Skip to main content
Erschienen in: Neurocritical Care 3/2019

06.12.2018 | Original Article

Cerebral Vascular Changes During Acute Intracranial Pressure Drop

verfasst von: Xiuyun Liu, Lara L. Zimmermann, Nhi Ho, Paul Vespa, Xiaoling Liao, Xiao Hu

Erschienen in: Neurocritical Care | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Objective

This study applied a new external ventricular catheter, which allows intracranial pressure (ICP) monitoring and cerebral spinal fluid (CSF) drainage simultaneously, to study cerebral vascular responses during acute CSF drainage.

Methods

Six patients with 34 external ventricular drain (EVD) opening sessions were retrospectively analyzed. A published algorithm was used to extract morphological features of ICP recordings, and a template-matching algorithm was applied to calculate the likelihood of cerebral vasodilation index (VDI) and cerebral vasoconstriction index (VCI) based on the changes of ICP waveforms during CSF drainage. Power change (∆P) of ICP B-waves after EVD opening was also calculated. Cerebral autoregulation (CA) was assessed through phase difference between arterial blood pressure (ABP) and ICP using a previously published wavelet-based algorithm.

Results

The result showed that acute CSF drainage reduced mean ICP (P = 0.016) increased VCI (P = 0.02) and reduced ICP B-wave power (P = 0.016) significantly. VCI reacted to ICP changes negatively when ICP was between 10 and 25 mmHg, and VCI remained unchanged when ICP was outside the 10–25 mmHg range. VCI negatively (r = − 0.44) and VDI positively (r = 0.82) correlated with ∆P of ICP B-waves, indicating that stronger vasoconstriction resulted in bigger power drop in ICP B-waves. Better CA prior to EVD opening triggered bigger drop in the power of ICP B-waves (r = − 0.612).

Conclusions

This study demonstrates that acute CSF drainage reduces mean ICP, and results in vasoconstriction which can be detected through an index, VCI. Cerebral vessels actively respond to ICP changes or cerebral perfusion pressure (CPP) changes in a certain range; beyond which, the vessels are insensitive to the changes in ICP and CPP.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Rangel-Castillo L, Robertson CS. Management of intracranial hypertension. Crit Care Clin. 2006;26:713–32.CrossRef Rangel-Castillo L, Robertson CS. Management of intracranial hypertension. Crit Care Clin. 2006;26:713–32.CrossRef
2.
Zurück zum Zitat Lane PL, Skoretz TG, Doig G, Girotti MJ. Intracranial pressure monitoring and outcomes after traumatic brain injury. Can J Surg. 2000;43:442–8.PubMedPubMedCentral Lane PL, Skoretz TG, Doig G, Girotti MJ. Intracranial pressure monitoring and outcomes after traumatic brain injury. Can J Surg. 2000;43:442–8.PubMedPubMedCentral
3.
Zurück zum Zitat Czosnyka M, Smielewski P, Timofeev I, Lavinio A, Guazzo E, Hutchinson P, et al. Intracranial pressure: more than a number. Neurosurg Focus. 2007;22:E10.PubMed Czosnyka M, Smielewski P, Timofeev I, Lavinio A, Guazzo E, Hutchinson P, et al. Intracranial pressure: more than a number. Neurosurg Focus. 2007;22:E10.PubMed
4.
Zurück zum Zitat Czosnyka Z, Czosnyka M. Long-term monitoring of intracranial pressure in normal pressure hydrocephalus and other CSF disorders. Acta Neurochir (Wien). 2017;159:1979–80.CrossRef Czosnyka Z, Czosnyka M. Long-term monitoring of intracranial pressure in normal pressure hydrocephalus and other CSF disorders. Acta Neurochir (Wien). 2017;159:1979–80.CrossRef
5.
Zurück zum Zitat Chari A, Dasgupta D, Smedley A, Craven C, Dyson E, Matloob S, et al. Intraparenchymal intracranial pressure monitoring for hydrocephalus and cerebrospinal fluid disorders. Acta Neurochir (Wien). 2017;159:1967–78.CrossRef Chari A, Dasgupta D, Smedley A, Craven C, Dyson E, Matloob S, et al. Intraparenchymal intracranial pressure monitoring for hydrocephalus and cerebrospinal fluid disorders. Acta Neurochir (Wien). 2017;159:1967–78.CrossRef
6.
Zurück zum Zitat Kirkman MA, Smith M. Intracranial pressure monitoring, cerebral perfusion pressure estimation, and icp/cpp-guided therapy: a standard of care or optional extra after brain injury? Br J Anaesth. 2014;112:35–46.CrossRef Kirkman MA, Smith M. Intracranial pressure monitoring, cerebral perfusion pressure estimation, and icp/cpp-guided therapy: a standard of care or optional extra after brain injury? Br J Anaesth. 2014;112:35–46.CrossRef
7.
Zurück zum Zitat Muralidharan R. External ventricular drains: management and complications. Surg Neurol Int. 2015;6:271.CrossRef Muralidharan R. External ventricular drains: management and complications. Surg Neurol Int. 2015;6:271.CrossRef
8.
Zurück zum Zitat Kirmani A, Sarmast A, Bhat A. Role of external ventricular drainage in the management of intraventricular hemorrhage; its complications and management. Surg Neurol Int. 2015;6:188.CrossRef Kirmani A, Sarmast A, Bhat A. Role of external ventricular drainage in the management of intraventricular hemorrhage; its complications and management. Surg Neurol Int. 2015;6:188.CrossRef
9.
Zurück zum Zitat Staykov D, Kuramatsu JB, Bardutzky J, Volbers B, Gerner ST, Kloska SP, et al. Efficacy and safety of combined intraventricular fibrinolysis with lumbar drainage for prevention of permanent shunt dependency after intracerebral hemorrhage with severe ventricular involvement: A randomized trial and individual patient data meta-analysis. Ann Neurol. 2017;81:93–103.CrossRef Staykov D, Kuramatsu JB, Bardutzky J, Volbers B, Gerner ST, Kloska SP, et al. Efficacy and safety of combined intraventricular fibrinolysis with lumbar drainage for prevention of permanent shunt dependency after intracerebral hemorrhage with severe ventricular involvement: A randomized trial and individual patient data meta-analysis. Ann Neurol. 2017;81:93–103.CrossRef
10.
Zurück zum Zitat Kerr ME, Weber BB, Sereika SM, Wilberger J, Marion DW. Dose response to cerebrospinal fluid drainage on cerebral perfusion in traumatic brain-injured adults. Neurosurg Focus. 2001;11:E1.CrossRef Kerr ME, Weber BB, Sereika SM, Wilberger J, Marion DW. Dose response to cerebrospinal fluid drainage on cerebral perfusion in traumatic brain-injured adults. Neurosurg Focus. 2001;11:E1.CrossRef
11.
Zurück zum Zitat Cruz J. Combined continuous monitoring of systemic and cerebral oxygenation in acute brain injury: preliminary observations. Crit Care Med. 1993;21:1225–32.CrossRef Cruz J. Combined continuous monitoring of systemic and cerebral oxygenation in acute brain injury: preliminary observations. Crit Care Med. 1993;21:1225–32.CrossRef
12.
Zurück zum Zitat Fortune JB, Feustel PJ, Graca L, Hasselbarth J, Kuehler DH, Wilberger JE, et al. Effect of hyperventilation, mannitol, and ventriculostomy drainage on cerebral blood flow after head injury. J Trauma—Inj Infect Crit Care. 1995;39:1091–9.CrossRef Fortune JB, Feustel PJ, Graca L, Hasselbarth J, Kuehler DH, Wilberger JE, et al. Effect of hyperventilation, mannitol, and ventriculostomy drainage on cerebral blood flow after head injury. J Trauma—Inj Infect Crit Care. 1995;39:1091–9.CrossRef
13.
Zurück zum Zitat Papo I, Caruselli G. Long-term intracranial pressure monitoring in comatose patients suffering from head injuries. A critical survey. Acta Neurochir (Wien). 1977;39:187–200.CrossRef Papo I, Caruselli G. Long-term intracranial pressure monitoring in comatose patients suffering from head injuries. A critical survey. Acta Neurochir (Wien). 1977;39:187–200.CrossRef
14.
Zurück zum Zitat Zweckberger K, Sakowitz OW, Unterberg AW, Kiening KL. Intracranial pressure-volume relationship. Physiology and pathophysiology. Anaesthesist. 2009;58:392–7.CrossRef Zweckberger K, Sakowitz OW, Unterberg AW, Kiening KL. Intracranial pressure-volume relationship. Physiology and pathophysiology. Anaesthesist. 2009;58:392–7.CrossRef
15.
Zurück zum Zitat Kerr EM, Marion D, Sereika MS, Weber BB, Orndoff AP, Henker R, et al. The effect of cerebrospinal fluid drainage on cerebral perfusion in traumatic brain injured adults. J Neurosurg Anesthesiol. 2000;12:324–33.CrossRef Kerr EM, Marion D, Sereika MS, Weber BB, Orndoff AP, Henker R, et al. The effect of cerebrospinal fluid drainage on cerebral perfusion in traumatic brain injured adults. J Neurosurg Anesthesiol. 2000;12:324–33.CrossRef
16.
Zurück zum Zitat Slazinkski T, Anderson T, Cattell E, Eigsti J, Heimsoth S. Care of the patient undergoing intracranial pressure monitoring/external ventricular drainage or lumbar drainage. AANN Clin Pract Guidel Ser. 2011:1–38. Slazinkski T, Anderson T, Cattell E, Eigsti J, Heimsoth S. Care of the patient undergoing intracranial pressure monitoring/external ventricular drainage or lumbar drainage. AANN Clin Pract Guidel Ser. 2011:1–38.
17.
Zurück zum Zitat Integra Design Verification Report for Camino Flex Ventricular Catheter. 49–51. Integra Design Verification Report for Camino Flex Ventricular Catheter. 49–51.
18.
Zurück zum Zitat Hu X, Xu P, Scalzo F, Vespa P, Bergsneider M. Morphological clustering and analysis of continuous intracranial pressure. IEEE Trans Biomed Eng. 2009;56:696–705.CrossRef Hu X, Xu P, Scalzo F, Vespa P, Bergsneider M. Morphological clustering and analysis of continuous intracranial pressure. IEEE Trans Biomed Eng. 2009;56:696–705.CrossRef
19.
Zurück zum Zitat Asgari S, Gonzalez N, Subudhi AW, Hamilton R, Vespa P, Bergsneider M, et al. Continuous detection of cerebral vasodilatation and vasoconstriction using intracranial pulse morphological template matching. PLoS One. 2012;7:e52795.CrossRef Asgari S, Gonzalez N, Subudhi AW, Hamilton R, Vespa P, Bergsneider M, et al. Continuous detection of cerebral vasodilatation and vasoconstriction using intracranial pulse morphological template matching. PLoS One. 2012;7:e52795.CrossRef
20.
Zurück zum Zitat Asgari S, Bergsneider M, Hamilton R, Vespa P, Hu X. Consistent changes in intracranial pressure waveform morphology induced by acute hypercapnic cerebral vasodilatation. Neurocrit Care. 2011;15:55–62.CrossRef Asgari S, Bergsneider M, Hamilton R, Vespa P, Hu X. Consistent changes in intracranial pressure waveform morphology induced by acute hypercapnic cerebral vasodilatation. Neurocrit Care. 2011;15:55–62.CrossRef
21.
Zurück zum Zitat Kempley ST, Gamsu HR. Changes in cerebral artery blood flow velocity after intermittent cerebrospinal fluid drainage. Arch Dis Child. 1993;69:74–6.CrossRef Kempley ST, Gamsu HR. Changes in cerebral artery blood flow velocity after intermittent cerebrospinal fluid drainage. Arch Dis Child. 1993;69:74–6.CrossRef
22.
Zurück zum Zitat Asgari S, Vespa P, Bergsneider M, Hu X. Lack of consistent intracranial pressure pulse morphological changes during episodes of microdialysis lactate/pyruvate ratio increase. Physiol Meas. 2011;32:1639–51.CrossRef Asgari S, Vespa P, Bergsneider M, Hu X. Lack of consistent intracranial pressure pulse morphological changes during episodes of microdialysis lactate/pyruvate ratio increase. Physiol Meas. 2011;32:1639–51.CrossRef
23.
Zurück zum Zitat Connolly M, Vespa P, Hu X. Characterization of cerebral vascular response to EEG bursts using ICP pulse waveform template matching. Acta Neurochir Suppl. 2016;122:291–4.CrossRef Connolly M, Vespa P, Hu X. Characterization of cerebral vascular response to EEG bursts using ICP pulse waveform template matching. Acta Neurochir Suppl. 2016;122:291–4.CrossRef
24.
Zurück zum Zitat Bouma GJ, Muizelaar JP, Bandoh K, Marmarou A. Blood pressure and intracranial pressure-volume dynamics in severe head injury: relationship with cerebral blood flow. J Neurosurg. 1992;77:15–9.CrossRef Bouma GJ, Muizelaar JP, Bandoh K, Marmarou A. Blood pressure and intracranial pressure-volume dynamics in severe head injury: relationship with cerebral blood flow. J Neurosurg. 1992;77:15–9.CrossRef
25.
Zurück zum Zitat Rangel-Castilla L, Gasco J, Nauta HJW, Okonkwo DO, Robertson CS. Cerebral pressure autoregulation in traumatic brain injury. Neurosurg Focus. 2008;25:E7.CrossRef Rangel-Castilla L, Gasco J, Nauta HJW, Okonkwo DO, Robertson CS. Cerebral pressure autoregulation in traumatic brain injury. Neurosurg Focus. 2008;25:E7.CrossRef
26.
Zurück zum Zitat Kainerstorfer JM, Sassaroli A, Tgavalekos KT, Fantini S. Cerebral autoregulation in the microvasculature measured with near-infrared spectroscopy. J Cereb Blood Flow Metab. 2015;35:959–66.CrossRef Kainerstorfer JM, Sassaroli A, Tgavalekos KT, Fantini S. Cerebral autoregulation in the microvasculature measured with near-infrared spectroscopy. J Cereb Blood Flow Metab. 2015;35:959–66.CrossRef
27.
Zurück zum Zitat Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab. 2017;37:2320–39.CrossRef Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab. 2017;37:2320–39.CrossRef
28.
Zurück zum Zitat Liu X, Donnelly J, Czosnyka M, Aries MJH, Brady K, Cardim D, et al. Cerebrovascular pressure reactivity monitoring using wavelet analysis in traumatic brain injury patients: a retrospective study. PLOS Med. 2017;14:7.CrossRef Liu X, Donnelly J, Czosnyka M, Aries MJH, Brady K, Cardim D, et al. Cerebrovascular pressure reactivity monitoring using wavelet analysis in traumatic brain injury patients: a retrospective study. PLOS Med. 2017;14:7.CrossRef
29.
Zurück zum Zitat Tian F, Tarumi T, Liu H, Zhang R, Chalak L. Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic-ischemic encephalopathy. NeuroImage Clin. 2016;11:124–32.CrossRef Tian F, Tarumi T, Liu H, Zhang R, Chalak L. Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic-ischemic encephalopathy. NeuroImage Clin. 2016;11:124–32.CrossRef
30.
Zurück zum Zitat Peng T, Rowley AB, Ainslie PN, Poulin MJ, Payne SJ. Wavelet phase synchronization analysis of cerebral blood flow autoregulation. IEEE Trans Biomed Eng. 2010;57:960–8.CrossRef Peng T, Rowley AB, Ainslie PN, Poulin MJ, Payne SJ. Wavelet phase synchronization analysis of cerebral blood flow autoregulation. IEEE Trans Biomed Eng. 2010;57:960–8.CrossRef
31.
Zurück zum Zitat Spiegelberg A, Preuß M, Kurtcuoglu V. B-waves revisited. Interdiscip Neurosurg. 2016;6:13–7.CrossRef Spiegelberg A, Preuß M, Kurtcuoglu V. B-waves revisited. Interdiscip Neurosurg. 2016;6:13–7.CrossRef
32.
Zurück zum Zitat Lemaire JJ, Khalil T, Cervenansky F, Gindre G, Boire JY, Bazin JE, et al. Slow pressure waves in the cranial enclosure. Acta Neurochir (Wien). 2002;144:243–54.CrossRef Lemaire JJ, Khalil T, Cervenansky F, Gindre G, Boire JY, Bazin JE, et al. Slow pressure waves in the cranial enclosure. Acta Neurochir (Wien). 2002;144:243–54.CrossRef
33.
Zurück zum Zitat Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36:1–193.PubMed Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36:1–193.PubMed
34.
Zurück zum Zitat Hu X, Xu P, Lee DJ, Vespa P, Baldwin K, Bergsneider M. An algorithm for extracting intracranial pressure latency relative to electrocardiogram R wave. Physiol Meas. 2008;29:459–71.CrossRef Hu X, Xu P, Lee DJ, Vespa P, Baldwin K, Bergsneider M. An algorithm for extracting intracranial pressure latency relative to electrocardiogram R wave. Physiol Meas. 2008;29:459–71.CrossRef
35.
Zurück zum Zitat Grinsted A, Moore JC, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys. 2004;11:561–6.CrossRef Grinsted A, Moore JC, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys. 2004;11:561–6.CrossRef
36.
Zurück zum Zitat Keissar K, Davrath LR, Akselrod S. Coherence analysis between respiration and heart rate variability using continuous wavelet transform. Philos Trans A Math Phys Eng Sci. 2009;367:1393–406.CrossRef Keissar K, Davrath LR, Akselrod S. Coherence analysis between respiration and heart rate variability using continuous wavelet transform. Philos Trans A Math Phys Eng Sci. 2009;367:1393–406.CrossRef
37.
Zurück zum Zitat Kvandal P, Sheppard L, Landsverk SA, Stefanovska A, Kirkeboen KA. Impaired cerebrovascular reactivity after acute traumatic brain injury can be detected by wavelet phase coherence analysis of the intracranial and arterial blood pressure signals. J Clin Monit Comput. 2013;27:375–83.CrossRef Kvandal P, Sheppard L, Landsverk SA, Stefanovska A, Kirkeboen KA. Impaired cerebrovascular reactivity after acute traumatic brain injury can be detected by wavelet phase coherence analysis of the intracranial and arterial blood pressure signals. J Clin Monit Comput. 2013;27:375–83.CrossRef
38.
Zurück zum Zitat Ps A. The illustrated wavelet transform handbook, introductory theory and applications in science, engineering, medicine and finance. New York: Talor and Francis; 2002. Ps A. The illustrated wavelet transform handbook, introductory theory and applications in science, engineering, medicine and finance. New York: Talor and Francis; 2002.
39.
Zurück zum Zitat Addison PS. The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance. 2nd ed. Boca Raton: CRC Press; 2016. Addison PS. The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance. 2nd ed. Boca Raton: CRC Press; 2016.
40.
Zurück zum Zitat Brady KM, Easley RB, Kibler K, Kaczka DW, Andropoulos D, Fraser CD, et al. Positive end-expiratory pressure oscillation facilitates brain vascular reactivity monitoring. J Appl Physiol. 2012;113:1362–8.CrossRef Brady KM, Easley RB, Kibler K, Kaczka DW, Andropoulos D, Fraser CD, et al. Positive end-expiratory pressure oscillation facilitates brain vascular reactivity monitoring. J Appl Physiol. 2012;113:1362–8.CrossRef
41.
Zurück zum Zitat Zhang R, Zuckerman JH, Giller CA, Levine BD. Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol. 1998;274:H233–41.PubMed Zhang R, Zuckerman JH, Giller CA, Levine BD. Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol. 1998;274:H233–41.PubMed
42.
Zurück zum Zitat Muizelaar J, Ward J, Marmarou A, Newlon P, Wachi A. Cerebral blood flow and metabolism in severely head-injured children Part 2: Autoregulation. J Neurosurg. 1989;71:72–6.CrossRef Muizelaar J, Ward J, Marmarou A, Newlon P, Wachi A. Cerebral blood flow and metabolism in severely head-injured children Part 2: Autoregulation. J Neurosurg. 1989;71:72–6.CrossRef
43.
Zurück zum Zitat Liu X, Czosnyka M, Donnelly J, Cardim D, Cabeleira M, Hutchinson PJ, et al. Wavelet pressure reactivity index: a validation study. J Physiol. 2018;596(14):2797–2809.CrossRef Liu X, Czosnyka M, Donnelly J, Cardim D, Cabeleira M, Hutchinson PJ, et al. Wavelet pressure reactivity index: a validation study. J Physiol. 2018;596(14):2797–2809.CrossRef
44.
Zurück zum Zitat Rao AR, Hamed K. Multi-taper method of analysis of periodicities in hydrologic data. J Hydrol. 2003;279:125–43.CrossRef Rao AR, Hamed K. Multi-taper method of analysis of periodicities in hydrologic data. J Hydrol. 2003;279:125–43.CrossRef
45.
Zurück zum Zitat Jeyaseelan AS, Balaji R. Spectral analysis of wave elevation time histories using multi-taper method. Ocean Eng. 2015;105:242–6.CrossRef Jeyaseelan AS, Balaji R. Spectral analysis of wave elevation time histories using multi-taper method. Ocean Eng. 2015;105:242–6.CrossRef
46.
Zurück zum Zitat Aries MJH, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–63.CrossRef Aries MJH, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–63.CrossRef
47.
Zurück zum Zitat Trauner DA, Brown F, Ganz E, Huttenlocher PR. Treatment of elevated intracranial pressure in reye syndrome. Ann Neurol. 1978;4:275–8.CrossRef Trauner DA, Brown F, Ganz E, Huttenlocher PR. Treatment of elevated intracranial pressure in reye syndrome. Ann Neurol. 1978;4:275–8.CrossRef
48.
Zurück zum Zitat Hawthorne C, Piper I. Monitoring of intracranial pressure in patients with traumatic brain injury. Front Neurol. 2014;5:121.CrossRef Hawthorne C, Piper I. Monitoring of intracranial pressure in patients with traumatic brain injury. Front Neurol. 2014;5:121.CrossRef
49.
Zurück zum Zitat Physics C, Hospital SG, Kingdom U. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data. 2014;120:1451–7. Physics C, Hospital SG, Kingdom U. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data. 2014;120:1451–7.
50.
Zurück zum Zitat Panerai RB. Cerebral autoregulation: from models to clinical applications. Cardiovasc Eng. 2008;8:42–59.CrossRef Panerai RB. Cerebral autoregulation: from models to clinical applications. Cardiovasc Eng. 2008;8:42–59.CrossRef
51.
Zurück zum Zitat Larsen FS, Olsen KS, Hansen BA, Paulson OB, Knudsen GM. Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation. Stroke. 1994;25:1985–8.CrossRef Larsen FS, Olsen KS, Hansen BA, Paulson OB, Knudsen GM. Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation. Stroke. 1994;25:1985–8.CrossRef
52.
Zurück zum Zitat Lang EW, Lagopoulos J, Griffith J, Yip K, Yam A, Mudaliar Y, et al. Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow. J Neurol Neurosurg Psychiatry. 2003;74:1053–9.CrossRef Lang EW, Lagopoulos J, Griffith J, Yip K, Yam A, Mudaliar Y, et al. Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow. J Neurol Neurosurg Psychiatry. 2003;74:1053–9.CrossRef
53.
Zurück zum Zitat Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–62.CrossRef Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–62.CrossRef
54.
Zurück zum Zitat Hemphill JC, Andrews P, De Georgia M. Multimodal monitoring and neurocritical care bioinformatics. Nat Rev Neurol. 2011;7:451–60.CrossRef Hemphill JC, Andrews P, De Georgia M. Multimodal monitoring and neurocritical care bioinformatics. Nat Rev Neurol. 2011;7:451–60.CrossRef
55.
Zurück zum Zitat Addison PS. Identifying stable phase coupling associated with cerebral autoregulation using the synchrosqueezed cross-wavelet transform and low oscillation Morlet wavelets. Conf Proc IEEE Eng Med Biol Soc. 2015;8:5960–3. Addison PS. Identifying stable phase coupling associated with cerebral autoregulation using the synchrosqueezed cross-wavelet transform and low oscillation Morlet wavelets. Conf Proc IEEE Eng Med Biol Soc. 2015;8:5960–3.
56.
Zurück zum Zitat Lewis PM, Rosenfeld JV, Diehl RR, Mehdorn HM, Lang EW. Phase shift and correlation coefficient measurement of cerebral autoregulation during deep breathing in traumatic brain injury (TBI). Acta Neurochir (Wien). 2008;150:139–46.CrossRef Lewis PM, Rosenfeld JV, Diehl RR, Mehdorn HM, Lang EW. Phase shift and correlation coefficient measurement of cerebral autoregulation during deep breathing in traumatic brain injury (TBI). Acta Neurochir (Wien). 2008;150:139–46.CrossRef
57.
Zurück zum Zitat Donnelly J, Budohoski KP, Smielewski P, Czosnyka M. Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care. 2016;20:129.CrossRef Donnelly J, Budohoski KP, Smielewski P, Czosnyka M. Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care. 2016;20:129.CrossRef
58.
Zurück zum Zitat Lee JK, Kibler KK, Benni PB, Easley RB, Czosnyka M, Smielewski P, et al. Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke. 2009;40:1820–6.CrossRef Lee JK, Kibler KK, Benni PB, Easley RB, Czosnyka M, Smielewski P, et al. Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke. 2009;40:1820–6.CrossRef
59.
Zurück zum Zitat Liu X, Czosnyka M, Donnelly J, Budohoski KP, Varsos GV, Nasr N, et al. Comparison of frequency and time domain methods of assessment of cerebral autoregulation in traumatic brain injury. J Cereb Blood Flow Metab. 2014;11:1–9. Liu X, Czosnyka M, Donnelly J, Budohoski KP, Varsos GV, Nasr N, et al. Comparison of frequency and time domain methods of assessment of cerebral autoregulation in traumatic brain injury. J Cereb Blood Flow Metab. 2014;11:1–9.
60.
Zurück zum Zitat Steiner LA, Czosnyka M, Piechnik SK. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care. 2002;30:733–8.CrossRef Steiner LA, Czosnyka M, Piechnik SK. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care. 2002;30:733–8.CrossRef
61.
Zurück zum Zitat Depreitere B, Güiza F, Van den Berghe G, Schuhmann MU, Maier G, Piper I, et al. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data. J Neurosurg. 2014;120:1451–7.CrossRef Depreitere B, Güiza F, Van den Berghe G, Schuhmann MU, Maier G, Piper I, et al. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data. J Neurosurg. 2014;120:1451–7.CrossRef
62.
Zurück zum Zitat Liu X, Maurits N, Aries M, Czosnyka M, Ercole A, Donnelly J, et al. Monitoring of optimal cerebral perfusion pressure in traumatic brain injured patients using a multi-window weighting algorithm. J Neurotraum`a. 2017;34:3081–8.CrossRef Liu X, Maurits N, Aries M, Czosnyka M, Ercole A, Donnelly J, et al. Monitoring of optimal cerebral perfusion pressure in traumatic brain injured patients using a multi-window weighting algorithm. J Neurotraum`a. 2017;34:3081–8.CrossRef
63.
Zurück zum Zitat Cardim D, Robba C, Bohdanowicz M, Donnelly J, Cabella B, Liu X, et al. Non-invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible? Neurocrit Care. 2016;25:473–91.CrossRef Cardim D, Robba C, Bohdanowicz M, Donnelly J, Cabella B, Liu X, et al. Non-invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible? Neurocrit Care. 2016;25:473–91.CrossRef
Metadaten
Titel
Cerebral Vascular Changes During Acute Intracranial Pressure Drop
verfasst von
Xiuyun Liu
Lara L. Zimmermann
Nhi Ho
Paul Vespa
Xiaoling Liao
Xiao Hu
Publikationsdatum
06.12.2018
Verlag
Springer US
Erschienen in
Neurocritical Care / Ausgabe 3/2019
Print ISSN: 1541-6933
Elektronische ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-018-0651-4

Weitere Artikel der Ausgabe 3/2019

Neurocritical Care 3/2019 Zur Ausgabe

Neurocritical Care Through History

Stomaching Acute Brain Injury

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.