Skip to main content
Erschienen in: Japanese Journal of Radiology 7/2018

26.04.2018 | Original Article

Changes in the ADC of diffusion-weighted MRI with the oscillating gradient spin-echo (OGSE) sequence due to differences in substrate viscosities

verfasst von: Tomoko Maekawa, Masaaki Hori, Katsutoshi Murata, Thorsten Feiweier, Issei Fukunaga, Christina Andica, Akifumi Hagiwara, Koji Kamagata, Saori Koshino, Osamu Abe, Shigeki Aoki

Erschienen in: Japanese Journal of Radiology | Ausgabe 7/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Compared with the conventional pulsed gradient spin-echo (PGSE) sequence, diffusion-weighted imaging (DWI) with the oscillating gradient spin-echo (OGSE) sequence can shorten the diffusion time by changing the frequency. The purpose was to investigate whether n-alkanes are suitable as isotropic phantoms for estimating the diffusion coefficient with the OGSE sequence.

Materials and methods

We investigated changes in the apparent diffusion coefficient (ADC) due to differences in the viscosities of nine n-alkane phantoms with different numbers of carbon atoms from C8H18 to C16H34 using OGSE and PGSE sequences at 21 °C. Effective diffusion times of 4.3, 5.1, 6.5, 9.3, 20, 40, and 60 ms were used. The T2 relaxation times of each n-alkane phantom were measured using quantitative synthetic magnetic resonance imaging (MRI). Circular regions of interest were placed manually within the alkane phantoms on ADC and T2 maps.

Results

In each alkane phantom, changes in mean ADC values were almost constant with changes in diffusion times. Viscosities and ADC values showed inverse proportionality, as expected theoretically.

Conclusion

The ADC values of alkanes do not depend on diffusion times. The n-alkanes can be useful phantoms for assessing the accuracy of clinical protocols of DWI with the OGSE sequence.
Literatur
1.
Zurück zum Zitat Martin M. Measuring restriction sizes using diffusion weighted magnetic resonance imaging: a review. Magn Reson Insights. 2013;6:59–64.PubMedPubMedCentral Martin M. Measuring restriction sizes using diffusion weighted magnetic resonance imaging: a review. Magn Reson Insights. 2013;6:59–64.PubMedPubMedCentral
2.
Zurück zum Zitat Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–92.CrossRef Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–92.CrossRef
3.
Zurück zum Zitat Does MD, Parsons EC, Gore JC. Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain. Magn Reson Med. 2003;49:206–15.CrossRefPubMed Does MD, Parsons EC, Gore JC. Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain. Magn Reson Med. 2003;49:206–15.CrossRefPubMed
4.
Zurück zum Zitat Aggarwal M, Jones MV, Calabresi PA, Mori S, Zhang J. Probing mouse brain microstructure using oscillating gradient diffusion MRI. Magn Reson Med. 2012;67:98–109.CrossRefPubMed Aggarwal M, Jones MV, Calabresi PA, Mori S, Zhang J. Probing mouse brain microstructure using oscillating gradient diffusion MRI. Magn Reson Med. 2012;67:98–109.CrossRefPubMed
5.
Zurück zum Zitat Wu D, Martin LJ, Northington FJ, Zhang J. Oscillating gradient diffusion MRI reveals unique microstructural information in normal and hypoxia-ischemia injured mouse brains. Magn Reson Med. 2014;72:1366–74.CrossRefPubMedPubMedCentral Wu D, Martin LJ, Northington FJ, Zhang J. Oscillating gradient diffusion MRI reveals unique microstructural information in normal and hypoxia-ischemia injured mouse brains. Magn Reson Med. 2014;72:1366–74.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Novikov DS, Jensen JH, Helpern JA, Fieremans E. Revealing mesoscopic structural universality with diffusion. Proc Natl Acad Sci USA. 2014;111:5088–93.CrossRefPubMedPubMedCentral Novikov DS, Jensen JH, Helpern JA, Fieremans E. Revealing mesoscopic structural universality with diffusion. Proc Natl Acad Sci USA. 2014;111:5088–93.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Beaulieu C, Allen PS. Water diffusion in the giant axon of the squid: implications for diffusion-weighted MRI of the nervous system. Magn Reson Med. 1994;32:579–83.CrossRefPubMed Beaulieu C, Allen PS. Water diffusion in the giant axon of the squid: implications for diffusion-weighted MRI of the nervous system. Magn Reson Med. 1994;32:579–83.CrossRefPubMed
8.
Zurück zum Zitat Beaulieu C, Allen PS. An in vitro evaluation of the effects of local magnetic-susceptibility-induced gradients on anisotropic water diffusion in nerve. Magn Reson Med. 1996;36:39–44.CrossRefPubMed Beaulieu C, Allen PS. An in vitro evaluation of the effects of local magnetic-susceptibility-induced gradients on anisotropic water diffusion in nerve. Magn Reson Med. 1996;36:39–44.CrossRefPubMed
9.
Zurück zum Zitat Stanisz GJ, Henkelman RM. Diffusional anisotropy of T2 components in bovine optic nerve. Magn Reson Med. 1998;40:405–10.CrossRefPubMed Stanisz GJ, Henkelman RM. Diffusional anisotropy of T2 components in bovine optic nerve. Magn Reson Med. 1998;40:405–10.CrossRefPubMed
10.
Zurück zum Zitat Tofts PS, Lloyd D, Clark CA, Barker GJ, Parker GJ, McConville P, et al. Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo. Magn Reson Med. 2000;43:368–74.CrossRefPubMed Tofts PS, Lloyd D, Clark CA, Barker GJ, Parker GJ, McConville P, et al. Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo. Magn Reson Med. 2000;43:368–74.CrossRefPubMed
11.
Zurück zum Zitat Lide DR, editor. CRC handbook of chemistry and physics. 78th ed. New York: CRC Press; 1997. Lide DR, editor. CRC handbook of chemistry and physics. 78th ed. New York: CRC Press; 1997.
12.
Zurück zum Zitat Van AT, Holdsworth SJ, Bammer R. In vivo investigation of restricted diffusion in the human brain with optimized oscillating diffusion gradient encoding. Magn Reson Med. 2014;71:83–94.CrossRefPubMed Van AT, Holdsworth SJ, Bammer R. In vivo investigation of restricted diffusion in the human brain with optimized oscillating diffusion gradient encoding. Magn Reson Med. 2014;71:83–94.CrossRefPubMed
13.
Zurück zum Zitat Hagiwara A, Warntjes M, Hori M, Andica C, Nakazawa M, Kumamaru KK, et al. SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement. Investig Radiol. 2017;52:647–57.CrossRef Hagiwara A, Warntjes M, Hori M, Andica C, Nakazawa M, Kumamaru KK, et al. SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement. Investig Radiol. 2017;52:647–57.CrossRef
14.
Zurück zum Zitat Hagiwara A, Nakazawa M, Andica C, Tsuruta K, Takano N, Hori M, et al. Dural enhancement in a patient with Sturge-Weber syndrome revealed by double inversion recovery contrast using synthetic MRI. Magn Reson Med Sci. 2016;15:151–2.CrossRefPubMed Hagiwara A, Nakazawa M, Andica C, Tsuruta K, Takano N, Hori M, et al. Dural enhancement in a patient with Sturge-Weber syndrome revealed by double inversion recovery contrast using synthetic MRI. Magn Reson Med Sci. 2016;15:151–2.CrossRefPubMed
15.
Zurück zum Zitat Krauss W, Gunnarsson M, Andersson T, Thunberg P. Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density. Magn Reson Imaging. 2015;33:584–91.CrossRefPubMed Krauss W, Gunnarsson M, Andersson T, Thunberg P. Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density. Magn Reson Imaging. 2015;33:584–91.CrossRefPubMed
16.
Zurück zum Zitat Jansen JF, Kooi ME, Kessels AG, Nicolay K, Backes WH. Reproducibility of quantitative cerebral T2 relaxometry, diffusion tensor imaging, and 1H magnetic resonance spectroscopy at 3.0 tesla. Investig Radiol. 2007;42:327–37.CrossRef Jansen JF, Kooi ME, Kessels AG, Nicolay K, Backes WH. Reproducibility of quantitative cerebral T2 relaxometry, diffusion tensor imaging, and 1H magnetic resonance spectroscopy at 3.0 tesla. Investig Radiol. 2007;42:327–37.CrossRef
17.
Zurück zum Zitat Vollmar C, O’Muircheartaigh J, Barker GJ, Symms MR, Thompson P, Kumari V, et al. Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners. Neuroimage. 2010;51:1384–94.CrossRefPubMedPubMedCentral Vollmar C, O’Muircheartaigh J, Barker GJ, Symms MR, Thompson P, Kumari V, et al. Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners. Neuroimage. 2010;51:1384–94.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Parsons EC Jr, Does MD, Gore JC. Temporal diffusion spectroscopy: theory and implementation in restricted systems using oscillating gradients. Magn Reson Med. 2006;55:75–84.CrossRefPubMed Parsons EC Jr, Does MD, Gore JC. Temporal diffusion spectroscopy: theory and implementation in restricted systems using oscillating gradients. Magn Reson Med. 2006;55:75–84.CrossRefPubMed
19.
Zurück zum Zitat Jiang X, Li H, Xie J, Zhao P, Gore JC, Xu J. Quantification of cell size using temporal diffusion spectroscopy. Magn Reson Med. 2016;75:1076–85.CrossRefPubMed Jiang X, Li H, Xie J, Zhao P, Gore JC, Xu J. Quantification of cell size using temporal diffusion spectroscopy. Magn Reson Med. 2016;75:1076–85.CrossRefPubMed
20.
Zurück zum Zitat Kloska SP, Wintermark M, Engelhorn T, Fiebach JB. Acute stroke magnetic resonance imaging: current status and future perspective. Neuroradiology. 2010;52:189–201.CrossRefPubMed Kloska SP, Wintermark M, Engelhorn T, Fiebach JB. Acute stroke magnetic resonance imaging: current status and future perspective. Neuroradiology. 2010;52:189–201.CrossRefPubMed
21.
Zurück zum Zitat Beauchamp NJ Jr, Ulug AM, Passe TJ, van Zijl PC. MR diffusion imaging in stroke: review and controversies. Radiographics. 1998;18:1269–83 (discussion 1283–5).CrossRefPubMed Beauchamp NJ Jr, Ulug AM, Passe TJ, van Zijl PC. MR diffusion imaging in stroke: review and controversies. Radiographics. 1998;18:1269–83 (discussion 1283–5).CrossRefPubMed
22.
Zurück zum Zitat Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14:330–46.CrossRefPubMed Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14:330–46.CrossRefPubMed
23.
Zurück zum Zitat Baron CA, Kate M, Gioia L, Butcher K, Emery D, Budde M, et al. Reduction of diffusion-weighted imaging contrast of acute ischemic stroke at short diffusion times. Stroke. 2015;46:2136–41.CrossRefPubMed Baron CA, Kate M, Gioia L, Butcher K, Emery D, Budde M, et al. Reduction of diffusion-weighted imaging contrast of acute ischemic stroke at short diffusion times. Stroke. 2015;46:2136–41.CrossRefPubMed
31.
Zurück zum Zitat Leuthardt EC, Wippold FJ 2nd, Oswood MC, Rich KM. Diffusion-weighted MR imaging in the preoperative assessment of brain abscesses. Surg Neurol. 2002;58:395–402 (discussion 402).CrossRefPubMed Leuthardt EC, Wippold FJ 2nd, Oswood MC, Rich KM. Diffusion-weighted MR imaging in the preoperative assessment of brain abscesses. Surg Neurol. 2002;58:395–402 (discussion 402).CrossRefPubMed
Metadaten
Titel
Changes in the ADC of diffusion-weighted MRI with the oscillating gradient spin-echo (OGSE) sequence due to differences in substrate viscosities
verfasst von
Tomoko Maekawa
Masaaki Hori
Katsutoshi Murata
Thorsten Feiweier
Issei Fukunaga
Christina Andica
Akifumi Hagiwara
Koji Kamagata
Saori Koshino
Osamu Abe
Shigeki Aoki
Publikationsdatum
26.04.2018
Verlag
Springer Japan
Erschienen in
Japanese Journal of Radiology / Ausgabe 7/2018
Print ISSN: 1867-1071
Elektronische ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-018-0737-0

Weitere Artikel der Ausgabe 7/2018

Japanese Journal of Radiology 7/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.