Skip to main content
Erschienen in: Inflammation 5/2019

17.05.2019 | ORIGINAL ARTICLE

Cellular Inflammatory Response of the Spleen After Acute Spinal Cord Injury in Rat

verfasst von: Feng Wu, Xiao-Yan Ding, Xiao-Hui Li, Min-Jie Gong, Jia-Qi An, Jiang-Hua Lai, Sheng-Li Huang

Erschienen in: Inflammation | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Spinal cord injury (SCI) involves both primary and secondary damages. After the phase of primary injury, a series of inflammatory responses initiate, which belong to the secondary injury. There has been little investigation into the cellular inflammatory response of the spleen to SCI. To disclose the impact of SCI on the spleen, we examined the inflammatory reactions of the spleen during the acute phase of SCI in rat. Adult rats were used as experimental animals and divided into un-injured, sham, and SCI groups (n = 36). Contusion injuries were produced at the T3 vertebral level. Spinal cords were harvested 6 h, 24 h, 48 h, 72 h, 120 h, and 168 h after surgery and were prepared for immunohistochemistry. Spleen wet weight was measured. Blood and spleens were prepared for quantitative analyses. The spleen index was significantly decreased in the SCI groups. Immunohistochemical results showed an increase of the infiltrating cells in the spinal cord tissues from SCI rats at all time points, peaking in 72 h post injury. In the blood, T and B lymphocytes significantly decreased in the SCI group as compared with the sham group, while monocyte increased. Surprisingly, in the SCI group, neutrophil initially decreased and subsequently tended to return toward baseline levels, then remained elevated until the end of the study. Spleen analyses revealed a significant increase in monocyte and neutrophil but a minor (not statistically significant) reduction in T and B lymphocytes. Our data show that the four most prevalent inflammatory cells infiltrate the spinal cord after injury. Increased levels of inflammatory cells (monocyte and neutrophil) in the blood and spleen appear to be very sensitive to SCI. The spleen plays a critical role in the acute phase of SCI.
Literatur
1.
Zurück zum Zitat Moritz, C. 2018. A giant step for spinal cord injury research. Nature Neuroscience 21 (12): 1647–1648.CrossRefPubMed Moritz, C. 2018. A giant step for spinal cord injury research. Nature Neuroscience 21 (12): 1647–1648.CrossRefPubMed
2.
Zurück zum Zitat Savic, G., M.J. DeVivo, H.L. Frankel, M.A. Jamous, B.M. Soni, and S. Charlifue. 2017. Causes of death after traumatic spinal cord injury—a 70-year British study. Spinal Cord 55 (10): 891–897.CrossRefPubMed Savic, G., M.J. DeVivo, H.L. Frankel, M.A. Jamous, B.M. Soni, and S. Charlifue. 2017. Causes of death after traumatic spinal cord injury—a 70-year British study. Spinal Cord 55 (10): 891–897.CrossRefPubMed
3.
Zurück zum Zitat Zhao, F., X.Y. Ding, F. Wu, X.H. Li, Y.H. Li, M. Hu, and S.L. Huang. 2018. Relieving compression against injured spinal cord via non-suturing muscle layer in rat. Biomedical Research 29 (8): 1693–1696.CrossRef Zhao, F., X.Y. Ding, F. Wu, X.H. Li, Y.H. Li, M. Hu, and S.L. Huang. 2018. Relieving compression against injured spinal cord via non-suturing muscle layer in rat. Biomedical Research 29 (8): 1693–1696.CrossRef
4.
Zurück zum Zitat Huang, S.L., L. Xiang, Y.J. Huang, F. Wang, L. Ji, J.L. Xue, and B.S. Lan. 2018. Electrophysiological monitoring techniques for spinal cord function in a canine model. International Journal of Clinical and Experimental Medicine 11 (6): 5986–5991. Huang, S.L., L. Xiang, Y.J. Huang, F. Wang, L. Ji, J.L. Xue, and B.S. Lan. 2018. Electrophysiological monitoring techniques for spinal cord function in a canine model. International Journal of Clinical and Experimental Medicine 11 (6): 5986–5991.
5.
Zurück zum Zitat Liu, J.J., X.Y. Ding, L. Xiang, F. Zhao, and S.L. Huang. 2017. A novel method for oxygen glucose deprivation model in organotypic spinal cord slices. Brain Research Bulletin 135: 163–169.CrossRefPubMed Liu, J.J., X.Y. Ding, L. Xiang, F. Zhao, and S.L. Huang. 2017. A novel method for oxygen glucose deprivation model in organotypic spinal cord slices. Brain Research Bulletin 135: 163–169.CrossRefPubMed
6.
Zurück zum Zitat Liu, J.J., Y.J. Huang, L. Xiang, F. Zhao, and S.L. Huang. 2017. A novel method of organotypic spinal cord slice culture in rat. NeuroReport 28 (16): 1097–1102.CrossRefPubMed Liu, J.J., Y.J. Huang, L. Xiang, F. Zhao, and S.L. Huang. 2017. A novel method of organotypic spinal cord slice culture in rat. NeuroReport 28 (16): 1097–1102.CrossRefPubMed
7.
Zurück zum Zitat Li, X.H., F. Wu, F. Zhao, and S.L. Huang. 2017. Fractional anisotropy is a marker in early-stage spinal cord injury. Brain Research 1672: 44–49.CrossRefPubMed Li, X.H., F. Wu, F. Zhao, and S.L. Huang. 2017. Fractional anisotropy is a marker in early-stage spinal cord injury. Brain Research 1672: 44–49.CrossRefPubMed
8.
Zurück zum Zitat Huang, S.L., H.G. Qi, J.J. Liu, J.L. Li, Y.J. Huang, and L. Xiang. 2016. Alarm value of somatosensory-evoked potential in idiopathic scoliosis surgery. World Neurosurgery 92: 397–401.CrossRefPubMed Huang, S.L., H.G. Qi, J.J. Liu, J.L. Li, Y.J. Huang, and L. Xiang. 2016. Alarm value of somatosensory-evoked potential in idiopathic scoliosis surgery. World Neurosurgery 92: 397–401.CrossRefPubMed
9.
Zurück zum Zitat Liu, J.J., Z. Guan, Z. Gao, L. Xiang, and S.L. Huang. 2016. Complications after spinal anesthesia in adult tethered cord syndrome. Medicine 95 (29): e4289.CrossRefPubMedPubMedCentral Liu, J.J., Z. Guan, Z. Gao, L. Xiang, and S.L. Huang. 2016. Complications after spinal anesthesia in adult tethered cord syndrome. Medicine 95 (29): e4289.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Huang, S.L., H.G. Qi, J.J. Liu, Y.J. Huang, and L. Xiang. 2015. A rare complication of spine surgery: Guillain–Barré syndrome. World Neurosurgery 84 (3): 697–701.CrossRefPubMed Huang, S.L., H.G. Qi, J.J. Liu, Y.J. Huang, and L. Xiang. 2015. A rare complication of spine surgery: Guillain–Barré syndrome. World Neurosurgery 84 (3): 697–701.CrossRefPubMed
11.
Zurück zum Zitat Li, X.H., J.B. Li, X.J. He, F. Wang, S.L. Huang, and Z.L. Bai. 2015. Timing of diffusion tensor imaging in the acute spinal cord injury of rats. Scientific Reports 5: 12639.CrossRefPubMedPubMedCentral Li, X.H., J.B. Li, X.J. He, F. Wang, S.L. Huang, and Z.L. Bai. 2015. Timing of diffusion tensor imaging in the acute spinal cord injury of rats. Scientific Reports 5: 12639.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Huang, S.L., Y.X. Liu, G.L. Yuan, J. Zhang, and H.W. Yan. 2015. Characteristics of lumbar disc herniation with exacerbation of presentation due to spinal manipulative therapy. Medicine 94 (12): e661.CrossRefPubMedPubMedCentral Huang, S.L., Y.X. Liu, G.L. Yuan, J. Zhang, and H.W. Yan. 2015. Characteristics of lumbar disc herniation with exacerbation of presentation due to spinal manipulative therapy. Medicine 94 (12): e661.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Huang, S.L., J. Peng, G.L. Yuan, X.Y. Ding, and B.S. Lan. 2015. A new model of tethered cord syndrome produced by slow traction. Scientific Reports 5: 9116.CrossRefPubMedPubMedCentral Huang, S.L., J. Peng, G.L. Yuan, X.Y. Ding, and B.S. Lan. 2015. A new model of tethered cord syndrome produced by slow traction. Scientific Reports 5: 9116.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Huang, S.L., X.J. He, L. Xiang, G.L. Yuan, N. Ning, and B.S. Lan. 2014. CT and MRI features of patients with diastematomyelia. Spinal Cord 52 (9): 689–692.CrossRefPubMed Huang, S.L., X.J. He, L. Xiang, G.L. Yuan, N. Ning, and B.S. Lan. 2014. CT and MRI features of patients with diastematomyelia. Spinal Cord 52 (9): 689–692.CrossRefPubMed
15.
Zurück zum Zitat Huang, S.L., X.J. He, L. Lin, and B. Cheng. 2014. Neuroprotective effect of ginsenoside Rg1 against spinal cord ischemia and reperfusion in rats. Neurochemical Journal 8 (3): 199–204.CrossRef Huang, S.L., X.J. He, L. Lin, and B. Cheng. 2014. Neuroprotective effect of ginsenoside Rg1 against spinal cord ischemia and reperfusion in rats. Neurochemical Journal 8 (3): 199–204.CrossRef
16.
Zurück zum Zitat Huang, S.L., X.J. He, Z.F. Li, L. Lin, and B. Cheng. 2014. Neuroprotective effects of ginsenoside Rg1 on oxygen-glucose deprivation reperfusion in PC12 cells. Pharmazie 69 (3): 208–211.PubMed Huang, S.L., X.J. He, Z.F. Li, L. Lin, and B. Cheng. 2014. Neuroprotective effects of ginsenoside Rg1 on oxygen-glucose deprivation reperfusion in PC12 cells. Pharmazie 69 (3): 208–211.PubMed
17.
Zurück zum Zitat Huang, S.L., H.X. Jiang, B. Cheng, N. Ning, and X.J. He. 2013. Characteristics and management of occult intrasacral extradural cyst in children. British Journal of Neurosurgery 27 (4): 509–512.CrossRefPubMed Huang, S.L., H.X. Jiang, B. Cheng, N. Ning, and X.J. He. 2013. Characteristics and management of occult intrasacral extradural cyst in children. British Journal of Neurosurgery 27 (4): 509–512.CrossRefPubMed
18.
Zurück zum Zitat Huang, S.L., H.W. Yan, and K.Z. Wang. 2013. Use of Fidji cervical cage in the treatment of cervical spinal cord injury without radiographic abnormality. BioMed Research International 2013: 810172.PubMedPubMedCentral Huang, S.L., H.W. Yan, and K.Z. Wang. 2013. Use of Fidji cervical cage in the treatment of cervical spinal cord injury without radiographic abnormality. BioMed Research International 2013: 810172.PubMedPubMedCentral
19.
Zurück zum Zitat Huang, S.L., X.J. He, K.Z. Wang, and B.S. Lan. 2013. Diastematomyelia: A 35-year experience. Spine 38 (6): E344–E349.CrossRefPubMed Huang, S.L., X.J. He, K.Z. Wang, and B.S. Lan. 2013. Diastematomyelia: A 35-year experience. Spine 38 (6): E344–E349.CrossRefPubMed
20.
Zurück zum Zitat Huang, S.L., W. Shi, and L.G. Zhang. 2012. Congenital dermal sinus of the cervical spine: Clinical characteristics and management. Journal of Neurosurgical Sciences 56 (1): 61–66.PubMed Huang, S.L., W. Shi, and L.G. Zhang. 2012. Congenital dermal sinus of the cervical spine: Clinical characteristics and management. Journal of Neurosurgical Sciences 56 (1): 61–66.PubMed
21.
Zurück zum Zitat Huang, S.L., W. Shi, and L.G. Zhang. 2010. Characteristics and surgery of cervical myelomeningocele. Child’s Nervous System 26 (1): 87–91.CrossRefPubMed Huang, S.L., W. Shi, and L.G. Zhang. 2010. Characteristics and surgery of cervical myelomeningocele. Child’s Nervous System 26 (1): 87–91.CrossRefPubMed
22.
Zurück zum Zitat Huang, S.L., W. Shi, and L.G. Zhang. 2010. Surgical treatment for lipomyelomeningocele in children. World Journal of Pediatrics 6 (4): 361–365.CrossRefPubMed Huang, S.L., W. Shi, and L.G. Zhang. 2010. Surgical treatment for lipomyelomeningocele in children. World Journal of Pediatrics 6 (4): 361–365.CrossRefPubMed
23.
Zurück zum Zitat Hilton, B.J., A.J. Moulson, and W. Tetzlaff. 2017. Neuroprotection and secondary damage following spinal cord injury: Concepts and methods. Neuroscience Letters 652: 3–10.CrossRefPubMed Hilton, B.J., A.J. Moulson, and W. Tetzlaff. 2017. Neuroprotection and secondary damage following spinal cord injury: Concepts and methods. Neuroscience Letters 652: 3–10.CrossRefPubMed
24.
Zurück zum Zitat Dantzer, R. 2018. Neuroimmune interactions: From the brain to the immune system and vice versa. Physiological Reviews 98 (1): 477–504.CrossRefPubMed Dantzer, R. 2018. Neuroimmune interactions: From the brain to the immune system and vice versa. Physiological Reviews 98 (1): 477–504.CrossRefPubMed
25.
Zurück zum Zitat Li, B., K. Concepcion, X. Meng, and L. Zhang. 2017. Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Progress in Neurobiology 159: 50–68.CrossRefPubMedPubMedCentral Li, B., K. Concepcion, X. Meng, and L. Zhang. 2017. Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Progress in Neurobiology 159: 50–68.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Rust, R., and J. Kaiser. 2017. Insights into the dual role of inflammation after spinal cord injury. Journal of Neuroscience 37 (18): 4658–4660.CrossRefPubMed Rust, R., and J. Kaiser. 2017. Insights into the dual role of inflammation after spinal cord injury. Journal of Neuroscience 37 (18): 4658–4660.CrossRefPubMed
27.
Zurück zum Zitat Orr, M.B., and J.C. Gensel. 2018. Spinal cord injury scarring and inflammation: Therapies targeting glial and inflammatory responses. Neurotherapeutics 15 (3): 541–553.CrossRefPubMedPubMedCentral Orr, M.B., and J.C. Gensel. 2018. Spinal cord injury scarring and inflammation: Therapies targeting glial and inflammatory responses. Neurotherapeutics 15 (3): 541–553.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Hausmann, O.N. 2003. Post-traumatic inflammation following spinal cord injury. Spinal Cord 41 (7): 369–378.CrossRefPubMed Hausmann, O.N. 2003. Post-traumatic inflammation following spinal cord injury. Spinal Cord 41 (7): 369–378.CrossRefPubMed
29.
Zurück zum Zitat Donnelly, D.J., and P.G. Popovich. 2008. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Experimental Neurology 209 (2): 378–388.CrossRefPubMed Donnelly, D.J., and P.G. Popovich. 2008. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Experimental Neurology 209 (2): 378–388.CrossRefPubMed
30.
Zurück zum Zitat de Menezes, M.F., F. Nicola, I.R.V. da Silva, A. Vizuete, V.R. Elsner, L.L. Xavier, C.A.S. Gonçalves, C.A. Netto, and R.G. Mestriner. 2018. Glial fibrillary acidic protein levels are associated with global histone H4 acetylation after spinal cord injury in rats. Neural Regeneration Research 13 (11): 1945–1952.CrossRefPubMedPubMedCentral de Menezes, M.F., F. Nicola, I.R.V. da Silva, A. Vizuete, V.R. Elsner, L.L. Xavier, C.A.S. Gonçalves, C.A. Netto, and R.G. Mestriner. 2018. Glial fibrillary acidic protein levels are associated with global histone H4 acetylation after spinal cord injury in rats. Neural Regeneration Research 13 (11): 1945–1952.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Seifert, H.A., A.A. Hall, C.B. Chapman, L.A. Collier, A.E. Willing, and K.R. Pennypacker. 2012. A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. Journal of Neuroimmune Pharmacology 7 (4): 1017–1024.CrossRefPubMedPubMedCentral Seifert, H.A., A.A. Hall, C.B. Chapman, L.A. Collier, A.E. Willing, and K.R. Pennypacker. 2012. A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. Journal of Neuroimmune Pharmacology 7 (4): 1017–1024.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Zhang, B., and J.C. Gensel. 2014. Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord. Experimental Neurology 258: 112–120.CrossRefPubMed Zhang, B., and J.C. Gensel. 2014. Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord. Experimental Neurology 258: 112–120.CrossRefPubMed
Metadaten
Titel
Cellular Inflammatory Response of the Spleen After Acute Spinal Cord Injury in Rat
verfasst von
Feng Wu
Xiao-Yan Ding
Xiao-Hui Li
Min-Jie Gong
Jia-Qi An
Jiang-Hua Lai
Sheng-Li Huang
Publikationsdatum
17.05.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01024-y

Weitere Artikel der Ausgabe 5/2019

Inflammation 5/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.