Skip to main content
Erschienen in: International Journal of Hematology 3/2016

26.07.2016 | Progress in Hematology

Cereblon and its downstream substrates as molecular targets of immunomodulatory drugs

verfasst von: Takumi Ito, Hiroshi Handa

Erschienen in: International Journal of Hematology | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Thalidomide was first developed as a sedative around 60 years ago, but exhibited teratogenicity, leading to serious defects such as limb deformities. Nevertheless, thalidomide is now recognized as a therapeutic drug for the treatment of Hansen’s disease and myeloma. Immunomodulatory drugs (IMiDs), a new class of anti-cancer drug derived from thalidomide, have also been developed and exert potent anti-cancer effects. Although the molecular mechanism of thalidomide and IMiDs remained unclear for a long time, cereblon, a substrate receptor of the CRL4 E3 ubiquitin ligase was identified as a primary direct target by a new affinity technique. A growing body of evidence suggests that the effect of IMiDs on myeloma and other cancer cells is mediated by CRBN. Each IMiD binds to CRBN and alters the substrate specificity of the CRBN E3 ubiquitin ligase complex, resulting in breakdown of intrinsic downstream proteins such as Ikaros and Aiolos. Here we give an overview of the current understanding of mechanism of action of IMiDs via CRBN and prospects for the development of new drugs that degrade protein of interest.
Literatur
3.
Zurück zum Zitat Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer. 2004;4:314–22.CrossRefPubMed Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer. 2004;4:314–22.CrossRefPubMed
5.
6.
Zurück zum Zitat Vargesson N. Thalidomide-induced limb defects: resolving a 50-year-old puzzle. BioEssays. 2009;31:1327–36.CrossRefPubMed Vargesson N. Thalidomide-induced limb defects: resolving a 50-year-old puzzle. BioEssays. 2009;31:1327–36.CrossRefPubMed
7.
Zurück zum Zitat Ito T, Ando H, Handa H. Teratogenic effects of thalidomide: molecular mechanisms. Cell Mol Life Sci. 2012;68:1569–79.CrossRef Ito T, Ando H, Handa H. Teratogenic effects of thalidomide: molecular mechanisms. Cell Mol Life Sci. 2012;68:1569–79.CrossRef
8.
Zurück zum Zitat Sheskin J. Thalidomide in the treatment of lepra reactions. Clin Pharmacol Ther. 1965;6:303–6.CrossRefPubMed Sheskin J. Thalidomide in the treatment of lepra reactions. Clin Pharmacol Ther. 1965;6:303–6.CrossRefPubMed
9.
Zurück zum Zitat Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G. Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med. 1991;173:699–703.CrossRefPubMed Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G. Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med. 1991;173:699–703.CrossRefPubMed
10.
11.
Zurück zum Zitat Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341:1565–71.CrossRefPubMed Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341:1565–71.CrossRefPubMed
12.
Zurück zum Zitat Zeldis JB, Williams BA, Thomas SD, Elsayed ME. S.T.E.P.S.: a comprehensive program for controlling and monitoring access to thalidomide. Clin Ther. 1999;21:319–30.CrossRefPubMed Zeldis JB, Williams BA, Thomas SD, Elsayed ME. S.T.E.P.S.: a comprehensive program for controlling and monitoring access to thalidomide. Clin Ther. 1999;21:319–30.CrossRefPubMed
13.
Zurück zum Zitat Ooba N, Sato T, Watanabe H, Kubota K. Resolving a double standard for risk management of thalidomide: an evaluation of two different risk management programmes in Japan. Drug Saf. 2010;33:35–45.CrossRefPubMed Ooba N, Sato T, Watanabe H, Kubota K. Resolving a double standard for risk management of thalidomide: an evaluation of two different risk management programmes in Japan. Drug Saf. 2010;33:35–45.CrossRefPubMed
14.
Zurück zum Zitat Muller GW, Chen R, Huang SY, et al. Amino-substituted thalidomide analogs: potent inhibitors of TNF-alpha production. Bioorg Med Chem Lett. 1999;9:1625–30.CrossRefPubMed Muller GW, Chen R, Huang SY, et al. Amino-substituted thalidomide analogs: potent inhibitors of TNF-alpha production. Bioorg Med Chem Lett. 1999;9:1625–30.CrossRefPubMed
15.
Zurück zum Zitat Sakamoto S, Hatakeyama M, Ito T, Handa H. Tools and methodologies capable of isolating and identifying a target molecule for a bioactive compound. Bioorg Med Chem. 2012;20:1990–2001.CrossRefPubMed Sakamoto S, Hatakeyama M, Ito T, Handa H. Tools and methodologies capable of isolating and identifying a target molecule for a bioactive compound. Bioorg Med Chem. 2012;20:1990–2001.CrossRefPubMed
16.
Zurück zum Zitat Groisman R, Polanowska J, Kuraoka I, et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell. 2003;113:357–67.CrossRefPubMed Groisman R, Polanowska J, Kuraoka I, et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell. 2003;113:357–67.CrossRefPubMed
17.
Zurück zum Zitat Lee J, Zhou P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell. 2007;26:775–80.CrossRefPubMed Lee J, Zhou P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell. 2007;26:775–80.CrossRefPubMed
19.
Zurück zum Zitat Ito T, Ando H, Suzuki T, et al. Identification of a primary target of thalidomide teratogenicity. Science. 2010;327:1345–50.CrossRefPubMed Ito T, Ando H, Suzuki T, et al. Identification of a primary target of thalidomide teratogenicity. Science. 2010;327:1345–50.CrossRefPubMed
20.
Zurück zum Zitat Escoubet-Lozach L, Lin IL, Jensen-Pergakes K, et al. Pomalidomide and lenalidomide induce p21 WAF-1 expression in both lymphoma and multiple myeloma through a LSD1-mediated epigenetic mechanism. Cancer Res. 2009;69:7347–56.CrossRefPubMed Escoubet-Lozach L, Lin IL, Jensen-Pergakes K, et al. Pomalidomide and lenalidomide induce p21 WAF-1 expression in both lymphoma and multiple myeloma through a LSD1-mediated epigenetic mechanism. Cancer Res. 2009;69:7347–56.CrossRefPubMed
22.
Zurück zum Zitat Lopez-Girona A, Heintel D, Zhang LH et al. Lenalidomide downregulates the cell survival factor, interferon regulatory factor-4, providing a potential mechanistic link for predicting response. Br J Haematol. 2011;154:325–36.CrossRefPubMed Lopez-Girona A, Heintel D, Zhang LH et al. Lenalidomide downregulates the cell survival factor, interferon regulatory factor-4, providing a potential mechanistic link for predicting response. Br J Haematol. 2011;154:325–36.CrossRefPubMed
23.
Zurück zum Zitat Zhu YX, Braggio E, Shi CX, et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood. 2011;118:4771–9.CrossRefPubMedPubMedCentral Zhu YX, Braggio E, Shi CX, et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood. 2011;118:4771–9.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Lopez-Girona A, Mendy D, Ito T, et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. 2012;26:2326–35.CrossRefPubMedPubMedCentral Lopez-Girona A, Mendy D, Ito T, et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. 2012;26:2326–35.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Kronke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2013;343:301–5.CrossRefPubMedPubMedCentral Kronke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2013;343:301–5.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2013;343:305–9.CrossRefPubMedPubMedCentral Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2013;343:305–9.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Gandhi AK, Kang J, Havens CG, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN). Br J Haematol. 2014;164:811–21.CrossRefPubMed Gandhi AK, Kang J, Havens CG, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN). Br J Haematol. 2014;164:811–21.CrossRefPubMed
28.
Zurück zum Zitat List A, Dewald G, Bennett J, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006;355:1456–65.CrossRefPubMed List A, Dewald G, Bennett J, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006;355:1456–65.CrossRefPubMed
29.
Zurück zum Zitat List A, Kurtin S, Roe DJ, et al. Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med. 2005;352:549–57.CrossRefPubMed List A, Kurtin S, Roe DJ, et al. Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med. 2005;352:549–57.CrossRefPubMed
30.
Zurück zum Zitat Kronke J, Fink EC, Hollenbach PW, et al. Lenalidomide induces ubiquitination and degradation of Ck1αlpha in del(5q) MDS. Nature. 2015;523:183–8.CrossRefPubMedPubMedCentral Kronke J, Fink EC, Hollenbach PW, et al. Lenalidomide induces ubiquitination and degradation of Ck1αlpha in del(5q) MDS. Nature. 2015;523:183–8.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Jaras M, Miller PG, Chu LP, et al. Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia. J Exp Med. 2014;211:605–12.CrossRefPubMedPubMedCentral Jaras M, Miller PG, Chu LP, et al. Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia. J Exp Med. 2014;211:605–12.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Jadersten M, Saft L, Smith A, et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol. 2011;29:1971–9.CrossRefPubMed Jadersten M, Saft L, Smith A, et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol. 2011;29:1971–9.CrossRefPubMed
33.
Zurück zum Zitat Fischer ES, Bohm K, Lydeard JR, et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature. 2014;512:49–53.PubMedPubMedCentral Fischer ES, Bohm K, Lydeard JR, et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature. 2014;512:49–53.PubMedPubMedCentral
34.
Zurück zum Zitat Chamberlain PP, Lopez-Girona A, Miller K, et al. Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol. 2014;21:803–9.CrossRefPubMed Chamberlain PP, Lopez-Girona A, Miller K, et al. Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol. 2014;21:803–9.CrossRefPubMed
35.
Zurück zum Zitat Li T, Chen X, Garbutt KC, Zhou P, Zheng N. Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell. 2006;124:105–17.CrossRefPubMed Li T, Chen X, Garbutt KC, Zhou P, Zheng N. Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell. 2006;124:105–17.CrossRefPubMed
36.
Zurück zum Zitat Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature. 2006;443:590–3.PubMed Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature. 2006;443:590–3.PubMed
37.
Zurück zum Zitat Yang Y, Shaffer AL, 3rd, Emre NC et al. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell. 2012;21:723–37.CrossRefPubMedPubMedCentral Yang Y, Shaffer AL, 3rd, Emre NC et al. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell. 2012;21:723–37.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Zhang LH, Kosek J, Wang M, Heise C, Schafer PH, Chopra R. Lenalidomide efficacy in activated B-cell-like subtype diffuse large B-cell lymphoma is dependent upon IRF4 and cereblon expression. Br J Haematol. 2013;160:487–502.CrossRefPubMed Zhang LH, Kosek J, Wang M, Heise C, Schafer PH, Chopra R. Lenalidomide efficacy in activated B-cell-like subtype diffuse large B-cell lymphoma is dependent upon IRF4 and cereblon expression. Br J Haematol. 2013;160:487–502.CrossRefPubMed
39.
Zurück zum Zitat Hagner PR, Man HW, Fontanillo C, et al. CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL. Blood. 2015;126:779–89.CrossRefPubMedPubMedCentral Hagner PR, Man HW, Fontanillo C, et al. CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL. Blood. 2015;126:779–89.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Hartmann MD, Boichenko I, Coles M, Zanini F, Lupas AN. Hernandez Alvarez B. Thalidomide mimics uridine binding to an aromatic cage in cereblon. J Struct Biol. 2014;188:225–32.CrossRefPubMed Hartmann MD, Boichenko I, Coles M, Zanini F, Lupas AN. Hernandez Alvarez B. Thalidomide mimics uridine binding to an aromatic cage in cereblon. J Struct Biol. 2014;188:225–32.CrossRefPubMed
42.
Zurück zum Zitat Nguyen TV, Lee JE, Sweredoski MJ, et al. Glutamine triggers acetylation-dependent degradation of glutamine synthetase via the thalidomide receptor cereblon. Mol Cell. 2016;61:809–20.CrossRefPubMed Nguyen TV, Lee JE, Sweredoski MJ, et al. Glutamine triggers acetylation-dependent degradation of glutamine synthetase via the thalidomide receptor cereblon. Mol Cell. 2016;61:809–20.CrossRefPubMed
43.
Zurück zum Zitat Winter GE, Buckley DL, Paulk J, et al. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. 2015;348:1376–81.CrossRefPubMedPubMedCentral Winter GE, Buckley DL, Paulk J, et al. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. 2015;348:1376–81.CrossRefPubMedPubMedCentral
44.
45.
Zurück zum Zitat Lai AC, Toure M, Hellerschmied D, et al. Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL. Angew Chem Int Ed Engl. 2016;55:807–10.CrossRefPubMed Lai AC, Toure M, Hellerschmied D, et al. Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL. Angew Chem Int Ed Engl. 2016;55:807–10.CrossRefPubMed
Metadaten
Titel
Cereblon and its downstream substrates as molecular targets of immunomodulatory drugs
verfasst von
Takumi Ito
Hiroshi Handa
Publikationsdatum
26.07.2016
Verlag
Springer Japan
Erschienen in
International Journal of Hematology / Ausgabe 3/2016
Print ISSN: 0925-5710
Elektronische ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-016-2073-4

Weitere Artikel der Ausgabe 3/2016

International Journal of Hematology 3/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.