Skip to main content
Erschienen in: Odontology 4/2017

06.04.2017 | Original Article

Cell viability and hemocompatibility evaluation of a starch-based hydrogel loaded with hydroxyapatite or calcium carbonate for maxillofacial bone regeneration

verfasst von: Juan Carlos Flores-Arriaga, Amaury de Jesús Pozos-Guillén, Diana María Escobar-García, Christian Grandfils, Bernardino Isaac Cerda-Cristerna

Erschienen in: Odontology | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

The objective of this study is to evaluate the cell viability and hemocompatibility of starch-based hydrogels for maxillofacial bone regeneration. Seven starch-based hydrogels were prepared: three loaded with 0.5, 1 and 2% calcium carbonate (Sigma Aldrich, St. Louis, MO, USA); three loaded with 2, 3 and 4% hydroxyapatite (Sigma Aldrich); and one not loaded as a control. A 10 M NaOH was then added to induce hydrogel formation. Human osteoblasts were cultured on each hydrogel for 72 h. An MTS assay (Cell Titer96; PROMEGA, Madison, WI, USA) was used to assess cell viability. Hemocompatibility testing was conducted with normal human blood in the following conditions: 100 mg of each hydrogel in contact with 900 µL of whole blood for 15 min at 37 °C under lateral stirring. Higher percentages of cell viability were observed in starch-based hydrogels loaded with hydroxyapatite as compared with the control. The hemolysis test showed a hemolysis level lower than 2%. Activated partial thromboplastin time and prothrombin time were unchanged, while platelet counting showed a slight decrease when compared with controls.
Literatur
1.
Zurück zum Zitat Zhang D, George OJ, Petersen KM, Jimenez-Vergara AC, Hahn MS, Grunlan MA. A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-facial bone defects. Acta Biotamer. 2014;10:4597–605. Zhang D, George OJ, Petersen KM, Jimenez-Vergara AC, Hahn MS, Grunlan MA. A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-facial bone defects. Acta Biotamer. 2014;10:4597–605.
2.
Zurück zum Zitat Anderud J, Jimbo R, Abrahamsson P, Adolfsson E, Malmoström J, Wennerberg A. The impact of surfae roughness and permeability in hydroxyapatite bone regeneration membranes. Clin Oral Implants Res. 2016;27:1047–54.CrossRefPubMed Anderud J, Jimbo R, Abrahamsson P, Adolfsson E, Malmoström J, Wennerberg A. The impact of surfae roughness and permeability in hydroxyapatite bone regeneration membranes. Clin Oral Implants Res. 2016;27:1047–54.CrossRefPubMed
3.
Zurück zum Zitat Materials ASTM. Standard guide for characterization of hydrogels used in regenerative medicine. ASTM. 2011;F2900(11):1–10. Materials ASTM. Standard guide for characterization of hydrogels used in regenerative medicine. ASTM. 2011;F2900(11):1–10.
4.
Zurück zum Zitat Gomes ME, Godinho JS, Tchalamov D, Cunha AM, Reis RL. Alternative tissue engineering scaffolds based on starch-processing methodologies, morphology, degradation and mechanical properties. Mater Sci Eng C Mater Biol Appl. 2002;20:19–26.CrossRef Gomes ME, Godinho JS, Tchalamov D, Cunha AM, Reis RL. Alternative tissue engineering scaffolds based on starch-processing methodologies, morphology, degradation and mechanical properties. Mater Sci Eng C Mater Biol Appl. 2002;20:19–26.CrossRef
6.
Zurück zum Zitat Ismail H, Irani M, Ahmad Z. Starch-based hydrogels: present status and applications. Int J Polym Mater. 2013;62:411–20.CrossRef Ismail H, Irani M, Ahmad Z. Starch-based hydrogels: present status and applications. Int J Polym Mater. 2013;62:411–20.CrossRef
7.
Zurück zum Zitat Zhang LM. Perspectives on: strategies to fabricate starch-based hydrogels with potential biomedical applications. J Bioact Compat Polym. 2005;20:297–314.CrossRef Zhang LM. Perspectives on: strategies to fabricate starch-based hydrogels with potential biomedical applications. J Bioact Compat Polym. 2005;20:297–314.CrossRef
8.
Zurück zum Zitat Mendes SC, Reis RL, Bovell YP, Cunha AM, van Blitterswijk CA, de Bruijn JD. Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: a preliminary study. Biomaterials. 2001;22:2057–64.CrossRefPubMed Mendes SC, Reis RL, Bovell YP, Cunha AM, van Blitterswijk CA, de Bruijn JD. Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: a preliminary study. Biomaterials. 2001;22:2057–64.CrossRefPubMed
9.
Zurück zum Zitat Silva GA, Costa FJ, Coutinho OP, Radin S, Ducheyne P, Reis RL. Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles. J Biomed Mater Res A. 2004;70:442–9.CrossRefPubMed Silva GA, Costa FJ, Coutinho OP, Radin S, Ducheyne P, Reis RL. Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles. J Biomed Mater Res A. 2004;70:442–9.CrossRefPubMed
10.
Zurück zum Zitat Marques AP, Reis RL, Hunt JA. The biocompatibility of novel starch-based polymers and composites: in vitro studies. Biomaterials. 2002;23:1471–8.CrossRefPubMed Marques AP, Reis RL, Hunt JA. The biocompatibility of novel starch-based polymers and composites: in vitro studies. Biomaterials. 2002;23:1471–8.CrossRefPubMed
11.
Zurück zum Zitat Gomes ME, Reis RL, Cunha AM, Blitterswijk CA, deBrujin JD. Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing conditions. Biomaterials. 2000;22:1911–7.CrossRef Gomes ME, Reis RL, Cunha AM, Blitterswijk CA, deBrujin JD. Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing conditions. Biomaterials. 2000;22:1911–7.CrossRef
12.
Zurück zum Zitat Alexandre N, Ribeiro J, Gartner A, Pereira T, Amorim I, Fragoso J, et al. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting—in vitro and in vivo studies. J Biomed Mater Res A. 2014;102:4262–75.PubMed Alexandre N, Ribeiro J, Gartner A, Pereira T, Amorim I, Fragoso J, et al. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting—in vitro and in vivo studies. J Biomed Mater Res A. 2014;102:4262–75.PubMed
13.
Zurück zum Zitat Diaz-Rodriguez P, Gonzalez P, Serra J, Landin M. Key parameters in blood-surface interactions of 3D bioinspired ceramic materials. Mater Sci Eng C Mater Biol Appl. 2014;41:232–9.CrossRefPubMed Diaz-Rodriguez P, Gonzalez P, Serra J, Landin M. Key parameters in blood-surface interactions of 3D bioinspired ceramic materials. Mater Sci Eng C Mater Biol Appl. 2014;41:232–9.CrossRefPubMed
14.
Zurück zum Zitat Shafiei-Sarvestani Z, Oryan A, Bigham AS, Meimandi-Parizi A. The effect of hydroxyapatite-hPRP, and coral-hPRP on bone healing in rabbits: radiological, biomechanical, macroscopic and histopathologic evaluation. Int J Surg. 2012;10:96–10001.CrossRefPubMed Shafiei-Sarvestani Z, Oryan A, Bigham AS, Meimandi-Parizi A. The effect of hydroxyapatite-hPRP, and coral-hPRP on bone healing in rabbits: radiological, biomechanical, macroscopic and histopathologic evaluation. Int J Surg. 2012;10:96–10001.CrossRefPubMed
15.
Zurück zum Zitat Alviar CL, Tellez A, Wang M, Potts P, Smith D, Tsui M, et al. Low-dose sirolimus-eluting hydroxyapatite coating on stents does not increase platelet activation and adhesion ex vivo. J Thromb Thrombolysis. 2012;34:91–8.CrossRefPubMed Alviar CL, Tellez A, Wang M, Potts P, Smith D, Tsui M, et al. Low-dose sirolimus-eluting hydroxyapatite coating on stents does not increase platelet activation and adhesion ex vivo. J Thromb Thrombolysis. 2012;34:91–8.CrossRefPubMed
16.
Zurück zum Zitat Xia Y, Gu Y, Zhou X, Xu H, Zhao X, Yaseen M, et al. Controllable stabilization of poly(N-isopropylacrylamide)-based microgel films through biomimetic mineralization of calcium carbonate. Biomacromolecules. 2012;13:2299–308.CrossRefPubMed Xia Y, Gu Y, Zhou X, Xu H, Zhao X, Yaseen M, et al. Controllable stabilization of poly(N-isopropylacrylamide)-based microgel films through biomimetic mineralization of calcium carbonate. Biomacromolecules. 2012;13:2299–308.CrossRefPubMed
17.
Zurück zum Zitat Wu YC, Lee TM, Chiu KH, Shaw SY, Yang CY. A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone-tissue engineering scaffolds. J Mater Sci Mater Med. 2009;20:1273–80.CrossRefPubMed Wu YC, Lee TM, Chiu KH, Shaw SY, Yang CY. A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone-tissue engineering scaffolds. J Mater Sci Mater Med. 2009;20:1273–80.CrossRefPubMed
18.
Zurück zum Zitat Park JW, Bae SR, Suh JY, Lee DH, Kim SH, Kim H, et al. Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria: a pilot study. J Biomed Mater Res A. 2008;87:203–14.CrossRefPubMed Park JW, Bae SR, Suh JY, Lee DH, Kim SH, Kim H, et al. Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria: a pilot study. J Biomed Mater Res A. 2008;87:203–14.CrossRefPubMed
19.
Zurück zum Zitat Garza E, Wadajkar A, Ahn Ch, Zu Q, Opperman L, Bellinger L, Nguyen K, Komabayashi T. Cytotoxicity evaluation of methacrylate-based resins for clinical endodontics in vitro. J Oral Sci. 2012;54:213–7.CrossRefPubMedPubMedCentral Garza E, Wadajkar A, Ahn Ch, Zu Q, Opperman L, Bellinger L, Nguyen K, Komabayashi T. Cytotoxicity evaluation of methacrylate-based resins for clinical endodontics in vitro. J Oral Sci. 2012;54:213–7.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Cerda-Cristerna BI, Flores H, Pozos-Guillen A, Perez E, Sevrin C, Grandfils C. Hemocompatibility assessment of poly(2-dimethylamino ethylmethacrylate) (PDMAEMA)-based polymers. J Control Release. 2011;153:269–77.CrossRefPubMed Cerda-Cristerna BI, Flores H, Pozos-Guillen A, Perez E, Sevrin C, Grandfils C. Hemocompatibility assessment of poly(2-dimethylamino ethylmethacrylate) (PDMAEMA)-based polymers. J Control Release. 2011;153:269–77.CrossRefPubMed
21.
Zurück zum Zitat Gentile P, Chiono V, Boccafoschi F, Baino F, Vitale-Brovarone C, Vernè E, Barbani N, Ciardelli G. Composite films of gelatin and hydroxyapatite-bioactive glass for tissue-engineering applications. J Biomater Sci. 2010;21:1207–26.CrossRef Gentile P, Chiono V, Boccafoschi F, Baino F, Vitale-Brovarone C, Vernè E, Barbani N, Ciardelli G. Composite films of gelatin and hydroxyapatite-bioactive glass for tissue-engineering applications. J Biomater Sci. 2010;21:1207–26.CrossRef
22.
Zurück zum Zitat Salgado AJ, Gomes ME, Chou A, Coutinho OP, Reis RL, Hutmacher DW. Preliminary study on the adhesion and proliferation of human osteoblasts on starch-based scaffolds. Mater Sci Eng C Mater Biol Appl. 2002;20:27–33.CrossRef Salgado AJ, Gomes ME, Chou A, Coutinho OP, Reis RL, Hutmacher DW. Preliminary study on the adhesion and proliferation of human osteoblasts on starch-based scaffolds. Mater Sci Eng C Mater Biol Appl. 2002;20:27–33.CrossRef
23.
Zurück zum Zitat Comín R, Musso LA, Cid MP, Oldani CR, Salvatierra NA. Citotoxicity of hydroxyapatite and morphology in composites with Ti. IEEE Lat Am T. 2013;11:97–100.CrossRef Comín R, Musso LA, Cid MP, Oldani CR, Salvatierra NA. Citotoxicity of hydroxyapatite and morphology in composites with Ti. IEEE Lat Am T. 2013;11:97–100.CrossRef
24.
Zurück zum Zitat Shakir M, Jolly R, Khan MS, Iram NE, Khan HM. Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: synthesis and in vitro studies. Int J Biol Macromol. 2015;80:282–92.CrossRefPubMed Shakir M, Jolly R, Khan MS, Iram NE, Khan HM. Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: synthesis and in vitro studies. Int J Biol Macromol. 2015;80:282–92.CrossRefPubMed
25.
Zurück zum Zitat Sorrentino S, Studt JD, Medalia O, Tanuj Sapra K. Roll, adhere, spread and contract: structural mechanics of platelet function. Eur J Cell Biol. 2015;94:129–38.CrossRefPubMed Sorrentino S, Studt JD, Medalia O, Tanuj Sapra K. Roll, adhere, spread and contract: structural mechanics of platelet function. Eur J Cell Biol. 2015;94:129–38.CrossRefPubMed
26.
Zurück zum Zitat Klein MO, Kammerer PW, Scholz T, Moergel M, Kirchmaier CM, Al-Nawas B. Modulation of platelet activation and initial cytokine release by alloplastic bone substitute materials. Clin Oral Implants Res. 2010;21:336–45.CrossRefPubMed Klein MO, Kammerer PW, Scholz T, Moergel M, Kirchmaier CM, Al-Nawas B. Modulation of platelet activation and initial cytokine release by alloplastic bone substitute materials. Clin Oral Implants Res. 2010;21:336–45.CrossRefPubMed
27.
Zurück zum Zitat Alexandre N, Costa E, Coimbra S, Silva A, Lopes A, Rodrigues M, et al. In vitro and in vivo evaluation of blood coagulation activation of polyvinyl alcohol hydrogel plus dextran-based vascular grafts. J Biomed Mater Res A. 2015;103:1366–79.CrossRefPubMed Alexandre N, Costa E, Coimbra S, Silva A, Lopes A, Rodrigues M, et al. In vitro and in vivo evaluation of blood coagulation activation of polyvinyl alcohol hydrogel plus dextran-based vascular grafts. J Biomed Mater Res A. 2015;103:1366–79.CrossRefPubMed
28.
Zurück zum Zitat Narayanan D, Nair S, Menon D. A systematic evaluation of hydroxyethyl starch as a potential nanocarrier for parenteral drug delivery. Int J Biol Macromol. 2015;74:575–84.CrossRefPubMed Narayanan D, Nair S, Menon D. A systematic evaluation of hydroxyethyl starch as a potential nanocarrier for parenteral drug delivery. Int J Biol Macromol. 2015;74:575–84.CrossRefPubMed
29.
Zurück zum Zitat Muthusubramaniam L, Lowe R, Fissell WH, Li L, Marchant RE, Desai TA, et al. Hemocompatibility of silicon-based substrates for biomedical implant applications. Ann Biomed Eng. 2011;39:1296–305.CrossRefPubMedPubMedCentral Muthusubramaniam L, Lowe R, Fissell WH, Li L, Marchant RE, Desai TA, et al. Hemocompatibility of silicon-based substrates for biomedical implant applications. Ann Biomed Eng. 2011;39:1296–305.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Arimura S, Kawahara K, Biswas KK, Abeyama K, Tabata M, Shimoda T, et al. Hydroxyapatite formed on/in agarose gel induces activation of blood coagulation and platelets aggregation. J Biomed Mater Res B Appl Biomater. 2007;81:456–61.CrossRefPubMed Arimura S, Kawahara K, Biswas KK, Abeyama K, Tabata M, Shimoda T, et al. Hydroxyapatite formed on/in agarose gel induces activation of blood coagulation and platelets aggregation. J Biomed Mater Res B Appl Biomater. 2007;81:456–61.CrossRefPubMed
31.
Zurück zum Zitat Saikia JP, Banerjee S, Konwar BK, Kumar A. Biocompatible novel starch/polyaniline composites: characterization, anti-cytotoxicity and antioxidant activity. Colloids Surf B Biointerfaces. 2010;81:158–64.CrossRefPubMed Saikia JP, Banerjee S, Konwar BK, Kumar A. Biocompatible novel starch/polyaniline composites: characterization, anti-cytotoxicity and antioxidant activity. Colloids Surf B Biointerfaces. 2010;81:158–64.CrossRefPubMed
32.
Zurück zum Zitat Fu K, Xu Q, Czernuska J, Triffitt JT. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate compostie and its clinical implementation. Biomed Mater. 2013;8(6):065007.CrossRefPubMed Fu K, Xu Q, Czernuska J, Triffitt JT. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate compostie and its clinical implementation. Biomed Mater. 2013;8(6):065007.CrossRefPubMed
Metadaten
Titel
Cell viability and hemocompatibility evaluation of a starch-based hydrogel loaded with hydroxyapatite or calcium carbonate for maxillofacial bone regeneration
verfasst von
Juan Carlos Flores-Arriaga
Amaury de Jesús Pozos-Guillén
Diana María Escobar-García
Christian Grandfils
Bernardino Isaac Cerda-Cristerna
Publikationsdatum
06.04.2017
Verlag
Springer Japan
Erschienen in
Odontology / Ausgabe 4/2017
Print ISSN: 1618-1247
Elektronische ISSN: 1618-1255
DOI
https://doi.org/10.1007/s10266-017-0301-x

Weitere Artikel der Ausgabe 4/2017

Odontology 4/2017 Zur Ausgabe

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.