CrossRef
13.
Zurück zum Zitat Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100CrossRefPubMed Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100CrossRefPubMed
14.
Zurück zum Zitat Hayabuchi Y, Nakaya Y, Yasui S, Mawatari K, Mori K, Suzuki M, Kagami S (2006) Angiotensin II activates intermediate-conductance Ca2+-activated K+ channels in arterial smooth muscle cells. J Mol Cell Cardiol 41:972–979CrossRefPubMed Hayabuchi Y, Nakaya Y, Yasui S, Mawatari K, Mori K, Suzuki M, Kagami S (2006) Angiotensin II activates intermediate-conductance Ca2+-activated K+ channels in arterial smooth muscle cells. J Mol Cell Cardiol 41:972–979CrossRefPubMed
15.
Zurück zum Zitat Neylon C, Lang R, Fu Y, Bobik A, Reinhart P (1999) Molecular cloning and characterization of the intermediate-conductance Ca2+-activated K+ channel in vascular smooth muscle: relationship between KCa channel diversity and smooth muscle cell function. Circ Res 85:e33–e43PubMed Neylon C, Lang R, Fu Y, Bobik A, Reinhart P (1999) Molecular cloning and characterization of the intermediate-conductance Ca2+-activated K+ channel in vascular smooth muscle: relationship between KCa channel diversity and smooth muscle cell function. Circ Res 85:e33–e43PubMed
16.
Zurück zum Zitat Setoguchi M, Ohya Y, Abe I, Fujishima M (1997) Stretch-activated whole-cell currents in smooth muscle cells from mesenteric resistance artery of guinea-pig. J Physiol 501:343–353CrossRefPubMed Setoguchi M, Ohya Y, Abe I, Fujishima M (1997) Stretch-activated whole-cell currents in smooth muscle cells from mesenteric resistance artery of guinea-pig. J Physiol 501:343–353CrossRefPubMed
17.
Zurück zum Zitat Folkow B (1995) Integration of hypertension research in the era of molecular biology. J Hypertens 13:5–18CrossRefPubMed Folkow B (1995) Integration of hypertension research in the era of molecular biology. J Hypertens 13:5–18CrossRefPubMed
18.
Zurück zum Zitat Kosako H, Gotoh Y, Matsuda S, Ishikawa M, Nishida E (1992) Xenopus MAP kinase activator is a serine/threonine/tyrosine kinase activated by threonine phosphorylation. EMBO J 11:2903–2908PubMed Kosako H, Gotoh Y, Matsuda S, Ishikawa M, Nishida E (1992) Xenopus MAP kinase activator is a serine/threonine/tyrosine kinase activated by threonine phosphorylation. EMBO J 11:2903–2908PubMed
19.
Zurück zum Zitat Alvarez E, Northwood IC, Gonzalez FA, Latour DA, Seth A, Abate C, Curran T, Davis RJ (1991) Pro-Leu-Ser/Thr-Pro us consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase. J Biol Chem 266:15277–15285PubMed Alvarez E, Northwood IC, Gonzalez FA, Latour DA, Seth A, Abate C, Curran T, Davis RJ (1991) Pro-Leu-Ser/Thr-Pro us consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase. J Biol Chem 266:15277–15285PubMed
20.
Zurück zum Zitat Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodqett JR (1991) Phosphorylation of c-jun mediated by MAP kinases. Nature 353:670–674CrossRefPubMed Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodqett JR (1991) Phosphorylation of c-jun mediated by MAP kinases. Nature 353:670–674CrossRefPubMed
21.
Zurück zum Zitat Sturgill TW, Ray LB, Erikson E, Maller JL (1988) Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334:715–718CrossRefPubMed Sturgill TW, Ray LB, Erikson E, Maller JL (1988) Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334:715–718CrossRefPubMed
22.
Zurück zum Zitat Kubo T, Hosokawa H, Kambe T, Fukumori R (2000) Angiotensin II mediates pressure loading-induced mitogen-activated protein kinase activation in isolated rat aorta. Eur Pharmacol 391:281–287CrossRef Kubo T, Hosokawa H, Kambe T, Fukumori R (2000) Angiotensin II mediates pressure loading-induced mitogen-activated protein kinase activation in isolated rat aorta. Eur Pharmacol 391:281–287CrossRef
23.
Zurück zum Zitat Hosokawa H, Aiuchi S, Kambe T, Hagiwara Y, Kubo T (2002) Mechanical stretch-induced mitogen-activated protein kinase activation is mediated via angiotensin and endothelin systems in vascular smooth muscle cells. Biol Pharm Bull 25:1588–1592CrossRefPubMed Hosokawa H, Aiuchi S, Kambe T, Hagiwara Y, Kubo T (2002) Mechanical stretch-induced mitogen-activated protein kinase activation is mediated via angiotensin and endothelin systems in vascular smooth muscle cells. Biol Pharm Bull 25:1588–1592CrossRefPubMed
24.
Zurück zum Zitat Lucchesi PA, Bell JM, Willis LS, Byron KL, Corson MA, Berk BC (1996) Ca(2+)-dependent mitogen-activated protein kinase activation in spontaneously hypertensive rat vascular smooth muscle defines a hypertensive signal transduction phenotype. Circ Res 78:962–970PubMed Lucchesi PA, Bell JM, Willis LS, Byron KL, Corson MA, Berk BC (1996) Ca(2+)-dependent mitogen-activated protein kinase activation in spontaneously hypertensive rat vascular smooth muscle defines a hypertensive signal transduction phenotype. Circ Res 78:962–970PubMed
25.
Zurück zum Zitat Lepple-Wienhues A, Berweck S, Böhmig M, Leo CP, Meyling B, Garbe C, Wiederholt M (1996) K+ channels and the intracellular calcium signal in human melanoma cell proliferation. J Membr Biol 151:149–157CrossRefPubMed Lepple-Wienhues A, Berweck S, Böhmig M, Leo CP, Meyling B, Garbe C, Wiederholt M (1996) K+ channels and the intracellular calcium signal in human melanoma cell proliferation. J Membr Biol 151:149–157CrossRefPubMed
26.
Zurück zum Zitat Verheugen JA, Le Deist F, Devignot V, Korn H (1997) Enhancement of calcium signaling and proliferation responses in activated human T lymphocytes. Inhibitory effects of K+ channel block by charybdotoxin depend on the T cell activation state. Cell Calcium 21:1–17CrossRefPubMed Verheugen JA, Le Deist F, Devignot V, Korn H (1997) Enhancement of calcium signaling and proliferation responses in activated human T lymphocytes. Inhibitory effects of K+ channel block by charybdotoxin depend on the T cell activation state. Cell Calcium 21:1–17CrossRefPubMed
27.
Zurück zum Zitat Omae K, Ogawa T, Nitta K (2009) Influence of T-calcium channel blocker treatment on deterioration of renal function in chronic kidney disease. Heart Vessels 24:301–307CrossRefPubMed Omae K, Ogawa T, Nitta K (2009) Influence of T-calcium channel blocker treatment on deterioration of renal function in chronic kidney disease. Heart Vessels 24:301–307CrossRefPubMed
28.
Zurück zum Zitat Köhler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kämpfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski HD, Reusch HP, Paul M, Chandy KG, Hoyer J (2003) Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108:1119–1125CrossRefPubMed Köhler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kämpfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski HD, Reusch HP, Paul M, Chandy KG, Hoyer J (2003) Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108:1119–1125CrossRefPubMed
29.
Zurück zum Zitat Berdiev BK, Prat AG, Cantiello HF, Ausiello DA, Fuller CM, Jovov B, Benos DJ, Ismailov II (1996) Regulation of epithelial sodium channels by short actin filaments. J Biol Chem 271:17704–17710CrossRefPubMed Berdiev BK, Prat AG, Cantiello HF, Ausiello DA, Fuller CM, Jovov B, Benos DJ, Ismailov II (1996) Regulation of epithelial sodium channels by short actin filaments. J Biol Chem 271:17704–17710CrossRefPubMed
30.
Zurück zum Zitat Cantiello HF (1996) Role of the actin cytoskeleton in the regulation of the cystic fibrosis transmembrane conductance regulator. Exp Physiol 81:505–514PubMed Cantiello HF (1996) Role of the actin cytoskeleton in the regulation of the cystic fibrosis transmembrane conductance regulator. Exp Physiol 81:505–514PubMed
31.
Zurück zum Zitat Furukawa T, Yamane T, Terai T, Katayama Y, Hirakoka M (1996) Functional linkage of the cardiac ATP-sensitive K+ channel to the actin cytoskeleton. Pflügers Arch 431:504–512CrossRefPubMed Furukawa T, Yamane T, Terai T, Katayama Y, Hirakoka M (1996) Functional linkage of the cardiac ATP-sensitive K+ channel to the actin cytoskeleton. Pflügers Arch 431:504–512CrossRefPubMed
32.
Zurück zum Zitat Li C, Wernig F, Leitges M, Hu Y, Xu Q (2003) Mechanical stress-activated PKCdelta regulates smooth muscle cell migration. FASEB J 17:2106–2108CrossRefPubMed Li C, Wernig F, Leitges M, Hu Y, Xu Q (2003) Mechanical stress-activated PKCdelta regulates smooth muscle cell migration. FASEB J 17:2106–2108CrossRefPubMed
33.
Zurück zum Zitat Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740PubMed Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740PubMed
34.
Zurück zum Zitat Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599CrossRefPubMed Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599CrossRefPubMed
Metadaten
Titel
Cell membrane stretch activates intermediate-conductance Ca2+-activated K+ channels in arterial smooth muscle cells
verfasst von
Yasunobu Hayabuchi
Yutaka Nakaya
Kazuaki Mawatari
Miki Inoue
Miho Sakata
Shoji Kagami
Publikationsdatum
01.01.2011
Verlag
Springer Japan
Erschienen in
Heart and Vessels / Ausgabe 1/2011
Print ISSN: 0910-8327
Elektronische ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-010-0025-0

Weitere Artikel der Ausgabe 1/2011

Heart and Vessels 1/2011 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.