Skip to main content
Erschienen in:

30.09.2023 | Original Article

Change in renal blood flow in response to intrarenal pressure alterations induced by ureteroscopy in an in-vivo porcine model

verfasst von: Ron Marom, Julie J. Dau, Khurshid R. Ghani, Timothy L. Hall, William W. Roberts

Erschienen in: World Journal of Urology | Ausgabe 11/2023

Einloggen, um Zugang zu erhalten

Abstract

Introduction

High irrigation rates are commonly used during ureteroscopy and can increase intrarenal pressure (IRP) substantially. Concerns have been raised that elevated IRP may diminish renal blood flow (RBF) and perfusion of the kidney. Our objective was to investigate the real-time changes in RBF while increasing IRP during Ureteroscopy (URS) in an in-vivo porcine model.

Methods

Four renal units in two porcine subjects were used in this study, three experimental units and one control. For the experimental units, RBF was measured by placing an ultrasonic flow cuff around the renal artery, while performing ureteroscopy in the same kidney using a prototype ureteroscope with a pressure sensor at its tip. Irrigation was cycled between two rates to achieve targeted IRPs of 30 mmHg and 100 mmHg. A control data set was obtained by placing the ultrasonic flow cuff on the contralateral renal artery while performing ipsilateral URS.

Results

At high IRP, RBF was reduced in all three experimental trials by 10–20% but not in the control trial. The percentage change in RBF due to alteration in IRP was internally consistent in each porcine renal unit and independent of slower systemic variation in RBF encountered in both the experimental and control units.

Conclusion

RBF decreased 10–20% when IRP was increased from 30 to 100 mmHg during ureteroscopy in an in-vivo porcine model. While this reduction in RBF is unlikely to have an appreciable effect on tissue oxygenation, it may impact heat-sink capacity in vulnerable regions of the kidney.
Literatur
1.
3.
Zurück zum Zitat Patel RM, Jefferson FA, Owyong M et al (2021) Characterization of intracalyceal pressure during ureteroscopy. World J Urol 39:883–889CrossRefPubMed Patel RM, Jefferson FA, Owyong M et al (2021) Characterization of intracalyceal pressure during ureteroscopy. World J Urol 39:883–889CrossRefPubMed
4.
Zurück zum Zitat Thomsen HS, Dorph S, Olsen S (1981) Pyelorenal backflow in normal and ischemic rabbit kidneys. Invest Radiol 16:206–214CrossRefPubMed Thomsen HS, Dorph S, Olsen S (1981) Pyelorenal backflow in normal and ischemic rabbit kidneys. Invest Radiol 16:206–214CrossRefPubMed
5.
Zurück zum Zitat Thomsen HS, Dorph S, Olsen S (1982) Pyelorenal backflow in rabbits following clamping of the renal vein and artery: radiologic and microscopic investigation. Acta Radiol Diagn 23:143–148CrossRef Thomsen HS, Dorph S, Olsen S (1982) Pyelorenal backflow in rabbits following clamping of the renal vein and artery: radiologic and microscopic investigation. Acta Radiol Diagn 23:143–148CrossRef
6.
Zurück zum Zitat Hinman F, Redewill FH (1926) PYELOVENOUS BACK FLOW. JAMA 87:1287–1293CrossRef Hinman F, Redewill FH (1926) PYELOVENOUS BACK FLOW. JAMA 87:1287–1293CrossRef
8.
Zurück zum Zitat Stenberg A, Bohman SO, Morsing P et al (1988) Back-leak of pelvic urine to the bloodstream. Acta Physiol Scand 134:223–234CrossRefPubMed Stenberg A, Bohman SO, Morsing P et al (1988) Back-leak of pelvic urine to the bloodstream. Acta Physiol Scand 134:223–234CrossRefPubMed
9.
Zurück zum Zitat Thomsen HS, Larsen S and Talner LB: Pyelorenal backflow during retrograde pyelography in normal and ischemic porcine kidneys. A radiologic and pathoanatomic study. Eur. Urol. 1982; 8: 291–297. Thomsen HS, Larsen S and Talner LB: Pyelorenal backflow during retrograde pyelography in normal and ischemic porcine kidneys. A radiologic and pathoanatomic study. Eur. Urol. 1982; 8: 291–297.
10.
Zurück zum Zitat Kottooran C, Twum-Ampofo J, Lee J et al (2023) Evaluation of fluid absorption during flexible ureteroscopy in an in-vivo porcine model. BJU Int 131:213–218CrossRefPubMed Kottooran C, Twum-Ampofo J, Lee J et al (2023) Evaluation of fluid absorption during flexible ureteroscopy in an in-vivo porcine model. BJU Int 131:213–218CrossRefPubMed
11.
Zurück zum Zitat Pedersen KV, Liao D, Osther SS et al (2012) Distension of the renal pelvis in kidney stone patients: sensory and biomechanical responses. Urol Res 40:305–316CrossRefPubMed Pedersen KV, Liao D, Osther SS et al (2012) Distension of the renal pelvis in kidney stone patients: sensory and biomechanical responses. Urol Res 40:305–316CrossRefPubMed
12.
Zurück zum Zitat Zhong W, Leto G, Wang L et al (2015) Systemic inflammatory response syndrome after flexible ureteroscopic lithotripsy: a study of risk factors. J Endourol 29:25–28CrossRefPubMed Zhong W, Leto G, Wang L et al (2015) Systemic inflammatory response syndrome after flexible ureteroscopic lithotripsy: a study of risk factors. J Endourol 29:25–28CrossRefPubMed
13.
Zurück zum Zitat Kreydin EI, Eisner BH (2013) Risk factors for sepsis after percutaneous renal stone surgery. Nat Rev Urol 10:598–605CrossRefPubMed Kreydin EI, Eisner BH (2013) Risk factors for sepsis after percutaneous renal stone surgery. Nat Rev Urol 10:598–605CrossRefPubMed
14.
Zurück zum Zitat Hvistendahl JJ, Pedersen TS, Jørgensen HH et al (1996) Renal hemodynamic response to gradated ureter obstruction in the pig. Nephron 74:168–174CrossRefPubMed Hvistendahl JJ, Pedersen TS, Jørgensen HH et al (1996) Renal hemodynamic response to gradated ureter obstruction in the pig. Nephron 74:168–174CrossRefPubMed
16.
Zurück zum Zitat Yazici CM, Akgul M, Ozcaglayan O et al (2021) Prospective Evaluation of Ipsilateral and Contralateral Renal Blood Flow During Retrograde Intrarenal Surgery. Urology 154:77–82CrossRefPubMed Yazici CM, Akgul M, Ozcaglayan O et al (2021) Prospective Evaluation of Ipsilateral and Contralateral Renal Blood Flow During Retrograde Intrarenal Surgery. Urology 154:77–82CrossRefPubMed
17.
Zurück zum Zitat Dumbill R, Mellati A, Yang BD et al (2023) Ureterorenoscopy during normothermic machine perfusion: effect of varying renal pelvis pressure. BJU Int 131:50–52CrossRefPubMed Dumbill R, Mellati A, Yang BD et al (2023) Ureterorenoscopy during normothermic machine perfusion: effect of varying renal pelvis pressure. BJU Int 131:50–52CrossRefPubMed
18.
Zurück zum Zitat Pallone TL, Edwards A, Mattson DL (2012) Renal medullary circulation Compr Physiol 2:97–140PubMed Pallone TL, Edwards A, Mattson DL (2012) Renal medullary circulation Compr Physiol 2:97–140PubMed
19.
Zurück zum Zitat Dalal R, Bruss ZS, Sehdev JS (2022) Physiology. StatPearls Publishing, Renal Blood Flow and Filtration Dalal R, Bruss ZS, Sehdev JS (2022) Physiology. StatPearls Publishing, Renal Blood Flow and Filtration
20.
Zurück zum Zitat Ron Marom, Julie J. Dau, Timothy L. Hall, Khurshid R. Ghani, William W. Roberts: In-Vivo Thermal Tissue Mapping in a Porcine Model During Laser Activation. In: Engineering and Urology Society, 36th Annual Meeting. 2023. Ron Marom, Julie J. Dau, Timothy L. Hall, Khurshid R. Ghani, William W. Roberts: In-Vivo Thermal Tissue Mapping in a Porcine Model During Laser Activation. In: Engineering and Urology Society, 36th Annual Meeting. 2023.
21.
Zurück zum Zitat Kalantarinia K, Belcik JT, Patrie JT et al (2009) Real-time measurement of renal blood flow in healthy subjects using contrast-enhanced ultrasound. Am J Physiol Renal Physiol 297:F1129–F1134CrossRefPubMedPubMedCentral Kalantarinia K, Belcik JT, Patrie JT et al (2009) Real-time measurement of renal blood flow in healthy subjects using contrast-enhanced ultrasound. Am J Physiol Renal Physiol 297:F1129–F1134CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Glenny RW, Bernard S, Brinkley M (1993) Validation of fluorescent-labeled microspheres for measurement of regional organ perfusion. J Appl Physiol 74:2585–2597CrossRefPubMed Glenny RW, Bernard S, Brinkley M (1993) Validation of fluorescent-labeled microspheres for measurement of regional organ perfusion. J Appl Physiol 74:2585–2597CrossRefPubMed
Metadaten
Titel
Change in renal blood flow in response to intrarenal pressure alterations induced by ureteroscopy in an in-vivo porcine model
verfasst von
Ron Marom
Julie J. Dau
Khurshid R. Ghani
Timothy L. Hall
William W. Roberts
Publikationsdatum
30.09.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
World Journal of Urology / Ausgabe 11/2023
Print ISSN: 0724-4983
Elektronische ISSN: 1433-8726
DOI
https://doi.org/10.1007/s00345-023-04641-3

Neu im Fachgebiet Urologie

Adjuvanter PD-L1-Hemmer verhindert Rezidive bei Hochrisiko-Urothelkarzinom

Sind Menschen mit muskelinvasivem Urothelkarzinom für die neoadjuvante platinbasierte Therapie nicht geeignet oder sprechen sie darauf nicht gut an, ist Pembrolizumab eine adjuvante Alternative: Die krankheitsfreie Lebenszeit wird dadurch mehr als verdoppelt.

Nierenzellkarzinom: Kein Nachteil durch subkutan appliziertes Nivolumab

Die subkutane Applikation von Nivolumab ist nach Daten einer Phase-3-Studie ähnlich gut wirksam wie die intravenöse: Die Pharmakokinetik ist vergleichbar, die objektive Response war in der Studie sogar leicht besser als in der Gruppe mit Infusionen.

Auf weichem Fahrradsattel ist nicht gut Kinder zeugen

Männer, die sich gern sportlich verausgaben, riskieren möglicherweise, fürs Vaterwerden nicht genug Kräfte übrig zu haben. In einer Studie fanden sich dafür zwar allenfalls schwache Anzeichen. Es gab jedoch eine Ausnahme.

Vorteile für Androgenentzug plus Androgenrezeptorblockade

Für Männer mit metastasiertem hormonsensitivem Prostata-Ca. (mHSPC), die keine Hormonchemotherapie wollen oder vertragen, ist der Androgenentzug plus Darolutamid eine Alternative: Das Progressionsrisiko wird im Vergleich zum alleinigen Androgenentzug fast halbiert.

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.