Skip to main content
Erschienen in: German Journal of Exercise and Sport Research 1/2018

04.09.2017 | Reviews

Cellular activation of selected signaling proteins through resistance training—a training methodological perspective

verfasst von: Nico Nitzsche, Tilo Neuendorf, Sebastian Gehlert, Michael Fröhlich, Henry Schulz

Erschienen in: German Journal of Exercise and Sport Research | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

The Akt-mTOR-p70S6k-4E-BP1 signaling pathway is a well-considered regulator of protein synthesis in the context of strength training. This process is essential for exercise-induced skeletal muscle growth. The objective of this review article was to analyze the design of acute resistance training protocols and evaluate the possible impact of different loading conditions on the activation of growth-related signaling cascades in human skeletal muscle. In all, 12 human studies were included in this review. The training intensity in the studies varied between 30% 1RM (one repetition maximum) and maximal load. The signaling proteins were measured in a time range between immediately and 24 h after training.
The phosphorylation of all signaling proteins increased to different levels after resistance training, tending to baseline more than 6 h post training. In particular, the hypertrophic associated p70S6k showed the highest phosphorylation acutely after the load and decreased consistently after 6 h. Training intensity and volume seemed to have an influence on the extent of protein phosphorylation, which, however, was not systematic or consistent. An obvious training methodological consequence (load and volume) for hypertrophic resistance training regime could not be devised. Further research is required to systematically vary training parameters to determine the influence of a certain stress zone on the signaling activation. Future research should aim to identify the ideal level of training intensity necessary to achieve the greatest possible extent of intramuscular anabolic signaling through intense activation of the signaling cascade to induce growth in human skeletal muscle.
Literatur
Zurück zum Zitat Atherton, P. J., Babraj, J., Smith, K., Singh, J., Rennie, M. J., & Wackerhage, H. (2005). Selective activation of AMPK-PGC-1α or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. The FASEB journal, 19(7), 786–788.CrossRefPubMed Atherton, P. J., Babraj, J., Smith, K., Singh, J., Rennie, M. J., & Wackerhage, H. (2005). Selective activation of AMPK-PGC-1α or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. The FASEB journal, 19(7), 786–788.CrossRefPubMed
Zurück zum Zitat Baar, K. (2006). Training for endurance and strength: lessons from cell signaling. Medicine and science in sports and exercise, 38(11), 1939.CrossRefPubMed Baar, K. (2006). Training for endurance and strength: lessons from cell signaling. Medicine and science in sports and exercise, 38(11), 1939.CrossRefPubMed
Zurück zum Zitat Baar, K., & Esser, K. (1999). Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise. American Journal of Physiology-Cell Physiology, 276(1), C120–C127.CrossRef Baar, K., & Esser, K. (1999). Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise. American Journal of Physiology-Cell Physiology, 276(1), C120–C127.CrossRef
Zurück zum Zitat Bangsbo, J., Johansen, L., Graham, T., & Saltin, B. (1993). Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise. The Journal of Physiology, 462(1), 115–133.CrossRefPubMedPubMedCentral Bangsbo, J., Johansen, L., Graham, T., & Saltin, B. (1993). Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise. The Journal of Physiology, 462(1), 115–133.CrossRefPubMedPubMedCentral
Zurück zum Zitat Bodine, S. C. (2006). mTOR signaling and the molecular adaptation to resistance exercise. Medicine and science in sports and exercise, 38(11), 1950–1957.CrossRefPubMed Bodine, S. C. (2006). mTOR signaling and the molecular adaptation to resistance exercise. Medicine and science in sports and exercise, 38(11), 1950–1957.CrossRefPubMed
Zurück zum Zitat Bodine, S. C., Stitt, T. N., Gonzalez, M., Kline, W. O., Stover, G. L., Bauerlein, R., Zlotchenko, E., et al. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature cell biology, 3(11), 1014–1019.CrossRefPubMed Bodine, S. C., Stitt, T. N., Gonzalez, M., Kline, W. O., Stover, G. L., Bauerlein, R., Zlotchenko, E., et al. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature cell biology, 3(11), 1014–1019.CrossRefPubMed
Zurück zum Zitat Bolster, D. R., Kubica, N., Crozier, S. J., Williamson, D. L., Farrell, P. A., Kimball, S. R., & Jefferson, L. S. (2003). Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle. The Journal of physiology, 553(1), 213–220.CrossRefPubMedPubMedCentral Bolster, D. R., Kubica, N., Crozier, S. J., Williamson, D. L., Farrell, P. A., Kimball, S. R., & Jefferson, L. S. (2003). Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle. The Journal of physiology, 553(1), 213–220.CrossRefPubMedPubMedCentral
Zurück zum Zitat Burd, N. A., West, D. W., Staples, A. W., Atherton, P. J., Baker, J. M., Moore, D. R., Holwerda, A. M., et al. (2010). Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PloS one, 5(8), e12033.CrossRefPubMedPubMedCentral Burd, N. A., West, D. W., Staples, A. W., Atherton, P. J., Baker, J. M., Moore, D. R., Holwerda, A. M., et al. (2010). Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PloS one, 5(8), e12033.CrossRefPubMedPubMedCentral
Zurück zum Zitat Burd, N. A., Andrews, R. J., West, D. W., Little, J. P., Cochran, A. J., Hector, A. J., Cashaback, J. G., et al. (2012). Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. The Journal of physiology, 590(2), 351–362.CrossRefPubMed Burd, N. A., Andrews, R. J., West, D. W., Little, J. P., Cochran, A. J., Hector, A. J., Cashaback, J. G., et al. (2012). Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. The Journal of physiology, 590(2), 351–362.CrossRefPubMed
Zurück zum Zitat Caron, E., Ghosh, S., Matsuoka, Y., Ashton-Beaucage, D., Therrien, M., Lemieux, S., Perreault, C., et al. (2010). A comprehensive map of the mTOR signaling network. Molecular systems biology, 6(1), 453.PubMedPubMedCentral Caron, E., Ghosh, S., Matsuoka, Y., Ashton-Beaucage, D., Therrien, M., Lemieux, S., Perreault, C., et al. (2010). A comprehensive map of the mTOR signaling network. Molecular systems biology, 6(1), 453.PubMedPubMedCentral
Zurück zum Zitat Cermak, N. M., Snijders, T., McKay, B. R., Parise, G., Verdijk, L. B., Tarnopolsky, M. A., Gibala, M. J., et al. (2013). Eccentric exercise increases satellite cell content in type II muscle fibers. Med Sci Sports Exerc, 45(2), 230–237.CrossRefPubMed Cermak, N. M., Snijders, T., McKay, B. R., Parise, G., Verdijk, L. B., Tarnopolsky, M. A., Gibala, M. J., et al. (2013). Eccentric exercise increases satellite cell content in type II muscle fibers. Med Sci Sports Exerc, 45(2), 230–237.CrossRefPubMed
Zurück zum Zitat Coleman, M. E., DeMayo, F., Yin, K. C., Lee, H. M., Geske, R., Montgomery, C., & Schwartz, R. J. (1995). Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. Journal of Biological Chemistry, 270(20), 12109–12116.CrossRefPubMed Coleman, M. E., DeMayo, F., Yin, K. C., Lee, H. M., Geske, R., Montgomery, C., & Schwartz, R. J. (1995). Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. Journal of Biological Chemistry, 270(20), 12109–12116.CrossRefPubMed
Zurück zum Zitat Deldicque, L., Theisen, D., & Francaux, M. (2005). Regulation of mTOR by amino acids and resistance exercise in skeletal muscle. European journal of applied physiology, 94(1–2), 1–10.CrossRefPubMed Deldicque, L., Theisen, D., & Francaux, M. (2005). Regulation of mTOR by amino acids and resistance exercise in skeletal muscle. European journal of applied physiology, 94(1–2), 1–10.CrossRefPubMed
Zurück zum Zitat Deldicque, L., Atherton, P., Patel, R., Theisen, D., Nielens, H., Rennie, M. J., & Francaux, M. (2008). Decrease in Akt/PKB signalling in human skeletal muscle by resistance exercise. European journal of applied physiology, 104(1), 57–65.CrossRefPubMed Deldicque, L., Atherton, P., Patel, R., Theisen, D., Nielens, H., Rennie, M. J., & Francaux, M. (2008). Decrease in Akt/PKB signalling in human skeletal muscle by resistance exercise. European journal of applied physiology, 104(1), 57–65.CrossRefPubMed
Zurück zum Zitat Dreyer, H. C., Fujita, S., Cadenas, J. G., Chinkes, D. L., Volpi, E., & Rasmussen, B. B. (2006). Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. The Journal of physiology, 576(2), 613–624.CrossRefPubMedPubMedCentral Dreyer, H. C., Fujita, S., Cadenas, J. G., Chinkes, D. L., Volpi, E., & Rasmussen, B. B. (2006). Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. The Journal of physiology, 576(2), 613–624.CrossRefPubMedPubMedCentral
Zurück zum Zitat Dreyer, H. C., Fujita, S., Glynn, E. L., Drummond, M. J., Volpi, E., & Rasmussen, B. B. (2010). Resistance exercise increases leg muscle protein synthesis and mTOR signalling independent of sex. Acta physiologica, 199(1), 71–81.CrossRefPubMedPubMedCentral Dreyer, H. C., Fujita, S., Glynn, E. L., Drummond, M. J., Volpi, E., & Rasmussen, B. B. (2010). Resistance exercise increases leg muscle protein synthesis and mTOR signalling independent of sex. Acta physiologica, 199(1), 71–81.CrossRefPubMedPubMedCentral
Zurück zum Zitat Drummond, M. J., Fry, C. S., Glynn, E. L., Dreyer, H. C., Dhanani, S., Timmerman, K. L., Volpi, E., et al. (2009). Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. The Journal of physiology, 587(7), 1535–1546.CrossRefPubMedPubMedCentral Drummond, M. J., Fry, C. S., Glynn, E. L., Dreyer, H. C., Dhanani, S., Timmerman, K. L., Volpi, E., et al. (2009). Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. The Journal of physiology, 587(7), 1535–1546.CrossRefPubMedPubMedCentral
Zurück zum Zitat Eliasson, J., Elfegoun, T., Nilsson, J., Köhnke, R., Ekblom, B., & Blomstrand, E. (2006). Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. American Journal of Physiology-Endocrinology and Metabolism, 291(6), E1197–E1205.CrossRefPubMed Eliasson, J., Elfegoun, T., Nilsson, J., Köhnke, R., Ekblom, B., & Blomstrand, E. (2006). Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. American Journal of Physiology-Endocrinology and Metabolism, 291(6), E1197–E1205.CrossRefPubMed
Zurück zum Zitat Fernandes, T., Alves, C. R., Oliveira, E. M., Melo, S. F., & Soci, Ú. P. (2012). Signaling pathways that mediate skeletal muscle hypertrophy: effects of exercise training, Skeletal Muscle- From Myogenesis to Clinical Relations (J. Cseri, Ed.) (pp. 189–218): INTECH Open Access Publisher. https://doi.org/http://dx.doi.org/10.5772/51087 Fernandes, T., Alves, C. R., Oliveira, E. M., Melo, S. F., & Soci, Ú. P. (2012). Signaling pathways that mediate skeletal muscle hypertrophy: effects of exercise training, Skeletal Muscle- From Myogenesis to Clinical Relations (J. Cseri, Ed.) (pp. 189–218): INTECH Open Access Publisher. https://​doi.​org/​http://​dx.​doi.​org/​10.​5772/​51087
Zurück zum Zitat Fingar, D. C., & Blenis, J. (2004). Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene, 23(18), 3151–3171.CrossRefPubMed Fingar, D. C., & Blenis, J. (2004). Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene, 23(18), 3151–3171.CrossRefPubMed
Zurück zum Zitat Fry, C. S., Drummond, M. J., Glynn, E. L., Dickinson, J. M., Gundermann, D. M., Timmerman, K. L., Walker, D. K., et al. (2011). Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skeletal muscle, 1(1), 1.CrossRef Fry, C. S., Drummond, M. J., Glynn, E. L., Dickinson, J. M., Gundermann, D. M., Timmerman, K. L., Walker, D. K., et al. (2011). Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skeletal muscle, 1(1), 1.CrossRef
Zurück zum Zitat Gehlert, S., Suhr, F., Gutsche, K., Willkomm, L., Kern, J., Jacko, D., Knicker, A., et al. (2015). High force development augments skeletal muscle signalling in resistance exercise modes equalized for time under tension. Pflügers Archiv-European Journal of Physiology, 467(6), 1343–1356.CrossRefPubMed Gehlert, S., Suhr, F., Gutsche, K., Willkomm, L., Kern, J., Jacko, D., Knicker, A., et al. (2015). High force development augments skeletal muscle signalling in resistance exercise modes equalized for time under tension. Pflügers Archiv-European Journal of Physiology, 467(6), 1343–1356.CrossRefPubMed
Zurück zum Zitat Glass, D. J. (2003). Molecular mechanisms modulating muscle mass. Trends in molecular medicine, 9(8), 344–350.CrossRefPubMed Glass, D. J. (2003). Molecular mechanisms modulating muscle mass. Trends in molecular medicine, 9(8), 344–350.CrossRefPubMed
Zurück zum Zitat Glass, D. J. (2005). Skeletal muscle hypertrophy and atrophy signaling pathways. The international journal of biochemistry & cell biology, 37(10), 1974–1984.CrossRef Glass, D. J. (2005). Skeletal muscle hypertrophy and atrophy signaling pathways. The international journal of biochemistry & cell biology, 37(10), 1974–1984.CrossRef
Zurück zum Zitat Glover, E. I., Oates, B. R., Tang, J. E., Moore, D. R., Tarnopolsky, M. A., & Phillips, S. M. (2008). Resistance exercise decreases eIF2B phosphorylation and potentiates the feeding-induced stimulation of p70S6K1 and rpS6 in young men. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 295(2), R604–R610.CrossRefPubMed Glover, E. I., Oates, B. R., Tang, J. E., Moore, D. R., Tarnopolsky, M. A., & Phillips, S. M. (2008). Resistance exercise decreases eIF2B phosphorylation and potentiates the feeding-induced stimulation of p70S6K1 and rpS6 in young men. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 295(2), R604–R610.CrossRefPubMed
Zurück zum Zitat Goodman, C. A., Miu, M. H., Frey, J. W., Mabrey, D. M., Lincoln, H. C., Ge, Y., Chen, J., et al. (2010). A phosphatidylinositol 3‑kinase/protein kinase B‑independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Molecular biology of the cell, 21(18), 3258–3268.CrossRefPubMedPubMedCentral Goodman, C. A., Miu, M. H., Frey, J. W., Mabrey, D. M., Lincoln, H. C., Ge, Y., Chen, J., et al. (2010). A phosphatidylinositol 3‑kinase/protein kinase B‑independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Molecular biology of the cell, 21(18), 3258–3268.CrossRefPubMedPubMedCentral
Zurück zum Zitat Goodman, C. A., Frey, J. W., Mabrey, D. M., Jacobs, B. L., Lincoln, H. C., You, J.-S., & Hornberger, T. A. (2011a). The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. The Journal of physiology, 589(22), 5485–5501.CrossRefPubMedPubMedCentral Goodman, C. A., Frey, J. W., Mabrey, D. M., Jacobs, B. L., Lincoln, H. C., You, J.-S., & Hornberger, T. A. (2011a). The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. The Journal of physiology, 589(22), 5485–5501.CrossRefPubMedPubMedCentral
Zurück zum Zitat Goodman, C. A., Mabrey, D. M., Frey, J. W., Miu, M. H., Schmidt, E. K., Pierre, P., & Hornberger, T. A. (2011b). Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. The FASEB Journal, 25(3), 1028–1039.CrossRefPubMedPubMedCentral Goodman, C. A., Mabrey, D. M., Frey, J. W., Miu, M. H., Schmidt, E. K., Pierre, P., & Hornberger, T. A. (2011b). Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. The FASEB Journal, 25(3), 1028–1039.CrossRefPubMedPubMedCentral
Zurück zum Zitat Hay, N., & Sonenberg, N. (2004). Upstream and downstream of mTOR. Genes & development, 18(16), 1926–1945.CrossRef Hay, N., & Sonenberg, N. (2004). Upstream and downstream of mTOR. Genes & development, 18(16), 1926–1945.CrossRef
Zurück zum Zitat Hoppeler, H. (2016). Molecular networks in skeletal muscle plasticity. Journal of Experimental Biology, 219(2), 205–213.CrossRefPubMed Hoppeler, H. (2016). Molecular networks in skeletal muscle plasticity. Journal of Experimental Biology, 219(2), 205–213.CrossRefPubMed
Zurück zum Zitat Hulmi, J. J., Tannerstedt, J., Selänne, H., Kainulainen, H., Kovanen, V., & Mero, A. A. (2009). Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men. Journal of Applied Physiology, 106(5), 1720–1729.CrossRefPubMed Hulmi, J. J., Tannerstedt, J., Selänne, H., Kainulainen, H., Kovanen, V., & Mero, A. A. (2009). Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men. Journal of Applied Physiology, 106(5), 1720–1729.CrossRefPubMed
Zurück zum Zitat Karlsson, H. K., Nilsson, P.-A., Nilsson, J., Chibalin, A. V., Zierath, J. R., & Blomstrand, E. (2004). Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. American Journal of Physiology-Endocrinology and Metabolism, 287(1), E1–E7.CrossRefPubMed Karlsson, H. K., Nilsson, P.-A., Nilsson, J., Chibalin, A. V., Zierath, J. R., & Blomstrand, E. (2004). Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. American Journal of Physiology-Endocrinology and Metabolism, 287(1), E1–E7.CrossRefPubMed
Zurück zum Zitat Kumar, V., Selby, A., Rankin, D., Patel, R., Atherton, P., Hildebrandt, W., Williams, J., et al. (2009). Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. The Journal of physiology, 587(1), 211–217.CrossRefPubMed Kumar, V., Selby, A., Rankin, D., Patel, R., Atherton, P., Hildebrandt, W., Williams, J., et al. (2009). Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. The Journal of physiology, 587(1), 211–217.CrossRefPubMed
Zurück zum Zitat Leger, B., Cartoni, R., Praz, M., Lamon, S., Dériaz, O., Crettenand, A., Gobelet, C., et al. (2006). Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. The Journal of physiology, 576(3), 923–933.CrossRefPubMedPubMedCentral Leger, B., Cartoni, R., Praz, M., Lamon, S., Dériaz, O., Crettenand, A., Gobelet, C., et al. (2006). Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. The Journal of physiology, 576(3), 923–933.CrossRefPubMedPubMedCentral
Zurück zum Zitat Martineau, L. C., & Gardiner, P. F. (2001). Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. Journal of Applied Physiology, 91(2), 693–702.CrossRefPubMed Martineau, L. C., & Gardiner, P. F. (2001). Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. Journal of Applied Physiology, 91(2), 693–702.CrossRefPubMed
Zurück zum Zitat Mayhew, D. L., Kim, J., Cross, J. M., Ferrando, A. A., & Bamman, M. M. (2009). Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. Journal of Applied Physiology, 107(5), 1655–1662.CrossRefPubMedPubMedCentral Mayhew, D. L., Kim, J., Cross, J. M., Ferrando, A. A., & Bamman, M. M. (2009). Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. Journal of Applied Physiology, 107(5), 1655–1662.CrossRefPubMedPubMedCentral
Zurück zum Zitat Miyazaki, M., & Esser, K. A. (2009). Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. Journal of Applied Physiology, 106(4), 1367–1373.CrossRefPubMed Miyazaki, M., & Esser, K. A. (2009). Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. Journal of Applied Physiology, 106(4), 1367–1373.CrossRefPubMed
Zurück zum Zitat Morton, R. W., Oikawa, S. Y., Wavell, C. G., Mazara, N., McGlory, C., Quadrilatero, J., Baechler, B. L., et al. (2016). Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. Journal of Applied Physiology, 121(1), 129–138.CrossRefPubMedPubMedCentral Morton, R. W., Oikawa, S. Y., Wavell, C. G., Mazara, N., McGlory, C., Quadrilatero, J., Baechler, B. L., et al. (2016). Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. Journal of Applied Physiology, 121(1), 129–138.CrossRefPubMedPubMedCentral
Zurück zum Zitat Nader, G. A., & Esser, K. A. (2001). Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. Journal of Applied Physiology, 90(5), 1936–1942.CrossRefPubMed Nader, G. A., & Esser, K. A. (2001). Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. Journal of Applied Physiology, 90(5), 1936–1942.CrossRefPubMed
Zurück zum Zitat Nardone, A., & Schieppati, M. (1988). Shift of activity from slow to fast muscle during voluntary lengthening contractions of the triceps surae muscles in humans. The Journal of Physiology, 395(1), 363–381.CrossRefPubMedPubMedCentral Nardone, A., & Schieppati, M. (1988). Shift of activity from slow to fast muscle during voluntary lengthening contractions of the triceps surae muscles in humans. The Journal of Physiology, 395(1), 363–381.CrossRefPubMedPubMedCentral
Zurück zum Zitat Narici, M., Roi, G., Landoni, L., Minetti, A., & Cerretelli, P. (1989). Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. European journal of applied physiology and occupational physiology, 59(4), 310–319.CrossRefPubMed Narici, M., Roi, G., Landoni, L., Minetti, A., & Cerretelli, P. (1989). Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. European journal of applied physiology and occupational physiology, 59(4), 310–319.CrossRefPubMed
Zurück zum Zitat Nave, B. T., Ouwens, M., Withers, D. J., Alessi, D. R., & Shepherd, P. R. (1999). Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J., 344(Pt 2), 427–431.CrossRefPubMedPubMedCentral Nave, B. T., Ouwens, M., Withers, D. J., Alessi, D. R., & Shepherd, P. R. (1999). Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J., 344(Pt 2), 427–431.CrossRefPubMedPubMedCentral
Zurück zum Zitat Nitzsche, N., Baumgärtel, L., Weigert, M., Neuendorf, T., Fröhlich, M., & Schulz, H. (2017). Acute effects of three resistance exercise programs on energy metabolism. International Journal of Sports Science, 7(2), 29–35. Nitzsche, N., Baumgärtel, L., Weigert, M., Neuendorf, T., Fröhlich, M., & Schulz, H. (2017). Acute effects of three resistance exercise programs on energy metabolism. International Journal of Sports Science, 7(2), 29–35.
Zurück zum Zitat Okazaki, H., Matsunaga, N., Fujioka, T., Okazaki, F., Akagawa, Y., Tsurudome, Y., Ono, M., et al. (2014). Circadian regulation of mTOR by the ubiquitin pathway in renal cell carcinoma. Cancer research, 74(2), 543–551.CrossRefPubMed Okazaki, H., Matsunaga, N., Fujioka, T., Okazaki, F., Akagawa, Y., Tsurudome, Y., Ono, M., et al. (2014). Circadian regulation of mTOR by the ubiquitin pathway in renal cell carcinoma. Cancer research, 74(2), 543–551.CrossRefPubMed
Zurück zum Zitat Parkington, J. D., LeBrasseur, N. K., Siebert, A. P., & Fielding, R. A. (2004). Contraction-mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle. Journal of Applied Physiology, 97(1), 243–248.CrossRefPubMed Parkington, J. D., LeBrasseur, N. K., Siebert, A. P., & Fielding, R. A. (2004). Contraction-mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle. Journal of Applied Physiology, 97(1), 243–248.CrossRefPubMed
Zurück zum Zitat Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R., Nunez, L., Stitt, T. N., Yancopoulos, G. D., et al. (2001). Mediation of IGF-1-induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways. Nature cell biology, 3(11), 1009–1013.CrossRefPubMed Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R., Nunez, L., Stitt, T. N., Yancopoulos, G. D., et al. (2001). Mediation of IGF-1-induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways. Nature cell biology, 3(11), 1009–1013.CrossRefPubMed
Zurück zum Zitat Schiaffino, S., & Mammucari, C. (2011). Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skeletal muscle, 1(1), 4.CrossRefPubMedPubMedCentral Schiaffino, S., & Mammucari, C. (2011). Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skeletal muscle, 1(1), 4.CrossRefPubMedPubMedCentral
Zurück zum Zitat Schwartz, F., Eckhardt, H., Bärtsch, P., Billeter, R., Bonaterra, G., Kinscherf, R., & Friedmann-Bette, B. (2011). Auswirkungen multipler Muskelbiopsien auf die Genexpression im Skelettmuskel. Deutsche Zeitschrift für Sportmedizin, 62(7–8), 274. Schwartz, F., Eckhardt, H., Bärtsch, P., Billeter, R., Bonaterra, G., Kinscherf, R., & Friedmann-Bette, B. (2011). Auswirkungen multipler Muskelbiopsien auf die Genexpression im Skelettmuskel. Deutsche Zeitschrift für Sportmedizin, 62(7–8), 274.
Zurück zum Zitat Song, Y.-H., Godard, M., Li, Y., Richmond, S. R., Rosenthal, N., & Delafontaine, P. (2005). Insulin-like growth factor I‑mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation. Journal of investigative medicine, 53(3), 135–142.CrossRefPubMedPubMedCentral Song, Y.-H., Godard, M., Li, Y., Richmond, S. R., Rosenthal, N., & Delafontaine, P. (2005). Insulin-like growth factor I‑mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation. Journal of investigative medicine, 53(3), 135–142.CrossRefPubMedPubMedCentral
Zurück zum Zitat Spangenburg, E. E., Le Roith, D., Ward, C. W., & Bodine, S. C. (2008). A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. The Journal of physiology, 586(1), 283–291.CrossRefPubMed Spangenburg, E. E., Le Roith, D., Ward, C. W., & Bodine, S. C. (2008). A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. The Journal of physiology, 586(1), 283–291.CrossRefPubMed
Zurück zum Zitat Spurway, N., & Wackerhage, H. (2006). Genetics and molecular biology of muscle adaptation. Philadelphia PA London: Elsevier. Spurway, N., & Wackerhage, H. (2006). Genetics and molecular biology of muscle adaptation. Philadelphia PA London: Elsevier.
Zurück zum Zitat Tannerstedt, J., Apró, W., & Blomstrand, E. (2009). Maximal lengthening contractions induce different signaling responses in the type I and type II fibers of human skeletal muscle. Journal of applied physiology, 106(4), 1412–1418.CrossRefPubMed Tannerstedt, J., Apró, W., & Blomstrand, E. (2009). Maximal lengthening contractions induce different signaling responses in the type I and type II fibers of human skeletal muscle. Journal of applied physiology, 106(4), 1412–1418.CrossRefPubMed
Zurück zum Zitat Terzis, G., Georgiadis, G., Stratakos, G., Vogiatzis, I., Kavouras, S., Manta, P., Mascher, H., et al. (2008). Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. European journal of applied physiology, 102(2), 145–152.CrossRefPubMed Terzis, G., Georgiadis, G., Stratakos, G., Vogiatzis, I., Kavouras, S., Manta, P., Mascher, H., et al. (2008). Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. European journal of applied physiology, 102(2), 145–152.CrossRefPubMed
Zurück zum Zitat Terzis, G., Spengos, K., Mascher, H., Georgiadis, G., Manta, P., & Blomstrand, E. (2010). The degree of p70S6k and S6 phosphorylation in human skeletal muscle in response to resistance exercise depends on the training volume. European journal of applied physiology, 110(4), 835–843.CrossRefPubMed Terzis, G., Spengos, K., Mascher, H., Georgiadis, G., Manta, P., & Blomstrand, E. (2010). The degree of p70S6k and S6 phosphorylation in human skeletal muscle in response to resistance exercise depends on the training volume. European journal of applied physiology, 110(4), 835–843.CrossRefPubMed
Zurück zum Zitat Thomas, G., & Hall, M. N. (1997). TOR signalling and control of cell growth. Current opinion in cell biology, 9(6), 782–787.CrossRefPubMed Thomas, G., & Hall, M. N. (1997). TOR signalling and control of cell growth. Current opinion in cell biology, 9(6), 782–787.CrossRefPubMed
Zurück zum Zitat Tidball, J. G. (2005). Mechanical signal transduction in skeletal muscle growth and adaptation. Journal of Applied Physiology, 98(5), 1900–1908.CrossRefPubMed Tidball, J. G. (2005). Mechanical signal transduction in skeletal muscle growth and adaptation. Journal of Applied Physiology, 98(5), 1900–1908.CrossRefPubMed
Zurück zum Zitat Toigo, M. (2006a). Trainingsrelevante Determinanten der molekularen und zellulären Skelettmuskeladaptation. Teil 1: Einleitung und Längenadaptation. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie, 54(3), 101–107. Toigo, M. (2006a). Trainingsrelevante Determinanten der molekularen und zellulären Skelettmuskeladaptation. Teil 1: Einleitung und Längenadaptation. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie, 54(3), 101–107.
Zurück zum Zitat Toigo, M. (2006b). Trainingsrelevante Determinanten der molekularen und zellulären Skelettmuskeladaptation. Teil 2: Adaptation von Querschnitt und Fasertypusmodulen. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie, 54(4), 121–132. Toigo, M. (2006b). Trainingsrelevante Determinanten der molekularen und zellulären Skelettmuskeladaptation. Teil 2: Adaptation von Querschnitt und Fasertypusmodulen. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie, 54(4), 121–132.
Zurück zum Zitat Ulbricht, A., Gehlert, S., Leciejewski, B., Schiffer, T., Bloch, W., & Höhfeld, J. (2015). Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle. Autophagy, 11(3), 538–546.CrossRefPubMedPubMedCentral Ulbricht, A., Gehlert, S., Leciejewski, B., Schiffer, T., Bloch, W., & Höhfeld, J. (2015). Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle. Autophagy, 11(3), 538–546.CrossRefPubMedPubMedCentral
Zurück zum Zitat Wackerhage, H., & Baar, K. (2014). Molecular exercise physiology: an introduction (pp. 133–156). London: Routledge. Wackerhage, H., & Baar, K. (2014). Molecular exercise physiology: an introduction (pp. 133–156). London: Routledge.
Zurück zum Zitat Wilkinson, S. B., Phillips, S. M., Atherton, P. J., Patel, R., Yarasheski, K. E., Tarnopolsky, M. A., & Rennie, M. J. (2008). Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. The journal of physiology, 586(15), 3701–3717.CrossRefPubMedPubMedCentral Wilkinson, S. B., Phillips, S. M., Atherton, P. J., Patel, R., Yarasheski, K. E., Tarnopolsky, M. A., & Rennie, M. J. (2008). Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. The journal of physiology, 586(15), 3701–3717.CrossRefPubMedPubMedCentral
Zurück zum Zitat Wirtz, N., Wahl, P., Kleinöder, H., & Mester, J. (2014). Lactate kinetics during multiple set resistance exercise. Journal of sports science & medicine, 13(1), 73. Wirtz, N., Wahl, P., Kleinöder, H., & Mester, J. (2014). Lactate kinetics during multiple set resistance exercise. Journal of sports science & medicine, 13(1), 73.
Metadaten
Titel
Cellular activation of selected signaling proteins through resistance training—a training methodological perspective
verfasst von
Nico Nitzsche
Tilo Neuendorf
Sebastian Gehlert
Michael Fröhlich
Henry Schulz
Publikationsdatum
04.09.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
German Journal of Exercise and Sport Research / Ausgabe 1/2018
Print ISSN: 2509-3142
Elektronische ISSN: 2509-3150
DOI
https://doi.org/10.1007/s12662-017-0473-0

Weitere Artikel der Ausgabe 1/2018

German Journal of Exercise and Sport Research 1/2018 Zur Ausgabe

Dank an die Gutachter

Dank an die Gutachter

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.